Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.533
Filtrar
1.
Bioorg Chem ; 147: 107337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626491

RESUMO

A convenient methodology for C-4 indole-ß-lactam hybrids with chloro, sulphur and seleno substitutions through dual site reactivity of indole-3-Schiff bases towards ketenes has been developed. The reaction proceeded in a stereospecific manner with the exclusive formation of trans-ß-lactams assigned with respect to C3-H and C4-H. The synthesized novel ß-lactams have been characterized with the help of elemental analysis (CHNS) and spectroscopic techniques viz.1H NMR, 13C NMR, DEPT 135, HSQC and IR. The trans configuration was further estabilished based on X-ray crystallographic data. Examination of antibacterial properties unveiled that only derivatives 5a and 5b, featuring chloro substitution, exhibited potent activities, underscoring the emergence of the recently coined term "magic chloro effect". Molecular docking analysis provided additional support for the observed in vitro antibacterial activities of compounds 5a-b.


Assuntos
Antibacterianos , Indóis , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Bases de Schiff , beta-Lactamas , Bases de Schiff/química , Bases de Schiff/farmacologia , Indóis/química , Indóis/farmacologia , Indóis/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , beta-Lactamas/química , beta-Lactamas/farmacologia , beta-Lactamas/síntese química , Relação Estrutura-Atividade , Estrutura Molecular , Cetonas/química , Cetonas/farmacologia , Cetonas/síntese química , Etilenos/química , Etilenos/farmacologia , Estereoisomerismo , Selênio/química , Selênio/farmacologia , Enxofre/química , Relação Dose-Resposta a Droga
2.
Genes Genomics ; 46(4): 399-408, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319456

RESUMO

BACKGROUND: Sweet osmanthus (Osmanthus fragrans) is an ornamental evergreen tree species in China, whose flowers are sensitive to ethylene. The synthesis of ethylene is controlled by key enzymes and restriction enzymes, 1-aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), which are encoded by multigene families. However, the key synthase responsible for ethylene regulation in O. fragrans is still unknown. OBJECTIVE: This study aims to screen the key ethylene synthase genes of sweet osmanthus flowers in response to ethylene regulation. METHODS: In this study, we used the ACO and ACS sequences of Arabidopsis thaliana to search for homologous genes in the O. fragrans petal transcriptome database. These genes were also analyzed bioinformatically. Finally, the expression levels of O. fragrans were compared before and after senescence, as well as after ethephon and silver nitrate treatments. RESULTS: The results showed that there are five ACO genes and one ACS gene in O. fragrans transcriptome database, and the phylogenetic tree revealed that the proteins encoded by these genes had high homology to the ACS and ACO proteins in plants. Sequence alignment shows that the OfACO1-5 proteins have the 2OG-Fe(II) oxygenase domain, while OfACS1 contains seven conserved domains, as well as conserved amino acids in transaminases and glutamate residues related to substrate specificity. Expression analysis revealed that the expression levels of OfACS1 and OfACO1-5 were significantly higher at the early senescence stage compared to the full flowering stage. The transcripts of the OfACS1, OfACO2, and OfACO5 genes were upregulated by treatment with ethephon. However, out of these three genes, only OfACO2 was significantly downregulated by treatment with AgNO3. CONCLUSION: Our study found that OfACO2 is an important synthase gene in response to ethylene regulation in sweet osmanthus, which would provide valuable data for further investigation into the mechanisms of ethylene-induced senescence in sweet osmanthus flowers.


Assuntos
Compostos Organofosforados , Senescência Vegetal , Nitrato de Prata , Nitrato de Prata/farmacologia , Filogenia , Etilenos/farmacologia , Etilenos/metabolismo
3.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
4.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396815

RESUMO

The gaseous phytohormone ethylene plays a crucial role in plant growth, development, and stress responses. In the ethylene signal transduction cascade, the F-box proteins EIN3-BINDING F-BOX 1 (EBF1) and EBF2 are identified as key negative regulators governing ethylene sensitivity. The translation and processing of EBF1/2 mRNAs are tightly controlled, and their 3' untranslated regions (UTRs) are critical in these regulations. However, despite their significance, the exact mechanisms modulating the processing of EBF1/2 mRNAs remain poorly understood. In this work, we identified the gene DCP1-ASSOCIATED NYN ENDORIBONUCLEASE 1 (DNE1), which encodes an endoribonuclease and is induced by ethylene treatment, as a positive regulator of ethylene response. The loss of function mutant dne1-2 showed mild ethylene insensitivity, highlighting the importance of DNE1 in ethylene signaling. We also found that DNE1 colocalizes with ETHYLENE INSENSITIVE 2 (EIN2), the core factor manipulating the translation of EBF1/2, and targets the P-body in response to ethylene. Further analysis revealed that DNE1 negatively regulates the abundance of EBF1/2 mRNAs by recognizing and cleaving their 3'UTRs, and it also represses their translation. Moreover, the dne1 mutant displays hypersensitivity to 1,4-dithiothreitol (DTT)-induced ER stress and oxidative stress, indicating the function of DNE1 in stress responses. This study sheds light on the essential role of DNE1 as a modulator of ethylene signaling through regulation of EBF1/2 mRNA processing. Our findings contribute to the understanding of the intricate regulatory process of ethylene signaling and provide insights into the significance of ribonuclease in stress responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Nucleares/genética , Etilenos/farmacologia , Etilenos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas F-Box/genética
5.
Proc Natl Acad Sci U S A ; 121(2): e2314101120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165935

RESUMO

Mycobacterium abscessus (Mab), a nontuberculous mycobacterial (NTM) species, is an emerging pathogen with high intrinsic drug resistance. Current standard-of-care therapy results in poor outcomes, demonstrating the urgent need to develop effective antimycobacterial regimens. Through synthetic modification of spectinomycin (SPC), we have identified a distinct structural subclass of N-ethylene linked aminomethyl SPCs (eAmSPCs) that are up to 64-fold more potent against Mab over the parent SPC. Mechanism of action and crystallography studies demonstrate that the eAmSPCs display a mode of ribosomal inhibition consistent with SPC. However, they exert their increased antimicrobial activity through enhanced accumulation, largely by circumventing efflux mechanisms. The N-ethylene linkage within this series plays a critical role in avoiding TetV-mediated efflux, as lead eAmSPC 2593 displays a mere fourfold susceptibility improvement against Mab ΔtetV, in contrast to the 64-fold increase for SPC. Even a minor shortening of the linkage by a single carbon, akin to 1st generation AmSPC 1950, results in a substantial increase in MICs and a 16-fold rise in susceptibility against Mab ΔtetV. These shifts suggest that longer linkages might modify the kinetics of drug expulsion by TetV, ultimately shifting the equilibrium towards heightened intracellular concentrations and enhanced antimicrobial efficacy. Furthermore, lead eAmSPCs were also shown to synergize with various classes of anti-Mab antibiotics and retain activity against clinical isolates and other mycobacterial strains. Encouraging pharmacokinetic profiles coupled with robust efficacy in Mab murine infection models suggest that eAmSPCs hold the potential to be developed into treatments for Mab and other NTM infections.


Assuntos
Anti-Infecciosos , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Animais , Camundongos , Espectinomicina/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Micobactérias não Tuberculosas , Anti-Infecciosos/farmacologia , Etilenos/farmacologia , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255967

RESUMO

Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.


Assuntos
Ácido Abscísico , Proteínas de Plantas , Estresse Fisiológico , Etilenos/farmacologia , Hormônios , Proteínas de Plantas/genética , Fatores de Transcrição/genética
7.
Plant Physiol Biochem ; 206: 108224, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091930

RESUMO

The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.


Assuntos
Oryza , Oryza/fisiologia , Etilenos/farmacologia , Genes de Plantas , Folhas de Planta/fisiologia , Adaptação Fisiológica/genética
8.
J Exp Bot ; 75(3): 1081-1097, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37910663

RESUMO

Waterlogging leads to hypoxic conditions in the root zone that subsequently cause systemic adaptive responses in the shoot, including leaf epinasty. Waterlogging-induced epinasty in tomato has long been ascribed to the coordinated action of ethylene and auxins. However, other hormonal signals have largely been neglected, despite evidence of their importance in leaf posture control. To cover a large group of growth regulators, we performed a tissue-specific and time-dependent hormonomics analysis. This revealed that multiple hormones are differentially affected throughout a 48 h waterlogging treatment, and that leaf age determines hormone homeostasis and modulates their changes during waterlogging. In addition, we distinguished early hormonal signals that contribute to fast responses to oxygen deprivation from those that potentially sustain the waterlogging response. We found that abscisic acid (ABA) levels peak in petioles within the first 12 h of the treatment, while its precursors only increase much later, suggesting that ABA transport is altered. At the same time, cytokinins (CKs) and their derivatives drastically decline during waterlogging in leaves of all ages. This drop in CKs possibly releases the inhibition of ethylene- and auxin-mediated cell elongation to establish epinastic bending. Auxins themselves rise substantially in the petiole of mature leaves, but mostly after 48 h of root hypoxia. Based on our hormone profiling, we propose that ethylene and ABA might act synergistically as an early signal to induce epinasty, while the balance of indole-3-acetic acid and CKs in the petiole ultimately regulates differential growth.


Assuntos
Solanum lycopersicum , Etilenos/farmacologia , Reguladores de Crescimento de Plantas/fisiologia , Ácidos Indolacéticos/farmacologia , Ácido Abscísico , Citocininas , Folhas de Planta , Hormônios
9.
Plant Physiol ; 195(1): 762-784, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38146839

RESUMO

Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Fotossíntese/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Clorofila/metabolismo
10.
BMC Genomics ; 24(1): 719, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017402

RESUMO

BACKGROUND: Adventitious roots (ARs) represent an important organ system for water and nutrient uptake in lotus plants because of degeneration of the principal root. The WUSCHEL-related homeobox (WOX) gene regulates plant development and growth by affecting the expression of several other genes. In this study, three WOX genes, NnWOX1-1, NnWOX4-3, and NnWOX5-1, were isolated and their functions were assessed in Arabidopsis plants. RESULTS: The full lengths of NnWOX1-1, NnWOX4-3, and NnWOX5-1 were 1038, 645, and 558 bp, encoding 362, 214, and 185 amino acid residues, respectively. Phylogenetic analysis classified NnWOX1-1 and NnWOX4-3 encoding proteins into one group, and NnWOX5-1 and MnWOX5 encoding proteins exhibited strong genetic relationships. The three genes were induced by sucrose and indoleacetic acid (IAA) and exhibited organ-specific expression characteristics. In addition to improving root growth and salt tolerance, NnWOX1-1 and NnWOX4-3 promoted stem development in transgenic Arabidopsis plants. A total of 751, 594, and 541 genes, including 19, 19, and 13 respective genes related to ethylene and IAA metabolism and responses, were enhanced in NnWOX1-1, NnWOX4-3, and NnWOX5-1 transgenic plants, respectively. Further analysis showed that ethylene production rates in transgenic plants increased, whereas IAA, peroxidase, and lignin content did not significantly change. Exogenous application of ethephon on lotus seedlings promoted AR formation and dramatically increased the fresh and dry weights of the plants. CONCLUSIONS: NnWOX1-1, NnWOX4-3, and NnWOX5-1 influence root formation, stem development, and stress adaptation in transgenic Arabidopsis plants by affecting the transcription of multiple genes. Among these, changes in gene expression involving ethylene metabolism and responses likely critically affect the development of Arabidopsis plants. In addition, ethylene may represent an important factor affecting AR formation in lotus seedlings.


Assuntos
Arabidopsis , Lotus , Nelumbo , Arabidopsis/metabolismo , Nelumbo/genética , Lotus/genética , Lotus/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Etilenos/farmacologia , Etilenos/metabolismo , Plântula/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Food Res Int ; 173(Pt 2): 113396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803734

RESUMO

A positive correlation of α-farnesene and its oxidation metabolites with superficial scald is commonly reported in apples stored in air or controlled atmosphere (CA) systems, where O2 levels are above the lower oxygen limit (LOL) tolerated by the fruit. Nevertheless, the LOL can be monitored by the dynamic controlled atmosphere (DCA) techniques and to provide different physiological responses. Therefore, this study aimed to evaluate key volatile metabolites from 'Granny Smith' and 'Nicoter' ('Kanzi®') apples stored under dynamic controlled atmosphere (DCA) monitored by respiratory quotient (RQ), i. e. at extremely low oxygen partial pressures (ELO) and correlate their emissions with the incidence of superficial scald (SS). The volatile compounds (VCs) were isolated by solid phase microextraction (HS-SPME) and analyzed by gas chromatography. For the first time, higher concentrations of α-farnesene and its oxidation metabolites (6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol) were negatively correlated with SS in DCA-RQ. This is likely due to the higher levels of ethanol in fruit stored under this condition having an inhibitory effect on SS incidence even when α-farnesene, 6-methyl-5-hepten-2-one, and 6-methyl-5-hepten-2-ol accumulate. Additionally, SS is more correlated to internal ethylene concentration (IEC) than α-farnesene accumulation and their metabolites, even when fruit were stored under ELO, where ethylene action is reduced.


Assuntos
Malus , Malus/metabolismo , Frutas/química , Atmosfera , Etilenos/farmacologia , Oxigênio/metabolismo
12.
Am J Rhinol Allergy ; 37(6): 630-637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37786364

RESUMO

BACKGROUND: COVID-19 has been associated with olfactory dysfunction in many infected patients. The rise of calcium levels in the nasal secretions plays an essential role in the olfaction process with a desensitization effect on the olfactory receptor neurons and a negative impact on the olfaction transmission. Ethylene diamine tetra acetic acid (EDTA) is a chelating agent that can bind free calcium in the nasal secretions, thereby reducing the adverse effects of calcium on olfactory function. OBJECTIVES: The objective of this work is to demonstrate the effect of intranasal EDTA on improving olfactory dysfunction following COVID-19. METHODS: Fifty patients with a history of COVID-19 and olfactory dysfunction that persisted for more than 6 months were enrolled in the current prospective randomized clinical trial. Participants were randomized into 2 equal groups. Twenty-five patients were treated with olfactory training only, while the remaining 25 patients received treatment with olfactory training and a topical nasal spray of ethylene diamine tetra acetic acid. The olfactory function was assessed before treatment and 3 months later using the Sniffin' Sticks test. Additionally, the determination of calcium level in the nasal secretions was performed using an ion-selective electrode before treatment and 3 months later. RESULTS: Eighty-eight percent of the patients treated with olfactory training in addition to EDTA exhibited clinical improvement, while 60% showed improvement in patients treated with olfactory training only. Furthermore, a significant decrease in the measured calcium level in the nasal secretions was demonstrated after the use of ethylene diamine tetra compared to patients treated with olfactory training only. CONCLUSION: Ethylene diamine tetra acetic acid may be associated with an improvement of the olfactory function post-COVID-19.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Olfato/fisiologia , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Ácido Acético/farmacologia , Ácido Acético/uso terapêutico , Cálcio/farmacologia , Cálcio/uso terapêutico , Ácido Edético/uso terapêutico , Ácido Edético/farmacologia , COVID-19/complicações , Etilenos/farmacologia , Etilenos/uso terapêutico
13.
Plant Cell Rep ; 42(11): 1721-1732, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37594528

RESUMO

KEY MESSAGE: Ethylene formation via methionine reacting with trichloroisocyanuric acid under FeSO4 condition in a non-enzymatical manner provides one economically and efficiently novel ethylene-forming approach in planta. Rice seed germination can be stimulated by trichloroisocyanuric acid (TCICA). However, the molecular basis of TCICA in stimulating rice seed germination remains unclear. In this study, the molecular mechanism on how TCICA stimulated rice seed germination was examined via comparative transcriptome. Results showed that clustering of transcripts of TCICA-treated seeds, water-treated seeds, and dry seeds was clearly separated. Twenty-two and three hundred differentially expressed genes were identified as TCICA treatment responsive genes and TCICA treatment potentially responsive genes, respectively. Two and one TCICA treatment responsive genes were involved in ethylene signal transduction and iron homeostasis, respectively. Seventeen of the three hundred TCICA treatment potentially responsive genes were significantly annotated to iron ion binding. Meanwhile, level of methionine (ethylene precursor) showed a 73.9% decrease in response to TCICA treatment. Ethylene was then proved to produce via methionine reacting with TCICA under FeSO4 condition in vitro. Revealing ethylene formation by TCICA not only may bring novel insights into crosstalk between ethylene and other phytohormones during rice seed germination, but also may provide one economically and efficiently novel approach to producing ethylene in planta independently of the ethylene biosynthesis in plants and thereby may broaden its applications in investigational and applied purposes.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Germinação/genética , Perfilação da Expressão Gênica , Etilenos/farmacologia , Etilenos/metabolismo , Sementes/metabolismo , Transcriptoma/genética , Metionina/genética , Metionina/metabolismo , Ferro/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo
14.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569795

RESUMO

Ethylene is the only gaseous plant hormone that regulates several aspects of plant growth, from seedling morphogenesis to fruit ripening and organ senescence. Ethylene also stimulates the germination of Striga hermonthica, a root parasitic weed that severely damages crops in sub-Saharan Africa. Thus, ethylene response stimulants can be used as weed and crop control agents. Ethylene and ethephon, an ethylene-releasing compound, are currently used as ethylene response inducers. However, since ethylene is a gas, which limits its practical application, we targeted the development of a solid ethylene response inducer that could overcome this disadvantage. We performed chemical screening using Arabidopsis thaliana "triple response" as an indicator of ethylene response. After screening, we selected a compound with a thiourea skeleton and named it ZKT1. We then synthesized various derivatives of ZKT1 and evaluated their ethylene-like activities in Arabidopsis. Some derivatives showed considerably higher activity than ZKT1, and their activity was comparable to that of 1-aminocyclopropane-1-carboxylate. Mode of action analysis using chemical inhibitors and ethylene signaling mutants revealed that ZKT1 derivatives activate the ethylene signaling pathway through interactions with its upstream components. These thiourea derivatives can potentially be potent crop-controlling chemicals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Etilenos/farmacologia , Etilenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Esqueleto/metabolismo
15.
Cell Rep ; 42(8): 112832, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498740

RESUMO

The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.


Assuntos
Musa , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Musa/genética , Musa/metabolismo , Frutas/genética , Fosforilação , Ativação Transcricional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia
16.
Funct Plant Biol ; 50(9): 712-723, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491008

RESUMO

In this study, we evaluated the photosynthetic performance of Zanthoxylum armatum seedlings to test the tolerance to reoxygenation after waterlogging. The experiment included a control group without waterlogging (NW) and three reoxygenation groups with reoxygenation after 1day (WR1), 2days (WR2) and 3days (WR3). Seedlings were pretreated with concentrations of 0, 200 and 400µmolL-1 of ethylene. The results showed that reoxygenation after waterlogging for 1-3days decreased photosynthetic pigments content, enzymes activity, stomatal conductance (G s ), net photosynthetic rate (P n ), transpiration rate (T r ) and water-use efficiency (WUE). However, pretreatment with ethylene increased photosynthetic pigments content, enzymes activity and gas exchange parameters under both NW and WR3 treatments. The chlorophyll fluorescence results showed that the maximum quantum yield of PSII (F v /F m ) and actual photochemical efficiency of PSII (Φ PSII ) remained no significant changes under the NW and WR1 treatments, while they were significantly reduced with an increase in waterlogging days followed by reoxygenation under WR2 and WR3 treatments. Exogenous ethylene inhibited F v /F m and the non-photochemical quenching coefficient (NPQ), while enhanced Φ PSII and electron transfer efficiency (ETR) under WR2 treatments. Moreover, the accumulation of exogenous ethylene reduced photosynthetic ability. These findings provide insights into the role of ethylene in enhancing the tolerance of Z. armatum to reoxygenation stress, which could help mitigate the impact of continued climate change.


Assuntos
Zanthoxylum , Clorofila , Folhas de Planta , Fluorescência , Plântula , Etilenos/farmacologia
17.
Plant Cell Physiol ; 64(10): 1167-1177, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37498972

RESUMO

Plant seedlings adjust the growth of the hypocotyl in response to surrounding environmental changes. Genetic studies have revealed key players and pathways in hypocotyl growth, such as phytohormones and light signaling. However, because of genetic redundancy in the genome, it is expected that not-yet-revealed mechanisms can be elucidated through approaches different from genetic ones. Here, we identified a small compound, HYGIC (HG), that simultaneously induces hypocotyl elongation and thickening, accompanied by increased nuclear size and enlargement of cortex cells. HG-induced hypocotyl growth required the ethylene signaling pathway activated by endogenous ethylene, involving CONSTITUTIVE PHOTOMORPHOGENIC 1, ETHYLENE INSENSITIVE 2 (EIN2) and redundant transcription factors for ethylene responses, ETHYLENE INSENSITIVE 3 (EIN3) and EIN3 LIKE 1. By using EBS:GUS, a transcriptional reporter of ethylene responses based on an EIN3-binding-cis-element, we found that HG treatment ectopically activates ethylene responses at the epidermis and cortex of the hypocotyl. RNA-seq and subsequent gene ontology analysis revealed that a significant number of HG-induced genes are related to responses to hypoxia. Indeed, submergence, a representative environment where the hypoxia response is induced in nature, promoted ethylene-signaling-dependent hypocotyl elongation and thickening accompanied by ethylene responses at the epidermis and cortex, which resembled the HG treatment. Collectively, the identification and analysis of HG revealed that ectopic responsiveness to ethylene promotes hypocotyl growth, and this mechanism is activated under submergence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Etilenos/farmacologia , Etilenos/metabolismo , Hipóxia , Regulação da Expressão Gênica de Plantas
18.
Int J Biol Macromol ; 247: 125750, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453644

RESUMO

Cold stress severely affects the banana fruit softening and de-greening, significantly inhibiting the ripening processes. However, the mechanism of ripening disorder caused by chilling injury (CI) in banana fruit remains largely unknown. Herein, MaIAA17-like, an Auxin/Indole-3-Acetic Acid (Aux/IAA) family member, was found to be highly related to the softening and de-greening in 'Fenjiao' banana. Its expression was rapidly increased with fruit ripening and then gradually decreased under normal ripening conditions (22 °C). Notably, cold storage severely repressed MaIAA17-like expression but was rapidly increased following ethephon treatment for ripening in fruits without CI. However, the expression repression was not reverted in fruits with serious CI symptoms after 12 days of storage at 7 °C. AtMaIAA17-like bound and regulated the activities of promoters of chlorophyll (MaNOL and MaSGR1), starch (MaBAM6 and MaBAM8), and cell wall (MaSUR14 and MaPL8) degradation-related genes. MaIAA17-like also interacted with ethylene-insensitive 3-binding F-box protein (MaEBF1), further activating the expression of MaNOL, MaBAM8, MaPL8, and MaSUR14. Generally, the transient overexpression of MaIAA17-like promoted fruit ripening by inducing the expression of softening and de-greening related genes. However, silencing MaIAA17-like inhibited fruit ripening by reducing the expression of softening and de-greening related genes. These results imply that MaIAA17-like modulates fruit ripening by transcriptionally upregulating the key genes related to fruit softening and de-greening.


Assuntos
Resposta ao Choque Frio , Musa , Musa/genética , Musa/metabolismo , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Etilenos/farmacologia , Etilenos/metabolismo
19.
Plant Physiol Biochem ; 200: 107758, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37267754

RESUMO

Ethylene is a plant hormone that causes flower senescence. Dendrobium flowers are sensitive to ethylene and ethylene can induce premature senescence depending on the cultivar and the ethylene concentration. Dendrobium 'Lucky Duan' is one of the most sensitive cultivars to ethylene exposure. Open florets of 'Lucky Duan' were subjected to ethylene, 1-MCP, or 1-MCP plus ethylene treatments and compared with an untreated control. Ethylene induced earlier development of color fading, drooping and venation in petals, whereas 1-MCP pre-treatment counteracted these changes. Under light microscopy, epidermal cells and mesophyll parenchyma tissue around the vascular bundles of petals treated with ethylene showed collapsed cells whereas 1-MCP pre-treatment counteracted this collapse. An scanning electron microscopy (SEM) study confirmed clearly that ethylene treatment caused the collapse of mesophyll parenchyma tissue around vascular bundles. Ultrastructural changes were also studied using transmission electron microscopy (TEM) and showed that ethylene treatment induced morphological changes in conjunction with disorganization of the plasma membrane, the nuclei, chromatin, the nucleoli, myelin bodies, multivesicular bodies, and mitochondria including changes in size and number, breakages of membranes, enlargement of intercellular spaces and disintegration. 1-MCP pre-treatment was observed to counter these changes that were induced by ethylene. The role of ethylene-induced ultrastructural changes in the different organelles was apparently associated with membrane damage.


Assuntos
Dendrobium , Etilenos/farmacologia , Etilenos/metabolismo , Mitocôndrias/metabolismo , Microscopia Eletrônica de Transmissão , Flores/metabolismo
20.
J Plant Res ; 136(5): 743-753, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233958

RESUMO

Seed germination, a vital process for plant growth and development, is regulated by ethylene. Previously, we showed that Tomato Ethylene Responsive Factor 1 (TERF1), an ethylene-responsive factor (ERF) transcription factor, could significantly promote seed germination by increasing glucose content. As glucose can function as a signaling molecule to regulate plant growth and development through HEXOKINASE 1 (HXK1), we aim to illustrate how TERF1 promotes seed germination through the HXK1-mediated signaling pathway. We showed that seeds overexpressing TERF1 exhibited more resistance to N-acetylglucosamine (NAG), an inhibitor of the HXK1- mediated signaling pathway. We identified genes regulated by TERF1 through HXK1 based on transcriptome analysis. Gene expression and phenotype analysis demonstrated that TERF1 repressed the ABA signaling pathway through HXK1, which promoted germination through activating the plasma membrane (PM) H+-ATPase. TERF1 also alleviated the endoplasmic reticulum (ER) stress to accelerate germination by maintaining reactive oxygen species (ROS) homeostasis through HXK1. Our findings provide new insights into the mechanism regulated by ethylene through the glucose-HXK1 signaling pathway during seed germination.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Germinação/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Etilenos/farmacologia , Transdução de Sinais , Glucose/metabolismo , Ácido Abscísico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA