Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
1.
Sci Adv ; 10(9): eadj9797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427739

RESUMO

We used N-ethyl-N-nitrosurea-induced germline mutagenesis combined with automated meiotic mapping to identify specific systolic blood pressure (SBP) and heart rate (HR) determinant loci. We analyzed 43,627 third-generation (G3) mice from 841 pedigrees to assess the effects of 45,378 variant alleles within 15,760 genes, in both heterozygous and homozygous states. We comprehensively tested 23% of all protein-encoding autosomal genes and found 87 SBP and 144 HR (with 7 affecting both) candidates exhibiting detectable hypomorphic characteristics. Unexpectedly, only 18 of the 87 SBP genes were previously known, while 26 of the 144 genes linked to HR were previously identified. Furthermore, we confirmed the influence of two genes on SBP regulation and three genes on HR control through reverse genetics. This underscores the importance of our research in uncovering genes associated with these critical cardiovascular risk factors and illustrate the effectiveness of germline mutagenesis for defining key determinants of polygenic phenotypes that must be studied in an intact organism.


Assuntos
Etilnitrosoureia , Camundongos , Animais , Pressão Sanguínea/genética , Frequência Cardíaca/genética , Mutagênese , Etilnitrosoureia/toxicidade , Alelos
2.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069426

RESUMO

Epilepsy is one of the common neurological diseases that affects not only adults but also infants and children. Because epilepsy has been studied for a long time, there are several pharmacologically effective anticonvulsants, which, however, are not suitable as therapy for all patients. The genesis of epilepsy has been extensively investigated in terms of its occurrence after injury and as a concomitant disease with various brain diseases, such as tumors, ischemic events, etc. However, in the last decades, there are multiple reports that both genetic and epigenetic factors play an important role in epileptogenesis. Therefore, there is a need for further identification of genes and loci that can be associated with higher susceptibility to epileptic seizures. Use of mouse knockout models of epileptogenesis is very informative, but it has its limitations. One of them is due to the fact that complete deletion of a gene is not, in many cases, similar to human epilepsy-associated syndromes. Another approach to generating mouse models of epilepsy is N-Ethyl-N-nitrosourea (ENU)-directed mutagenesis. Recently, using this approach, we generated a novel mouse strain, soc (socrates, formerly s8-3), with epileptiform activity. Using molecular biology methods, calcium neuroimaging, and immunocytochemistry, we were able to characterize the strain. Neurons isolated from soc mutant brains retain the ability to differentiate in vitro and form a network. However, soc mutant neurons are characterized by increased spontaneous excitation activity. They also demonstrate a high degree of Ca2+ activity compared to WT neurons. Additionally, they show increased expression of NMDA receptors, decreased expression of the Ca2+-conducting GluA2 subunit of AMPA receptors, suppressed expression of phosphoinositol 3-kinase, and BK channels of the cytoplasmic membrane involved in protection against epileptogenesis. During embryonic and postnatal development, the expression of several genes encoding ion channels is downregulated in vivo, as well. Our data indicate that soc mutation causes a disruption of the excitation-inhibition balance in the brain, and it can serve as a mouse model of epilepsy.


Assuntos
Epilepsia Reflexa , Criança , Animais , Humanos , Camundongos , Epilepsia Reflexa/genética , Epilepsia Reflexa/metabolismo , Etilnitrosoureia/toxicidade , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Anticonvulsivantes/farmacologia , Encéfalo/metabolismo , Modelos Animais de Doenças
3.
Environ Mol Mutagen ; 64(8-9): 432-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37957787

RESUMO

Mutations in T lymphocytes (T-cells) are informative quantitative markers for environmental mutagen exposures, but risk extrapolations from rodent models to humans also require an understanding of how T-cell development and proliferation kinetics impact mutagenic outcomes. Rodent studies have shown that patterns in chemical-induced mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene of T-cells differ between lymphoid organs. The current work was performed to obtain knowledge of the relationships between maturation events during T-cell development and changes in chemical-induced mutant frequencies over time in differing immune compartments of a mouse model. A novel reverse transcriptase-polymerase chain reaction based method was developed to determine the specific T-cell receptor beta (Tcrb) gene mRNA expressed in mouse T-cell isolates, enabling sequence analysis of the PCR product that then identifies the specific hypervariable CDR3 junctional region of the expressed Tcrb gene for individual isolates. Characterization of spontaneous Hprt mutant isolates from the thymus, spleen, and lymph nodes of control mice for their Tcrb gene expression found evidence of in vivo clonal amplifications of Hprt mutants and their trafficking between tissues in the same animal. Concurrent analyses of Hprt mutations and Tcrb gene rearrangements in different lymphoid tissues of control versus N-ethyl-N-nitrosourea-exposed mice permitted elucidation of the localization and timing of mutational events in T-cells, establishing that mutagenesis occurs primarily in the pre-rearrangement replicative period in pre-thymic/thymic populations. These findings demonstrate that chemical-induced mutagenic burden is determined by the combination of mutagenesis and T-cell clonal expansion, processes with roles in immune function and in the pathogenesis of autoimmune disease and cancer.


Assuntos
Etilnitrosoureia , Linfócitos T , Camundongos , Humanos , Animais , Etilnitrosoureia/toxicidade , Mutação , Mutagênese/genética , Mutagênicos/toxicidade , Hipoxantina Fosforribosiltransferase/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-37770135

RESUMO

Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues⁠, a considerable advancement compared to currently used in vivo gene mutation assays.


Assuntos
Etilnitrosoureia , Compostos de Nitrosoureia , Ratos , Masculino , Animais , Etilnitrosoureia/toxicidade , Reprodutibilidade dos Testes , Ratos Sprague-Dawley , Mutagênese , Mutação , Mutagênicos/toxicidade
5.
Artigo em Inglês | MEDLINE | ID: mdl-37770148

RESUMO

Direct DNA sequencing can be used for characterizing mutagenicity in simple and complex biological models. Recently we described a method of whole-genome sequencing for detecting mutations in simple models of cultured bacteria, mammalian cells, and nematode. In the current proof-of-concept study, we expand and improve our method for evaluating a more complex mammalian biological model in outbred mice. We detail the method by applying it to a small set of animals treated with a mutagen with known mutagenicity profiles, N-ethyl-N-nitrosourea (ENU), for consistency with the known data. Whole-genome high-fidelity sequencing (HiFi Sequencing) showed frequencies and spectra of background mutations in tissues of untreated mice that were consistent with normal ageing and characterized by spontaneous or enzymatic deamination of 5-methylcytosine. In mice treated with a single 40 mg/kg dose of ENU, the frequency of mutations in the genomic DNA of solid tissues increased up to 7-fold, with the greatest increase observed in the spleen and the smallest increase in the liver. The most common mutations detected in ENU-treated mice were T > A transitions and T > C transversions, consistent with the types of mutations caused by alkylating agents. The data suggest that HiFi Sequencing may be useful for characterizing mutagenicity of novel compounds in various biological models.


Assuntos
Alquilantes , Mutagênicos , Camundongos , Animais , Mutagênicos/toxicidade , Testes de Mutagenicidade , Mutagênese , Mutação , Etilnitrosoureia/toxicidade , DNA , Mamíferos
6.
Environ Sci Pollut Res Int ; 29(56): 85128-85142, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793016

RESUMO

The main goal of the study was to investigate the genotoxic response of N-ethyl-N-nitrosourea (ENU) and ethyl methanesulfonate (EMS) at low doses in a multi-endpoint genotoxicity assessment platform in rats and to derive potential thresholds and related metrics. Male Sprague-Dawley rats were treated by daily oral gavage for 28 consecutive days with ENU (0.25 ~ 8 mg/kg bw) and EMS (5 ~ 160 mg/kg bw), both with six closely spaced dose levels. Pig-a gene mutation assay, micronucleus test, and comet assay were performed in several timepoints. Then, the dose-response relationships were analyzed for possible points of departure (PoD) using the no observed genotoxic effect level and benchmark dose (BMD) protocols with different critical effect sizes (CES, 0.05, 0.1, 0.5, and 1SD). Overall, dose-dependent increases in all investigated endpoints were found for ENU and EMS. PoDs varied across genetic endpoints, timepoints, and statistical methods, and selecting an appropriate lower 95% confidence limit of BMD needs a comprehensive consideration of the mode of action of chemicals, the characteristics of tests, and the model fitting methods. Under the experimental conditions, the PoDs of ENU and EMS were 0.0036 mg/kg bw and 1.7 mg/kg bw, respectively.


Assuntos
Dano ao DNA , Etilnitrosoureia , Ratos , Animais , Masculino , Metanossulfonato de Etila/toxicidade , Etilnitrosoureia/toxicidade , Relação Dose-Resposta a Droga , Ratos Sprague-Dawley , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos
7.
J Biochem Mol Toxicol ; 36(7): e23067, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35393684

RESUMO

This review is intended to summarize the existing literature on the mutagenicity of N-ethyl-N-nitrosourea (ENU) in inducing hematological malignancies, including acute myeloid leukemia (AML) in mice. Blood or hematological malignancies are the most common malignant disorders seen in people of all age groups. Driven by a number of genetic alterations, leukemia rule out the normal proliferation and differentiation of hematopoietic stem cells (HSCs) and their progenitors in the bone marrow (BM) and severely affects blood functions. Out of all hematological malignancies, AML is the most aggressive type, with a high incidence and mortality rate. AML is found as either de novo or secondary therapeutic AML (t-AML). t-AML is a serious adverse consequence of alkylator chemotherapy to the cancer patient and alone constitutes about 10%-20% of all reported AML cases. Cancer patients who received alkylator chemotherapy are at an elevated risk of developing t-AML. ENU has a long history of use as a potent carcinogen that induces blood malignancies in mice and rats that are pathologically similar to human AML and t-AML. ENU, once entered into the body, circulates all over the body tissues and reaches BM. It creates an overall state of suppression within the BM by damaging the marrow cells, alkylating the DNA, and forming DNA adducts within the early and late hematopoietic stem and progenitor cells. The BM holds a weak DNA repair mechanism due to low alkyltransferase, and poly [ADP-ribose] polymerase (PARP) enzyme content often fails to obliterate those adducts, acting as a catalyst to bring genetic abnormalities, including point gene mutations as well as chromosomal alterations, for example, translocation and inversion. Taking advantage of ENU-induced immune-suppressed state and weak immune surveillance, these mutations remain viable and slowly give rise to transformed HSCs. This review also highlights the carcinogenic nature of ENU and the complex relation between the ENU's overall toxicity in the induction of hematological malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Alquilantes , Animais , Carcinógenos , Etilnitrosoureia/toxicidade , Neoplasias Hematológicas/induzido quimicamente , Neoplasias Hematológicas/genética , Humanos , Leucemia Mieloide Aguda/induzido quimicamente , Leucemia Mieloide Aguda/genética , Camundongos , Mutagênicos , Poli(ADP-Ribose) Polimerases , Ratos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35094814

RESUMO

The forward or reverse processes of intragenic recombination (IGR), which occur through the addition or deletion of duplicated homologous exons of the pun allele in Pun mice, was observed in vivo, after introducing an homozygous pun allele in a C57BL/6 background. We assessed the frequency of IGR upon N-ethyl-N-nitrosourea (ENU) treatment of pre-melanocytes (PMCs: somatic cells) and primordial germ cells (PGCs: germ cells) of embryonic mice at 10.5 days of development (E10.5). We simultaneously examined IGR and other mutations at the p locus of PMCs responsible for coat color in the offspring obtained by crossing pun/pun with pun/P mice. The frequencies of both spontaneous and ENU-induced IGR were markedly higher than that of the recessive mutation (RM) in PMCs obtained from crossing C57BL/6 and PW strains (Shibuya et al., 1982). ENU also induces IGR at a higher frequency in PGCs at E10.5, which was observed in the next generation. These results indicate that ENU, which preferentially induces gene mutations through base substitution, also induces IGR at a high frequency in the pun allele in both somatic and germ cells of embryonic mice at the E10.5 developmental stage.


Assuntos
Etilnitrosoureia , Células Germinativas , Melanócitos , Recombinação Genética , Alelos , Animais , Etilnitrosoureia/toxicidade , Células Germinativas/efeitos dos fármacos , Melanócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
9.
Int J Environ Health Res ; 32(11): 2435-2449, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34420458

RESUMO

Exposure to N-nitroso compounds (NOCs) in our environment via pesticides, tobacco, and smoked meat can be potentially carcinogenic. The induction of N-N' ethylnitrosourea (ENU), a genotoxic NOC, leads to leukemogenesis. The study aimed to explore the ameliorating effect of the Ayurvedic herb Eclipta alba on the bone marrow cells of ENU-induced leukemic mice. Eclipta alba is investigated for its anti-cancer effect on various cell lines, but never on haematological malignant models. Theefficacy of the extract was explored on leukemia by changes in body weight, survivability, peripheral blood hemogram, bone marrow cytological, histological, and cell culture studies pre-and post-treatment. The treated group revealed significant immunomodulation of the expressional profile of NF-kB family and IL-1ß in marrow cells, by flow-cytometry, and immunofluorescence study. Through our experimental endeavour we depicted the cellular mechanism, signaling modality and tried to establish the anti-cancer potency of Eclipta alba on ENU-induced leukemia.


Assuntos
Eclipta , Poluentes Ambientais , Leucemia , Neoplasias , Praguicidas , Animais , Modelos Animais de Doenças , Poluentes Ambientais/toxicidade , Etilnitrosoureia/toxicidade , Leucemia/induzido quimicamente , Leucemia/metabolismo , Leucemia/patologia , Camundongos , NF-kappa B , Praguicidas/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
10.
Environ Toxicol ; 37(2): 322-334, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34726823

RESUMO

Environmental exposure of N-nitroso compounds (NOCs) from various sources like tobacco smoke, pesticides, smoked meat, and rubber manufacturing industries has been an alarming cause of carcinogenesis. Neonatal exposure to the carcinogenic N-N'ethylnitrosourea (ENU), a NOC has been established to cause leukemogenesis. Our world is constantly battling against cancer with consistent investigations of new anti-cancer therapeutics. Plant derived compounds have grasped worldwide attention of researchers for their promising anti-cancer potentials. Eclipta prostrata is one such ayurvedic herb, renowned for its anti-inflammatory properties. Currently, it has been explored in various cancer cell lines to establish its anti-cancer effect, but rarely in in-vivo cancer models. Wedelolactone (WDL), the major coumestan of E. prostrata is recognized as an inhibitor of IKK, a master regulator of the NF-kB inflammatory pathway. As persistent inflammation and activated inflammasome contribute to leukemogenesis, we tried to observe anti-leukemogenic efficacy of E. prostrata and its active compound WDL on the marrow cells of ENU induced experimental leukemic mice. Treatment groups were administered an oral gavage at a dose of 1200 mg/kg and 50 mg/kg b.w of crude extract and WDL respectively for 4 weeks. Various parameters like hemogram, survivability, cytological and histological investigations, migration assay, cell culture, flowcytometry and confocal microscopy were taken into consideration pre- and post-treatment. Interestingly, the plant concoction portrayed maximum effects in comparison to WDL alone. The study suggests E. prostrata and WDL as vital complementary adjuncts for anti-inflammasome mechanism in ENU-induced leukemia.


Assuntos
Cumarínicos/farmacologia , Eclipta , Poluentes Ambientais , Etilnitrosoureia/toxicidade , Extratos Vegetais/farmacologia , Animais , Eclipta/química , Poluentes Ambientais/toxicidade , Inflamassomos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
11.
Environ Mol Mutagen ; 62(8): 438-445, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424574

RESUMO

Genetic toxicology uses several assays to identity mutagens and protects the public. Most of these assays, however, rely on reporter genes, can only measure mutation indirectly based on phenotype, and often require specific cell lines or animal models-features that impede their integration with existing and emerging toxicological models, such as organoids. In this study, we show that PacBio Single-Molecule, Real-Time (PB SMRT) sequencing identified substitution mutations caused by chemical mutagens in Escherichia coli by generating nearly error-free consensus reads after repeatedly inspecting both strands of circular DNA molecules. Using DNA from E. coli exposed to ethyl methanosulfonate (EMS) or N-ethyl-N-nitrosourea (ENU), PB SMRT sequencing detected mutation frequencies (MFs) and spectra comparable to those obtained by clone-sequencing from the same exposures. The optimized background MF of PB SMRT sequencing was ≤ 1 × 10-7 mutations per base pair (mut/bp).


Assuntos
Alquilantes/toxicidade , Escherichia coli/genética , Etilnitrosoureia/toxicidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Testes de Mutagenicidade , Fenótipo
12.
Med Oncol ; 38(6): 71, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34008039

RESUMO

Endometrial cancer (EMC) is one of the complicated gynecological cancers, affecting more than three million women worldwide. Anticancer strategies such as chemotherapy, radiation, and surgery are found to be ineffective and are associated with patient incompliances. The aim of the present study is to repurpose non-oncological drug, i.e., Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, in the treatment of endometrial cancer. The study groups consist of 50 female Swiss albino mice, out of which 40 had endometrial cancer induced with N-ethyl-N-nitrosourea (ENU) and estradiol hexadrobenzoate (EHB). The other groups received saline, EHB, paclitaxel, and different test doses of pioglitazones. Different preliminary parameters such as weekly body weight, mean survival time, percentage increase in life span, and uterine tissue weight were analyzed along with histopathological analysis. We observed a significant change in weekly body weight, improvement in percentage life span, and partial restoration of uterine tissue weight to normal compared to a standard drug, paclitaxel. In the present preliminary evaluation, we have identified that pioglitazone exhibited a significant dose-dependent anticancer activity against ENU- and EHB-induced endometrial cancer, compared to the standard paclitaxel.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Endométrio/tratamento farmacológico , Pioglitazona/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Neoplasias do Endométrio/induzido quimicamente , Neoplasias do Endométrio/mortalidade , Estradiol/análogos & derivados , Estradiol/toxicidade , Etilnitrosoureia/toxicidade , Feminino , Camundongos , Paclitaxel/uso terapêutico , Taxa de Sobrevida , Útero/efeitos dos fármacos , Útero/patologia
13.
Neurotoxicol Teratol ; 86: 106998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34048896

RESUMO

Exposure to N-nitroso compounds (NOCs) during pregnancy has been associated with an increase in brain tumors in the progeny. This study investigated the brain tumorigenic effect of N-ethyl N-nitrosourea (ENU) after differential exposure of rats during pregnancy. Sprague Dawley rats were exposed to a single dose of ENU (80 mg/kg) in three different circumstances: 1) at first, second or third week of gestation; 2) at the 15th embryonic day (E15) in consecutive litters and 3) at E15 in three successive generations. Location and characterization of the offspring's brain tumors were performed by magnetic resonance imaging and histopathological studies. Finally, tumor incidence and latency and the animals' survival were recorded. ENU-exposure in the last two weeks of pregnancy induced intracranial tumors in over 70% of the offspring rats, these being mainly gliomas with some peripheral nerve sheath tumors (PNSTs). Tumors appeared in young adults; glioma-like small multifocal neoplasias converged on large glioblastomas in senescence and PNSTs in the sheath of the trigeminal nerve, extending to cover the brain convexity. ENU-exposure at E15 in subsequent pregnancies lead to an increase in glioma and PNST incidence. However, consecutive generational ENU-exposure (E15) decreased the animals' survival due to an early onset of both types of tumors. Moreover, PNST presented an inheritable component because progeny, which were not themselves exposed to ENU but whose progenitors were, developed PNSTs. Our results suggest that repeated exposure to ENU later in pregnancy and in successive generations favours the development of intracranial gliomas and PNSTs in the offspring.


Assuntos
Alquilantes/toxicidade , Neoplasias Encefálicas/induzido quimicamente , Etilnitrosoureia/toxicidade , Glioma/induzido quimicamente , Neoplasias de Bainha Neural/induzido quimicamente , Envelhecimento , Animais , Feminino , Idade Gestacional , Glioblastoma/induzido quimicamente , Glioblastoma/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Neoplasias de Bainha Neural/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida
14.
Proc Natl Acad Sci U S A ; 117(23): 12931-12942, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32457148

RESUMO

Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3-/- mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Müller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3-/- mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.


Assuntos
Proteínas de Transporte de Cátions/genética , Degeneração Retiniana/genética , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Eletrorretinografia , Etilnitrosoureia/toxicidade , Feminino , Humanos , Masculino , Camundongos , Microscopia Eletrônica , Mutagênese , Mutação/efeitos dos fármacos , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Epitélio Pigmentado da Retina/diagnóstico por imagem , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/ultraestrutura , Tomografia de Coerência Óptica
15.
Genetics ; 215(1): 25-40, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32193188

RESUMO

There is increasing interest in developing diagnostics that discriminate individual mutagenic mechanisms in a range of applications that include identifying population-specific mutagenesis and resolving distinct mutation signatures in cancer samples. Analyses for these applications assume that mutagenic mechanisms have a distinct relationship with neighboring bases that allows them to be distinguished. Direct support for this assumption is limited to a small number of simple cases, e.g., CpG hypermutability. We have evaluated whether the mechanistic origin of a point mutation can be resolved using only sequence context for a more complicated case. We contrasted single nucleotide variants originating from the multitude of mutagenic processes that normally operate in the mouse germline with those induced by the potent mutagen N-ethyl-N-nitrosourea (ENU). The considerable overlap in the mutation spectra of these two samples make this a challenging problem. Employing a new, robust log-linear modeling method, we demonstrate that neighboring bases contain information regarding point mutation direction that differs between the ENU-induced and spontaneous mutation variant classes. A logistic regression classifier exhibited strong performance at discriminating between the different mutation classes. Concordance between the feature set of the best classifier and information content analyses suggest our results can be generalized to other mutation classification problems. We conclude that machine learning can be used to build a practical classification tool to identify the mutation mechanism for individual genetic variants. Software implementing our approach is freely available under an open-source license.


Assuntos
Aprendizado de Máquina , Mutação Puntual , Análise de Sequência de DNA/métodos , Animais , Etilnitrosoureia/toxicidade , Camundongos , Mutagênicos/toxicidade , Motivos de Nucleotídeos
16.
Sci Rep ; 10(1): 2501, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051525

RESUMO

Twist1 encodes a basic helix-loop-helix transcription factor (TF), which forms homodimer or heterodimer with other TFs, like E2A, to regulate target genes' expression. Mutations in TWIST1 are associated with Saethre-Chotzen syndrome (SCS), a rare congenital disorder characterized with osteogenesis abnormalities. However, how dysfunction of TWIST1 leads to SCS is still largely unknown. Here, using an unbiased ENU-induced mutagenesis screening, we identified a novel Twist1 mutation and the mutant mouse phenocopies some features of SCS in a dominant manner. Physically, our mutation p.F191S lies at the edge of a predicted α-helix in Twist1 transactivation (TA) domain. Adjacent to F191, a consecutive three-residue (AFS) has been hit by 3 human and 2 mouse disease-associated mutations, including ours. Unlike previously reported mouse null and p.S192P alleles that lead to hindlimb polydactyly with incomplete penetrance but a severe craniofacial malformation, our p.F191S causes the polydactyly (84.2% bilateral and 15.8% unilateral) with complete penetrance but a mild craniofacial malformation. Consistent with the higher penetrance, p.F191S has stronger impairment on E2A-dependent transcription than p.S192P. Although human p.A186T and mouse p.S192P disease mutations are adjacent to ours, these three mutations function differently to impair the E2A-dependent transcription. Unlike p.A186T and p.S192S that disturb local protein conformation and unstabilize the mutant proteins, p.F191S keeps the mutant protein stable and its interaction with E2A entire. Therefore, we argue that p.F191S we identified acts in a dominant-negative manner to impair E2A-dependent transcription and to cause the biological consequences. In addition, the mutant mouse we provided here could be an additional and valuable model for better understanding the disease mechanisms underlying SCS caused by TWIST1 dysfunction.


Assuntos
Mutação , Penetrância , Polidactilia/genética , Proteína 1 Relacionada a Twist/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Etilnitrosoureia/toxicidade , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/toxicidade , Domínios Proteicos , Proteína 1 Relacionada a Twist/química , Proteína 1 Relacionada a Twist/metabolismo
17.
Genes (Basel) ; 11(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940751

RESUMO

Human midfacial clefting is a rare subset of orofacial clefting and in severe cases, the cleft separates the nostrils splitting the nose into two independent structures. To begin to understand the morphological and genetic causes of midfacial clefting we recovered the Unicorn mouse line. Unicorn embryos develop a complete midfacial cleft through the lip, and snout closely modelling human midfacial clefting. The Unicorn mouse line has ethylnitrosourea (ENU)-induced missense mutations in Raldh2 and Leo1. The mutations segregate with the cleft face phenotype. Importantly, the nasal cartilages and surrounding bones are patterned and develop normal morphology, except for the lateral displacement because of the cleft. We conclude that the midfacial cleft arises from the failure of the medial convergence of the paired medial nasal prominences between E10.5 to E11.5 rather than defective cell proliferation and death. Our work uncovers a novel mouse model and mechanism for the etiology of midfacial clefting.


Assuntos
Aldeído Oxirredutases/genética , Fenda Labial/genética , Fissura Palatina/genética , Mutação de Sentido Incorreto , Fatores de Transcrição/genética , Animais , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Camundongos , Camundongos Mutantes , Mutagênese/efeitos dos fármacos
18.
PLoS Genet ; 15(8): e1008243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31386652

RESUMO

Tubulin genes encode a series of homologous proteins used to construct microtubules which are essential for multiple cellular processes. Neural development is particularly reliant on functional microtubule structures. Tubulin genes comprise a large family of genes with very high sequence similarity between multiple family members. Human genetics has demonstrated that a large spectrum of cortical malformations are associated with de novo heterozygous mutations in tubulin genes. However, the absolute requirement for many of these genes in development and disease has not been previously tested in genetic loss of function models. Here we directly test the requirement for Tuba1a, Tubb2a and Tubb2b in the mouse by deleting each gene individually using CRISPR-Cas9 genome editing. We show that loss of Tubb2a or Tubb2b does not impair survival but does lead to relatively mild cortical malformation phenotypes. In contrast, loss of Tuba1a is perinatal lethal and leads to significant forebrain dysmorphology. We also present a novel mouse ENU allele of Tuba1a with phenotypes similar to the null allele. This demonstrates the requirements for each of the tubulin genes and levels of functional redundancy are quite different throughout the gene family. The ability of the mouse to survive in the absence of some tubulin genes known to cause disease in humans suggests future intervention strategies for these devastating tubulinopathy diseases.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Neurogênese/genética , Córtex Sensório-Motor/embriologia , Tubulina (Proteína)/genética , Alelos , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Embrião de Mamíferos , Etilnitrosoureia/toxicidade , Feminino , Deleção de Genes , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Malformações do Desenvolvimento Cortical/mortalidade , Malformações do Desenvolvimento Cortical/patologia , Camundongos , Camundongos Transgênicos , Microtúbulos/genética , Modelos Animais , Mutagênese/efeitos dos fármacos , Córtex Sensório-Motor/anormalidades , Especificidade da Espécie , Tubulina (Proteína)/metabolismo
19.
J Invest Dermatol ; 139(9): 1848-1853.e1, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31445571

RESUMO

The primary goals of modern genetics are to identify disease-causing mutations and to define the functions of genes in biological processes. Two complementary approaches, reverse and forward genetics, can be used to achieve this goal. Reverse genetics is a gene-driven approach that comprises specific gene targeting followed by phenotypic assessment. Conversely, forward genetics is a phenotype-driven approach that involves the phenotypic screening of organisms with randomly induced mutations followed by subsequent identification of the causative mutations (i.e., those responsible for phenotype). In this article, we focus on how forward genetics in mice can be used to explore dermatologic disease. We outline mouse mutagenesis with the chemical N-ethyl-N-nitrosourea and the strategy used to instantaneously identify mutations that are causative of specific phenotypes. Furthermore, we summarize the types of phenotypic screens that can be performed to explore various aspects of dermatologic disease.


Assuntos
Testes Genéticos/métodos , Projetos de Pesquisa , Dermatopatias/genética , Animais , Cruzamento/métodos , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Fenótipo , Transdução de Sinais/genética , Pele/patologia , Dermatopatias/diagnóstico , Dermatopatias/patologia
20.
Immunol Cell Biol ; 97(8): 740-752, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31087793

RESUMO

FOXP3+ regulatory T (Treg) cells are essential for immunological tolerance and immune homeostasis. Despite a great deal of interest in modulating their number and function for the treatment of autoimmune disease or cancer, the precise mechanisms that control the homeostasis of Treg cells remain unclear. We report a new ENU-induced mutant mouse, lack of costimulation (loco), with atopic dermatitis and Treg cell deficiency typical of Card11 loss-of-function mutants. Three distinct single nucleotide variants were found in the Card11 introns 2, 10 and 20 that cause the loss of CARD11 expression in these mutant mice. These mutations caused the loss of thymic-derived, Neuropilin-1+ (NRP1+ ) Treg cells in neonatal and adult loco mice; however, residual peripherally induced NRP1- Treg cells remained. These peripherally generated Treg cells could be expanded in vivo by the administration of IL-2:anti-IL-2 complexes, indicating that this key homeostatic signaling axis remained intact in CARD11-deficient Treg cells. Furthermore, these expanded Treg cells could mediate near-normal suppression of activated, conventional CD4+ T cells, suggesting that CARD11 is dispensable for Treg cell function. In addition to shedding light on the requirements for CARD11 in Treg cell homeostasis and function, these data reveal novel noncoding Card11 loss-of-function mutations that impair the expression of this critical immune-regulatory protein.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/deficiência , Dermatite Atópica/imunologia , Homeostase/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Dermatite Atópica/genética , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Homeostase/genética , Humanos , Íntrons/efeitos dos fármacos , Íntrons/genética , Íntrons/imunologia , Mutação com Perda de Função/efeitos dos fármacos , Mutação com Perda de Função/imunologia , Camundongos , Camundongos Transgênicos , Mutagênese/imunologia , Mutagênicos/toxicidade , Neuropilina-1/imunologia , Neuropilina-1/metabolismo , Polimorfismo de Nucleotídeo Único/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA