Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Biol Macromol ; 165(Pt A): 107-117, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32980414

RESUMO

Present study focuses on the organic solvent and ionic liquid compatibility of lignolytic enzymes produced from H. aswanensis strain ABC_IITR. Lignin peroxidase (LiP), Manganese Peroxidase (MnP) and Laccase (Lac) obtained by Solid State Fermentation (SSF) of wheat bran. In this work, lignolytic enzymes subjected to 20-40% (v/v) organic solvents, metals ions, and cholinium laurate based ionic liquid (CLIL). Use of 40% (v/v) of pyridine along with 1.5 M NaCl and 0.15 mM CLIL in reaction system increased the bio-catalytic activity of lignolytic enzymes whereas metal ions like Fe increased LiP and MnP activities, and Cu enhanced laccase activity compared to control. The inherent stability of lignolytic enzymes in CLIL was not affected significantly whereas it decreased in pyridine reaction system. Further, in Kalson lignin degradation study, higher degradation achieved in CLIL (generate less saline waste) as compared to 40% (v/v) pyridine reaction system. In MnP catalyzed system, use of Glutathione (GSH) as mediator had resulted in maximum reduction of lignin weight of 40.84 and 31.83% in 40% (v/v) pyridine (1.5 NaCl) and 0.15 mM CLIL, respectively. This is the first report on lignolytic enzymes of haloarchaea with capability to get activated in organic solvent and cholinium laurate based ionic liquid.


Assuntos
Euryarchaeota/química , Líquidos Iônicos/química , Lignina/química , Compostos Orgânicos/química , Catálise/efeitos dos fármacos , Euryarchaeota/enzimologia , Fermentação/efeitos dos fármacos , Líquidos Iônicos/farmacologia , Lacase/química , Compostos Orgânicos/farmacologia , Oxirredução/efeitos dos fármacos , Peroxidases/química , Solventes/química
2.
Syst Appl Microbiol ; 42(3): 309-318, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30638904

RESUMO

Two groups of alkaliphilic haloarchaea from hypersaline alkaline lakes in Central Asia, Egypt and North America were enriched and isolated in pure culture using chitin as growth substrate. These cultures, termed AArcht, were divided into two groups: group 1 which includes eleven isolates from highly alkaline soda lakes and group 2 which contains a single isolate obtained from the alkaline hypersaline Searles Lake. The colonies of chitin-utilizing natronoarchaea were red-pigmented and surrounded by large zones of chitin hydrolysis. The free cells of both groups were mostly flat nonmotile rods, while the cells that attached to chitin or formed colonies on chitin plates were mostly coccoid. The isolates are obligate aerobic saccharolytic archaea utilizing chitin and chitosane (less actively) as the only sugar polymers as well as a few hexoses as their carbon and energy source. Both groups are extremely halophilic, growing optimally at 3.5-4M total Na+, but they differ in their pH profiles: the main group 1 isolates are obligately alkaliphilic, while the single group 2 strain (AArcht-SlT) is alkalitolerant. The core archaeal lipids in both groups are dominated by C20-C20 and C20-C25 dialkyl glycerol ethers (DGE) in approximately equal proportion. Phylogenetic analysis indicated that the isolates form an independent genus-level lineage within the family Natrialbaceae with 3 species-level subgroups. The available genomes of the closest cultured relatives of the AArcht strains, belonging to the genera Natrialba and Halopiger, do not encode any chitinase-related genes. On the basis of their unique phenotypic properties and distinct phylogeny, we suggest that the obligate alkaliphilic AArcht isolates (group 1) with an identical phenotype are classified into a new genus and species Natrarchaeobius chitinivorans gen. nov., sp. nov., with strain AArcht4T as the type strain (JCM 32476T=UNIQEM U966T), while the facultatively alkaliphilic strain AArcht-SlT (group 2) - as a new species Natrarchaeobius halalkaliphilus sp. nov. (JCM 32477T=UNIQEM U969T).


Assuntos
Quitina/metabolismo , Euryarchaeota/classificação , Euryarchaeota/fisiologia , Lagos/microbiologia , Filogenia , Salinidade , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Euryarchaeota/química , Euryarchaeota/genética , Genoma Bacteriano/genética , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/análise , Pigmentação , Quinonas/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Microbiologia da Água
3.
ACS Nano ; 12(11): 10939-10948, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30204404

RESUMO

Signal amplification strategies are critical for overcoming the intrinsically poor sensitivity of nuclear magnetic resonance (NMR) reporters in noninvasive molecular detection. A mechanism widely used for signal enhancement is chemical exchange saturation transfer (CEST) of nuclei between a dilute sensing pool and an abundant detection pool. However, the dependence of CEST amplification on the relative size of these spin pools confounds quantitative molecular detection with a larger detection pool typically making saturation transfer less efficient. Here we show that a recently discovered class of genetically encoded nanoscale reporters for 129Xe magnetic resonance overcomes this fundamental limitation through an elastic binding capacity for NMR-active nuclei. This approach pairs high signal amplification from hyperpolarized spins with ideal, self-adjusting saturation transfer behavior as the overall spin ensemble changes in size. These reporters are based on gas vesicles, i.e., microbe-derived, gas-filled protein nanostructures. We show that the xenon fraction that partitions into gas vesicles follows the ideal gas law, allowing the signal transfer under hyperpolarized xenon chemical exchange saturation transfer (Hyper-CEST) imaging to scale linearly with the total xenon ensemble. This conceptually distinct elastic response allows the production of quantitative signal contrast that is robust to variability in the concentration of xenon, enabling virtually unlimited improvement in absolute contrast with increased xenon delivery, and establishing a unique principle of operation for contrast agent development in emerging biochemical and in vivo applications of hyperpolarized NMR and magnetic resonance imaging.


Assuntos
Anabaena/química , Proteínas de Bactérias/química , Euryarchaeota/química , Imageamento por Ressonância Magnética , Nanoestruturas/química , Gases/química , Tamanho da Partícula , Propriedades de Superfície , Isótopos de Xenônio
4.
Extremophiles ; 22(3): 359-366, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29335805

RESUMO

Nicotine has a profound influence on the carotenoid metabolism in halophilic Archaea of the class Halobacteria. In a study of Halobacterium salinarum, Haloarcula marismortui and Halorubrum sodomense, using different analytical techniques to monitor the production of different carotenoids as a function of the presence of nicotine, we showed that the formation of α-bacterioruberin was inhibited in all. In Hbt. salinarum, addition of nicotine led to a significant change in the color of the culture due to the accumulation of lycopene, in addition to the formation of bisanhydrobacterioruberin which does not differ in color from α-bacterioruberin. Very little or no lycopene was formed in Har. marismortui and in Hrr. sodomense; instead bisanhydrobacterioruberin was the only major carotenoid found in nicotine-amended cultures. The findings are discussed in the framework of the recently elucidated biochemical pathway for the formation of the different carotenoid pigments encountered in the Halobacteria.


Assuntos
Carotenoides/biossíntese , Euryarchaeota/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Carotenoides/análise , Euryarchaeota/química , Euryarchaeota/metabolismo
5.
J Hazard Mater ; 342: 1-9, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28822244

RESUMO

Two lab-scale high solid anaerobic digesters fed with untreated sludge (R1) and thermally hydrolyzed sludge (R2) were operated to investigate the influence of thermal hydrolysis pretreatment (THP) on the degradation of individual macromolecular organic components (MOCs), as well as the functional and metabolic responses of microbes during anaerobic digestion (AD). The degradation of MOCs was improved by THP at different rates, in which improved degradation of proteins (by 49.0%) and hemicelluloses (by 25.0%) were the main factors contributing to the increase in volatile solids (VS) reduction. However, no enhancement of final degradation extent of MOCs was observed. With a more densified microbial population, R2 was also enriched in genes involved in amino acid and carbohydrate metabolism, reflected in the enhanced degradation of proteins and carbohydrates. After THP, the methanogenic pathway shifted from strict acetoclastic methanogenesis to acetoclastic/hydrogenotrophic methanogenesis, consistent with the enhanced methane production and the increase of methane content.


Assuntos
Euryarchaeota/química , Metano/química , Esgotos/química , Reatores Biológicos , Metabolismo dos Carboidratos , Hidrólise
6.
BMC Microbiol ; 17(1): 230, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216824

RESUMO

BACKGROUND: Water evaporation in solar salterns creates salinity gradients that promote the adaptation of microbial species to different salinities. This competitive habitat challenges the metabolic capabilities of microorganisms and promotes alterations in their production of secondary metabolites. Thus, solar salterns are a potentially important source of new natural products. In Colombia, the most important and representative solar saltern is located in Manaure (La Guajira) in the north of Colombia. The aim of this study was to develop an alternative screening strategy to select halophilic bacteria as producers of bioactive compounds from mixed microbial cultures rather than individual environmental isolates. Brine and sediment samples from different ponds (across a salinity gradient) were inoculated in seven different culture media to grow bacteria and archaea, allowing for a total of 40 different mixed cultures. An organic extract from each mixed culture was obtained and tested against multidrug resistant pathogens, including Klebsiella pneumoniae, vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus and Bacillus subtilis. In addition, the extracts were tested against two human cancer cell lines, cervical adenocarcinoma (SiHa) and lung carcinoma (A-549). RESULTS: Twenty-four of the forty extracts from mixed cultures obtained from brine and sediment samples from the Manaure solar saltern showed antibacterial activity against Bacillus subtilis. Two extracts, referred to as A1SM3-29 and A1SM3-36, were also active against a methicillin-resistant Staphylococcus aureus, with the latter extract also showing slight cytotoxic activity against the assayed human lung cancer cell line. From this mixed culture, nine isolates were cultivated, and their extracts were tested against the same pathogens, resulting in the identification of a Vibrio sp. strain (A1SM3-36-8) with antimicrobial activity that was similar to that observed for the mixed culture extract. The extract of this strain was subjected to a bioautography assay, and 3 different fractions exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Based on the amount obtained for each fraction, F3 was selected to isolate and identify its metabolites. The major compound was identified by NMR and HRMS as 13-cis-docosenamide, an amide that has been previously reported to be an antimicrobial and cytotoxic compound. CONCLUSIONS: Our results shows the utility of our strategy in detecting bioactive molecules in initial mixed cultures by biological assays, resulting in the isolation and characterization of Vibrio sp. A1SM3-36-8, a halophilic strain with great antibacterial and cytotoxic potential.


Assuntos
Bactérias/efeitos dos fármacos , Misturas Complexas/farmacologia , Euryarchaeota/química , Euryarchaeota/isolamento & purificação , Sedimentos Geológicos/microbiologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colômbia , Citotoxinas/isolamento & purificação , Citotoxinas/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Microbiologia Ambiental , Humanos , Testes de Sensibilidade Microbiana , Sais , Metabolismo Secundário
7.
J Microbiol Biotechnol ; 26(5): 867-75, 2016 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26869602

RESUMO

Archaea substantially contribute to global geochemical cycling and energy cycling and are impacted by land-use change. However, the response of archaeal communities to a change from upland field to paddy field has been poorly characterized. Here, soil samples were collected at two depths (0-20 cm and 20-40 cm) from one upland field and six paddy fields that were established on former upland fields at different times (1, 5, 10, 20, 30, and 40 years before the study). Barcoded pyrosequencing was employed to assess the archaeal communities from the samples at taxonomic resolutions from phylum to genus levels. The total archaeal operational taxonomic unit (OTU) richness showed a significant positive correlation with the land-use change duration. Two phyla, Euryarchaeota and Crenarchaeota, were recorded throughout the study. Both the relative abundance and OTU richness of Euryarchaeota increased at both depths but increased more steadily at the subsurface rather than at the surface. However, these data of Crenarchaeota were the opposite. Additionally, the archaeal composition exhibited a significant relationship with C/N ratios, total phosphorus, soil pH, Olsen phosphorus, and the land-use change duration at several taxonomic resolutions. Our results emphasize that after a change from upland fields to paddy fields, the archaeal diversity and composition changed, and the duration is an important factor in addition to the soil chemical properties.


Assuntos
Agricultura/métodos , Archaea/classificação , Microbiologia do Solo , Solo/química , Archaea/química , Archaea/genética , Archaea/metabolismo , Crenarchaeota/química , Crenarchaeota/classificação , Crenarchaeota/genética , Monitoramento Ambiental , Euryarchaeota/química , Euryarchaeota/classificação , Euryarchaeota/genética , Fenômenos Geológicos , Compostos Orgânicos/análise , Oryza/crescimento & desenvolvimento , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Nat Commun ; 6: 10079, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648256

RESUMO

Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.


Assuntos
Proteínas Arqueais/química , Cisteína/química , Euryarchaeota/química , Fotorreceptores Microbianos/química , Transdução de Sinais , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Cisteína/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo , Luz , Modelos Moleculares , Dados de Sequência Molecular , Oxigênio/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Estrutura Terciária de Proteína
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2505-12, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627657

RESUMO

The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins from Helicobacter and Salmonella. The first crystal structure analysis of a U32 catalytic domain from Methanopyrus kandleri (gene mk0906) reveals a modified (ßα)8 TIM-barrel fold with some unique features. The connecting segment between strands ß7 and ß8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the ß-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to a Strep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.


Assuntos
Acetatos/química , Proteínas Arqueais/química , Euryarchaeota/química , Peptídeo Hidrolases/química , Subunidades Proteicas/química , Zinco/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cátions Bivalentes , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Euryarchaeota/metabolismo , Expressão Gênica , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
10.
FEMS Microbiol Ecol ; 91(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499486

RESUMO

Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature.


Assuntos
Enzimas de Restrição do DNA/genética , Euryarchaeota/química , Euryarchaeota/isolamento & purificação , Metano/biossíntese , Pergelissolo/microbiologia , Temperatura Baixa , Dessecação , Euryarchaeota/genética , Microscopia Confocal , Tipagem Molecular , Pressão Osmótica/fisiologia , Pergelissolo/química , Filogenia , Tolerância a Radiação/fisiologia , Sibéria , Microbiologia do Solo , Análise Espectral Raman
11.
Appl Environ Microbiol ; 81(4): 1338-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501486

RESUMO

The recently discovered seventh order of methanogens, the Methanomassiliicoccales (previously referred to as "Methanoplasmatales"), so far consists exclusively of obligately hydrogen-dependent methylotrophs. We sequenced the complete genome of "Candidatus Methanoplasma termitum" from a highly enriched culture obtained from the intestinal tract of termites and compared it with the previously published genomes of three other strains from the human gut, including the first isolate of the order. Like all other strains, "Ca. Methanoplasma termitum" lacks the entire pathway for CO2 reduction to methyl coenzyme Mand produces methane by hydrogen-dependent reduction of methanol or methylamines, which is consistent with additional physiological data. However, the shared absence of cytochromes and an energy-converting hydrogenase for the reoxidation of the ferredoxin produced by the soluble heterodisulfide reductase indicates that Methanomassiliicoccales employ a new mode of energy metabolism, which differs from that proposed for the obligately methylotrophic Methanosphaera stadtmanae. Instead, all strains possess a novel complex that is related to the F420:methanophenazine oxidoreductase (Fpo) of Methanosarcinales butlacks an F420-oxidizing module, resembling the apparently ferredoxin-dependent Fpo-like homolog in Methanosaeta thermophila. Since all Methanomassiliicoccales also lack the subunit E of the membrane-bound heterodisulfide reductase (HdrDE), wepropose that the Fpo-like complex interacts directly with subunit D, forming an energy-converting ferredoxin: heterodisulfideoxidoreductase. The dual function of heterodisulfide in Methanomassiliicoccales, which serves both in electron bifurcation and as terminal acceptor in a membrane-associated redox process, may be a unique characteristic of the novel order.


Assuntos
Metabolismo Energético , Euryarchaeota/metabolismo , Genoma Arqueal , Metano/metabolismo , Motivos de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Euryarchaeota/química , Euryarchaeota/classificação , Euryarchaeota/genética , Humanos , Dados de Sequência Molecular , Filogenia
12.
FEMS Microbiol Lett ; 360(1): 76-84, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25175903

RESUMO

Monitoring of methanogenic communities in anaerobic digesters using molecular-based methods is very attractive but can be cost-intensive. A new and fast quantification method by microscopic image analysis was developed to accompany molecular-based methods. This digitalized method, called quantitative microscopic fingerprinting (QMF), enables quantification of active methanogenic cells (N mL(-1)) by their characteristic auto-fluorescence based on coenzyme F420 . QMF was applied to analyze the methanogenic communities in three biogas plant samples, and the results were compared with the relative proportion of gene copy numbers obtained with the quantitative PCR (qPCR). Analysis of QMF demonstrated dominance of Methanomicrobiales and Methanobacteriales in relation to the total methanogenic community in digesters operating at high ammonia concentrations, which corresponded to the results established by qPCR. Absolute microbial counts by QMF and the numbers obtained by qPCR were not always comparable. On the other hand, the restricted morphological analysis by QMF was enhanced by the capability of qPCR to identify microbes. Consequently, dual investigations of both methods are proposed to improve monitoring of anaerobic digesters. For a rough estimation of the methanogenic composition in anaerobic digesters, the QMF method seems to be a promising approach for the rapid detection of microbial changes.


Assuntos
Reatores Biológicos/microbiologia , Euryarchaeota/química , Euryarchaeota/genética , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase/métodos , Anaerobiose , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Processamento de Imagem Assistida por Computador , Methanomicrobiales
13.
J Anim Sci ; 92(9): 4095-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25085398

RESUMO

The distinctive membrane lipids of the archaea can contain a wide range of chemical structures. The membrane lipid composition of ruminal methanogenic archaea has not yet been characterized. In this study, we analyzed proportions of the core archaeal membrane lipids dialkyl glycerol diethers (DGDG) and glycerol dialkyl glycerol tetraether (GDGT). We analyzed the feces of beef steers consuming diets that promoted differences in ruminal conditions that were either favorable (i.e., grass silage) or challenging (i.e., concentrates) for the methanogenic archaea. There was significantly less total ether lipid in the feces of cattle consuming the concentrate diet in comparison to the grass silage diet (97 vs. 218 mg/kg DM, respectively), reflecting the inhibitory effect of dietary concentrate on methanogens. Additionally, the proportion of fecal ether lipids as GDGT was much greater in feces from cattle consuming the concentrate diet than in feces from cattle fed grass silage (90% vs. 67% GDGT). A possible explanation for this adaptation is that membrane lipids composited of GDGT lipids are less permeable to protons, thereby protecting the methanogens against low ruminal pH and helping to maintain the chemiosmotic potential (which is important for ATP production, methanogenesis, and growth). The greater proportion of fecal ether lipids as GDGT may reflect adaptation of membrane lipids within the same species, a shift toward methanogens that have a greater proportion of GDGT (e.g., Thermoplasmata), or both. The effect of ruminal environment on membrane composition means that it will be important to consider the production of both DGDG and GDGT lipids when developing a proxy for methanogenesis.


Assuntos
Bovinos/fisiologia , Dieta/veterinária , Euryarchaeota/química , Fezes/química , Éteres de Glicerila/análise , Lipídeos/análise , Rúmen/microbiologia , Animais , Bovinos/microbiologia , Cromatografia Líquida de Alta Pressão , Lipídeos/química , Espectrometria de Massas , Estrutura Molecular , Poaceae/metabolismo , Rúmen/metabolismo , Silagem/análise
14.
Structure ; 22(4): 549-59, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24613487

RESUMO

Eukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas Arqueais/química , Euryarchaeota/química , Água/química , Adenosina Trifosfatases/genética , Proteínas Arqueais/genética , Ácido Aspártico/química , Evolução Biológica , Sequência Conservada , Escherichia coli/genética , Escherichia coli/metabolismo , Euryarchaeota/enzimologia , Expressão Gênica , Hidrólise , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
Biochim Biophys Acta ; 1837(5): 598-605, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24041645

RESUMO

Microbial rhodopsins are classified into type-I rhodopsins, which utilize light energy to perform wide varieties of function, such as proton pumping, ion pumping, light sensing, cation channels, and so on. The crystal structures of several type-I rhodopsins were solved and the molecular mechanisms have been investigated based on the atomic structures. However, the crystal structures of proteins of interest are not always available and the basic architectures are sometimes quite similar, which obscures how the proteins achieve different functions. Stimulus-induced difference FTIR spectroscopy is a powerful tool to detect minute structural changes providing a clue for elucidating the molecular mechanisms. In this review, the studies on type-I rhodopsins from fungi and marine bacteria, whose crystal structures have not been solved yet, were summarized. Neurospora rhodopsin and Leptosphaeria rhodopsin found from Fungi have sequence similarity. The former has no proton pumping function, while the latter has. Proteorhodopsin is another example, whose proton pumping machinery is altered at alkaline and acidic conditions. We described how the structural changes of protein were different and how water molecules were involved in them. We reviewed the results on dynamics of the internal water molecules in pharaonis halorhodopsin as well. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Halorrodopsinas/química , Rodopsina/química , Rodopsinas Sensoriais/química , Água/química , Bacteriorodopsinas/metabolismo , Euryarchaeota/química , Euryarchaeota/fisiologia , Halorrodopsinas/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Transporte de Íons , Luz , Transdução de Sinal Luminoso , Modelos Moleculares , Neurospora/química , Neurospora/fisiologia , Conformação Proteica , Rodopsina/metabolismo , Rodopsinas Microbianas , Saccharomycetales/química , Saccharomycetales/fisiologia , Rodopsinas Sensoriais/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
16.
Biochim Biophys Acta ; 1837(5): 533-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23994288

RESUMO

We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Halorrodopsinas/química , Fotobiologia/história , Rodopsinas Sensoriais/química , Archaea/química , Archaea/fisiologia , Bacteriorodopsinas/metabolismo , Transporte Biológico , Cloretos/metabolismo , Clorófitas/química , Clorófitas/fisiologia , Euryarchaeota/química , Euryarchaeota/fisiologia , Halorrodopsinas/metabolismo , História do Século XX , História do Século XXI , Luz , Transdução de Sinal Luminoso , Modelos Moleculares , Fotobiologia/instrumentação , Fotobiologia/métodos , Rodopsinas Sensoriais/metabolismo
17.
Biochim Biophys Acta ; 1837(5): 546-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23831552

RESUMO

A fundamental design principle of microbial rhodopsins is that they share the same basic light-induced conversion between two conformers. Alternate access of the Schiff base to the outside and to the cytoplasm in the outwardly open "E" conformer and cytoplasmically open "C" conformer, respectively, combined with appropriate timing of pKa changes controlling Schiff base proton release and uptake make the proton path through the pumps vectorial. Phototaxis receptors in prokaryotes, sensory rhodopsins I and II, have evolved new chemical processes not found in their proton pump ancestors, to alter the consequences of the conformational change or modify the change itself. Like proton pumps, sensory rhodopsin II undergoes a photoinduced E→C transition, with the C conformer a transient intermediate in the photocycle. In contrast, one light-sensor (sensory rhodopsin I bound to its transducer HtrI) exists in the dark as the C conformer and undergoes a light-induced C→E transition, with the E conformer a transient photocycle intermediate. Current results indicate that algal phototaxis receptors channelrhodopsins undergo redirected Schiff base proton transfers and a modified E→C transition which, contrary to the proton pumps and other sensory rhodopsins, is not accompanied by the closure of the external half-channel. The article will review our current understanding of how the shared basic structure and chemistry of microbial rhodopsins have been modified during evolution to create diverse molecular functions: light-driven ion transport and photosensory signaling by protein-protein interaction and light-gated ion channel activity. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Halorrodopsinas/química , Prótons , Rodopsinas Sensoriais/química , Archaea/química , Archaea/fisiologia , Bacteriorodopsinas/metabolismo , Clorófitas/química , Clorófitas/fisiologia , Euryarchaeota/química , Euryarchaeota/fisiologia , Halorrodopsinas/metabolismo , Ativação do Canal Iônico , Transporte de Íons , Luz , Transdução de Sinal Luminoso , Modelos Moleculares , Conformação Proteica , Bases de Schiff/química , Rodopsinas Sensoriais/metabolismo
18.
Biochim Biophys Acta ; 1837(5): 606-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24055285

RESUMO

Protein-bound internal water molecules are essential features of the structure and function of microbial rhodopsins. Besides structural stabilization, they act as proton conductors and even proton storage sites. Currently, the most understood model system exhibiting such features is bacteriorhodopsin (bR). During the last 20 years, the importance of water molecules for proton transport has been revealed through this protein. It has been shown that water molecules are as essential as amino acids for proton transport and biological function. In this review, we present an overview of the historical development of this research on bR. We furthermore summarize the recently discovered protein-bound water features associated with proton transport. Specifically, we discuss a pentameric water/amino acid arrangement close to the protonated Schiff base as central proton-binding site, a protonated water cluster as proton storage site at the proton-release site, and a transient linear water chain at the proton uptake site. We highlight how protein conformational changes reposition or reorient internal water molecules, thereby guiding proton transport. Last, we compare the water positions in bR with those in other microbial rhodopsins to elucidate how protein-bound water molecules guide the function of microbial rhodopsins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Halorrodopsinas/química , Prótons , Bases de Schiff/química , Rodopsinas Sensoriais/química , Água/química , Bacteriorodopsinas/metabolismo , Euryarchaeota/química , Euryarchaeota/fisiologia , Halorrodopsinas/metabolismo , Ligação de Hidrogênio , Transporte de Íons , Luz , Modelos Moleculares , Conformação Proteica , Bases de Schiff/metabolismo , Rodopsinas Sensoriais/metabolismo
19.
Biochim Biophys Acta ; 1837(5): 656-63, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24333783

RESUMO

Experimental folding studies of membrane proteins are more challenging than water-soluble proteins because of the higher hydrophobicity content of membrane embedded sequences and the need to provide a hydrophobic milieu for the transmembrane regions. The first challenge is their denaturation: due to the thermodynamic instability of polar groups in the membrane, secondary structures in membrane proteins are more difficult to disrupt than in soluble proteins. The second challenge is to refold from the denatured states. Successful refolding of membrane proteins has almost always been from very subtly denatured states. Therefore, it can be useful to analyze membrane protein folding using computational methods, and we will provide results obtained with simulated unfolding of membrane protein structures using the Floppy Inclusions and Rigid Substructure Topography (FIRST) method. Computational methods have the advantage that they allow a direct comparison between diverse membrane proteins. We will review here both, experimental and FIRST studies of the retinal binding proteins bacteriorhodopsin and mammalian rhodopsin, and discuss the extension of the findings to deriving hypotheses on the mechanisms of folding of membrane proteins in general. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.


Assuntos
Bacteriorodopsinas/química , Simulação de Dinâmica Molecular , Retinaldeído/química , Rodopsina/química , Bacteriorodopsinas/metabolismo , Euryarchaeota/química , Euryarchaeota/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Desnaturação Proteica , Dobramento de Proteína , Redobramento de Proteína , Estrutura Secundária de Proteína , Retinaldeído/metabolismo , Rodopsina/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
20.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 12): 2440-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24311585

RESUMO

Murein recycling is a process in which microorganisms recover peptidoglycan-degradation products in order to utilize them in cell wall biosynthesis or basic metabolic pathways. Methanogens such as Methanopyrus kandleri contain pseudomurein, which differs from bacterial murein in its composition and branching. Here, four crystal structures of the putative sugar kinase MK0840 from M. kandleri in apo and nucleotide-bound states are reported. MK0840 shows high similarity to bacterial anhydro-N-acetylmuramic acid kinase, which is involved in murein recycling. The structure shares a common fold with panthothenate kinase and the 2-hydroxyglutaryl-CoA dehydratase component A, both of which are members of the ASKHA (acetate and sugar kinases/Hsc70/actin) superfamily of phosphotransferases. Local conformational changes in the nucleotide-binding site between the apo and holo forms are observed upon nucleotide binding. Further insight is given into domain movements and putative active-site residues are identified.


Assuntos
Euryarchaeota/enzimologia , Fosfotransferases/química , Ribonuclease H/química , Sítios de Ligação , Cristalografia por Raios X , Euryarchaeota/química , Euryarchaeota/metabolismo , Íons/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Fosfotransferases/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Ribonuclease H/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA