Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Phytomedicine ; 128: 155377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503154

RESUMO

BACKGROUND: The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS: The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS: DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION: In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.


Assuntos
Proliferação de Células , Células-Tronco Neoplásicas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Evodia/química , Gencitabina , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Fitoterapia ; 174: 105843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301937

RESUMO

In this research, five new indolequinazoline alkaloids (1-5), along with six known indolequinazoline alkaloids (6-11) were obtained from the fruits of Tetradium ruticarpum. Their structures were elucidated through comprehensive spectroscopic data of 1D and 2D NMR, HRESIMS and ECD spectra. Additionally, all isolates were assayed for their SIRT1 inhibitory activities in vitro and compounds 2, 7, 10 and 11 exhibited activities with IC50 values ranged from 43.16 to 118.35 µM.


Assuntos
Alcaloides , Evodia , Evodia/química , Frutas/química , Estrutura Molecular , Alcaloides/análise , Espectroscopia de Ressonância Magnética
3.
Anal Bioanal Chem ; 416(6): 1457-1468, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38231254

RESUMO

Gastrointestinal mesenchymal tumors, as the most common mesenchymal tumors in the gastrointestinal tract, are adjuvantly treated with multi-targeted tyrosine kinase inhibitors, such as imatinib and sunitinib, but there are problems of drug resistance and complex methods of monitoring therapeutic agents. The pathogenesis of this disease is related to mutations in tyrosine kinase (KIT) or platelet-derived growth factor receptor α, an important target for drug therapy. In recent years, the screening of relevant tyrosine kinase inhibitors from traditional Chinese medicine has become a hotspot in antitumor drug research. In the current study, the KIT-SNAP-tag cell membrane chromatography (KIT-SNAP-tag/CMC) column was prepared with satisfying specificity, selectivity, and reproducibility by chemically bonding high KIT expression cell membranes to the silica gel surface using the SNAP-tag technology. The KIT-SNAP-tag/CMC-HPLC-MS two-dimensional coupling system was investigated using the positive drug imatinib, and the results showed that the system was a reliable model for screening potential antitumor compounds from complex systems. This system screened and identified three potential active compounds of evodiamine (EVO), rutaecarpin (RUT), and dehydroevodiamine (DEVO), which possibly target the KIT receptor, from the alcoholic extract of the traditional Chinese medicine Evodia rutaecarpa. Then, the KD values of the interaction of EVO, RUT, and DEVO with KIT receptors measured using nonlinear chromatography were 7.75 (±4.93) × 10-6, 1.42 (±0.71) × 10-6, and 2.34 (±1.86) × 10-6 mol/L, respectively. In addition, the methyl thiazolyl tetrazolium assay validated the active effects of EVO and RUT in inhibiting the proliferation of high KIT-expressing cells in the ranges of 0.1-10 µmol/L and 0.1-50 µmol/L, respectively. In conclusion, the KIT-SNAP-tag/CMC could be a reliable model for screening antitumor components from complex systems.


Assuntos
Evodia , Neoplasias Gastrointestinais , Humanos , Mesilato de Imatinib/farmacologia , Evodia/química , Espectrometria de Massa com Cromatografia Líquida , Reprodutibilidade dos Testes , Receptores Proteína Tirosina Quinases , Neoplasias Gastrointestinais/tratamento farmacológico , Membrana Celular
4.
J Sci Food Agric ; 104(4): 2038-2048, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909381

RESUMO

BACKGROUND: Aroma is one of the most important quality criterion of different honeys and even defines their merchant value. The composition of volatile compounds, especially the characteristic odor-active compounds, contributes significantly to the aroma of honey. Evodia rutaecarpa (Juss) Benth honey (ERBH) is a special honey in China with unique flavor characteristics. However, no work in the literature has investigated the volatile compounds and characteristic odor-active compounds of ERBHs. Therefore, it is imperative to conduct systematic investigation into the volatile profile, odor-active compounds and odor properties of ERBHs. RESULTS: The characteristic fingerprint of ERBHs was successfully constructed with 12 characteristic peaks and a similarity range of 0.785-0.975. In total, 297 volatile compounds were identified and relatively quantified by headspace solid-phase microextraction coupled with gas chromatography quadrupole time-of-flight mass spectrometry, of which 61 and 31 were identified as odor-active compounds by relative odor activity values and GC-olfactometry analysis, respectively, especially the common 22 odor-active compounds (E)-ß-damascenone, phenethyl acetate, linalool, cis-linalool oxide (furanoid), octanal, hotrienol, trans-linalool oxide (furanoid), 4-oxoisophorone and eugenol, etc., contributed significantly to the aroma of ERBHs. The primary odor properties of ERBHs were floral, followed by fruity, herbaceous and woody aromas. The partial least-squares regression results showed that the odor-active compounds had good correlations with the odor properties. CONCLUSION: Identifying the aroma differences of different honeys is of great importance. The present study provides a reliable theoretical basis for the quality and authenticity of ERBHs. © 2023 Society of Chemical Industry.


Assuntos
Monoterpenos Acíclicos , Cicloexanóis , Evodia , Mel , Compostos de Tritil , Compostos Orgânicos Voláteis , Odorantes/análise , Evodia/química , Mel/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química
5.
Biomed Pharmacother ; 167: 115495, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741256

RESUMO

Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.


Assuntos
Evodia , Gastroenteropatias , Plantas Medicinais , Humanos , Evodia/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/uso terapêutico , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/análise , Gastroenteropatias/tratamento farmacológico , Frutas/química
6.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570816

RESUMO

Alzheimer's disease (AD) is a brain disease with a peculiarity of multiformity and an insidious onset. Multiple-target drugs, especially Chinese traditional medicine, have achieved a measure of success in AD treatment. Evodia rutaecarpa (Juss.) Benth. (Wuzhuyu, WZY, i.e., E. rutaecarpa), a traditional Chinese herb, has been identified as an effective drug to cure migraines. To our surprise, our in silico study showed that rather than migraines, Alzheimer's disease was the primary disease to which the E. rutaecarpa active compounds were targeted. Correspondingly, a behavioral experiment showed that E. rutaecarpa extract could improve impairments in learning and memory in AD model mice. However, the mechanism underlying the way that E. rutaecarpa compounds target AD is still not clear. For this purpose, we employed methods of pharmacology networking and molecular docking to explore this mechanism. We found that E. rutaecarpa showed significant AD-targeting characteristics, and alkaloids of E. rutaecarpa played the main role in binding to the key nodes of AD. Our research detected that E. rutaecarpa affects the pathologic development of AD through the serotonergic synapse signaling pathway (SLC6A4), hormones (PTGS2, ESR1, AR), anti-neuroinflammation (SRC, TNF, NOS3), transcription regulation (NR3C1), and molecular chaperones (HSP90AA1), especially in the key nodes of PTGS2, AR, SLCA64, and SRC. Graveoline, 5-methoxy-N, N-dimethyltryptamine, dehydroevodiamine, and goshuyuamide II in E. rutaecarpa show stronger binding affinities to these key proteins than currently known preclinical and clinical drugs, showing a great potential to be developed as lead molecules for treating AD.


Assuntos
Alcaloides , Evodia , Animais , Camundongos , Evodia/química , Ciclo-Oxigenase 2 , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
7.
Phytochemistry ; 213: 113774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400011

RESUMO

Two previously undescribed phloroglucinol derivatives [(±) evolephloroglucinols A and B], five unusual coumarins [evolecoumarins A and B and (±) evolecoumarins C-E], and one novel enantiomeric quinoline-type alkaloid [(±) evolealkaloid A], along with 20 known compounds, were isolated from the EtOH extract of the roots of Evodia lepta Merr. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the undescribed compounds were determined by X-ray diffraction or computational calculations. Their anti-neuroinflammatory effects were assayed. Among the identified compounds, compound 5a effectively reduced nitric oxide (NO) production with an EC50 value of 22.08 ± 0.46 µM. Hence, it could indeed inhibit the lipopolysaccharide (LPS)-induced Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome.


Assuntos
Alcaloides , Evodia , Rutaceae , Evodia/química , Cumarínicos/farmacologia , Cumarínicos/química , Floroglucinol/farmacologia , Floroglucinol/química , Alcaloides/farmacologia , Estrutura Molecular , Óxido Nítrico
8.
Drug Metab Rev ; 55(1-2): 75-93, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803497

RESUMO

Evodiae Fructus (EF) is a common herbal medicine with thousands of years of medicinal history in China, which has been demonstrated with many promising pharmacological effects on cancer, cardiovascular diseases and Alzheimer's disease. However, there have been increasing reports of hepatotoxicity associated with EF consumption. Unfortunately, in a long term, many implicit constituents of EF as well as their toxic mechanisms remain poorly understood. Recently, metabolic activation of hepatotoxic compounds of EF to generate reactive metabolites (RMs) has been implicated. Herein, we capture metabolic reactions relevant to hepatotoxicity of these compounds. Initially, catalyzed by the hepatic cytochrome P450 enzymes (CYP450s), the hepatotoxic compounds of EF are oxidized to generate RMs. Subsequently, the highly electrophilic RMs could react with nucleophilic groups contained in biomolecules, such as hepatic proteins, enzymes, and nucleic acids to form conjugates and/or adducts, leading to a sequence of toxicological consequences. In addition, currently proposed biological pathogenesis, including oxidative stress, mitochondrial damage and dysfunction, endoplasmic reticulum (ER) stress, hepatic metabolism disorder, and cell apoptosis are represented. In short, this review updates the knowledge on the pathways of metabolic activation of seven hepatotoxic compounds of EF and provides considerable insights into the relevance of proposed molecular hepatotoxicity mechanisms from a biochemical standpoint, for the purpose of providing a theoretical guideline for the rational application of EF in clinics.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Evodia , Humanos , Evodia/química
9.
Phytochem Anal ; 34(1): 5-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36442477

RESUMO

INTRODUCTION: Euodiae fructus, also known as Evodiae fructus, is a popular Chinese herbal medicine derived from the dried, nearly ripe fruits of Tetradium ruticarpum (A. Juss.) T. G. Hartley. The main bioactive constituents of Euodiae fructus are alkaloids, limonoids, flavonoids, and anthraquinones. The contents of these compounds vary greatly between different plant species, geographic locations, and harvest times, which thus affect the therapeutic effects. OBJECTIVES: We aimed to summarize the chromatographic and mass spectrometric technologies applied for chemical analysis and quality evaluation of Euodiae fructus. Moreover, we aimed to emphasize the diverse soft ionization techniques and mass analyzers of LC-MS methods for assessment of Euodiae fructus. METHODOLOGY: A literature study was carried out by retrieving articles published between January 1988 and December 2021 from well-known databases, including PubMed, ASC, Elsevier, ScienceDirect, J·STAGE, Thieme, Taylor & Francis, Springer Link, Wiley Online Library, and CNKI. The chemical analysis methods were described in several categories in accordance with the used analytical techniques, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-mass spectrometry (HPLC-MS), gas chromatography-mass spectrometry (GC-MS), capillary electrophoresis (CE), and counter-current chromatography (CCC). RESULTS: This review systematically summarizes the achievements in chemical analysis and quality evaluation of Euodiae fructus published in over three decades, covering the various chromatographic and mass spectrometric technologies applied for identification and quantification of phytochemical constituents. CONCLUSION: The summary serves as an important basis for future phytochemical research and implementation of quality control methods in order to ensure the efficacy and safety of Euodiae fructus.


Assuntos
Medicamentos de Ervas Chinesas , Evodia , Medicamentos de Ervas Chinesas/química , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Evodia/química
10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232809

RESUMO

Evodiamine (EVO) and rutaecarpine (RUT) are the main active compounds of the traditional Chinese medicinal herb Evodia rutaecarpa. Here, we fully optimized the molecular geometries of EVO and RUT at the B3LYP/6-311++G (d, p) level of density functional theory. The natural population analysis (NPA) charges, frontier molecular orbitals, molecular electrostatic potentials, and the chemical reactivity descriptors for EVO and RUT were also investigated. Furthermore, molecular docking, molecular dynamics simulations, and the analysis of the binding free energies of EVO and RUT were carried out against the anticancer target topoisomerase 1 (TOP1) to clarify their anticancer mechanisms. The docking results indicated that they could inhibit TOP1 by intercalating into the cleaved DNA-binding site to form a TOP1−DNA−ligand ternary complex, suggesting that they may be potential TOP1 inhibitors. Molecular dynamics (MD) simulations evaluated the binding stability of the TOP1−DNA−ligand ternary complex. The calculation of binding free energy showed that the binding ability of EVO with TOP1 was stronger than that of RUT. These results elucidated the structure−activity relationship and the antitumor mechanism of EVO and RUT at the molecular level. It is suggested that EVO and RUT may be potential compounds for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Evodia , Antineoplásicos/farmacologia , Evodia/química , Alcaloides Indólicos , Ligantes , Simulação de Acoplamento Molecular , Quinazolinas , Quinazolinonas
11.
Molecules ; 27(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35889335

RESUMO

The fruit of Tetradium ruticarpum (TR) is commonly used in Chinese herbal medicine and it has known antiproliferative and antitumor activities, which can serve as a good source of functional ingredients. Although some antiproliferative compounds are reported to be present in TR fruit, most studies only focused on a limited range of metabolites. Therefore, in this study, the antiproliferative activity of different extracts of TR fruit was examined, and the potentially antiproliferative compounds were highlighted by applying an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based multi-informative molecular networking strategy. The results showed that among different extracts of TR fruit, the EtOAc fraction F2-3 possessed the most potent antiproliferative activity against HL-60, T24, and LX-2 human cell lines. Through computational tool-aided structure prediction and integrating various data (sample taxonomy, antiproliferative activity, and compound identity) into a molecular network, a total of 11 indole alkaloids and 47 types of quinolone alkaloids were successfully annotated and visualized into three targeted bioactive molecular families. Within these families, up to 25 types of quinolone alkaloids were found that were previously unreported in TR fruit. Four indole alkaloids and five types of quinolone alkaloids were targeted as potentially antiproliferative compounds in the EtOAc fraction F2-3, and three (evodiamine, dehydroevodiamine, and schinifoline) of these targeted alkaloids can serve as marker compounds of F2-3. Evodiamine was verified to be one of the major antiproliferative compounds, and its structural analogues discovered in the molecular network were found to be promising antitumor agents. These results exemplify the application of an LC-MS/MS-based multi-informative molecular networking strategy in the discovery and annotation of bioactive compounds from complex mixtures of potential functional food ingredients.


Assuntos
Alcaloides , Evodia , Quinolonas , Alcaloides/análise , Alcaloides/farmacologia , Cromatografia Líquida , Evodia/química , Frutas/química , Humanos , Alcaloides Indólicos/análise , Alcaloides Indólicos/farmacologia , Extratos Vegetais/química , Quinolonas/análise , Espectrometria de Massas em Tandem
12.
Molecules ; 27(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163988

RESUMO

The Zuojin Pill consists of Coptidis Rhizoma (CR) and Euodiae Fructus (EF). It has been a classic prescription for the treatment of gastrointestinal diseases in China since ancient times. Alkaloids are considered to be its main pharmacologically active substances. The authors of the present study investigated the feasibility of preparing high purity total alkaloids (TAs) from CR and EF extracts separately and evaluated the effect for the treatment of bile reflux gastritis (BRG). Coptis chinensis Franch. and Evodia rutaecarpa (Juss.) Benth. were used in the study. An optimized method for the enrichment and purification of TAs with macroporous resin was established. Furthermore, qualitative analysis by using ultra-high performance liquid chromatography coupled with electrospray ionization and quadrupole-time of flight mass spectrometry (UHPLC-ESI-QTOF-MS) was explored to identify the components of purified TAs. Thirty-one compounds, thirty alkaloids and one phenolic compound, were identified or tentatively assigned by comparison with reference standards or literature data. A method of ultra-high performance liquid chromatography coupled with diode array detector (UHPLC-DAD) for quantitative analysis was also developed. The contents of nine alkaloids were determined. Moreover, a rat model of BRG was used to investigate the therapeutic effect of the combination of purified TAs from CR and EF. Gastric pathologic examination suggested that the alkaloids' combination could markedly attenuate the pathological changes of gastric mucosa.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Refluxo Biliar/tratamento farmacológico , Coptis/química , Evodia/química , Gastrite/tratamento farmacológico , Resinas Vegetais/química , Alcaloides/química , Animais , Refluxo Biliar/metabolismo , Refluxo Biliar/patologia , Gastrite/metabolismo , Gastrite/patologia , Ratos , Ratos Sprague-Dawley
13.
Nat Prod Res ; 36(7): 1673-1678, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32820668

RESUMO

Two new γ-lactone derivatives, evodinoids A (1) and B (2), along with a new essential oil (3) were isolated from the nearly ripe fruits of Tetradium ruticarpum. The structures of these isolations were determined by 1D and 2D NMR, HR-ESI-MS and ECD data analysis. In addition, the cytotoxic effect of compounds 1-3 was evaluated against human cancer cells A498, A549, HepG-2, MCF-7 and SHSY-5Y, which displayed no significant cytotoxicity (IC50 > 100 µM).


Assuntos
Evodia , Óleos Voláteis , Evodia/química , Frutas/química , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Óleos Voláteis/análise
14.
Recent Pat Anticancer Drug Discov ; 17(3): 284-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34939550

RESUMO

BACKGROUND: Finding novel antitumor reagents from naturally occurring alkaloids is a widely accepted strategy. Evodiamine, a tryptamine indole alkaloid isolated from Evodia rutaecarpa, has a wide range of biological activities, such as anti-tumor, anti-inflammation, and anti-bacteria. Hence, research on the structural modification of evodiamine will facilitate the discovery of new antitumor drugs. OBJECTIVE: The recent advances in the synthesis of evodiamine, and studies on the drug design, biological activities, and structure-activity-relationships of its derivatives, published in patents and primary literature, are reviewed in this paper. METHODS: The literature, including patents and follow-up research papers from 2015 to 2020, related to evodiamine is searched in the Scifinder, PubMed, Espacenet, China National Knowledge Infrastructure (CNKI), and Wanfang databases. The keywords are evodiamine, synthesis, modification, anticancer, mechanism. RESULTS: The synthesis of evodiamine is summarized. Then, structural modifications of evodiamine are described, and the possible modes of action are discussed. CONCLUSION: Evodiamine has a 6/5/6/6/6 ring system, and the structural modifications are focused on rings A, D, E, C5, N-13, and N-14. Some compounds show promising anticancer potentials and warrant further study.


Assuntos
Alcaloides , Evodia , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Evodia/química , Humanos , Patentes como Assunto , Extratos Vegetais/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico
15.
Artigo em Inglês | MEDLINE | ID: mdl-34800750

RESUMO

Euodiae Fructus (EF), the dried unripe scented fruit of Euodia rutaecarpa (Juss.) Benth., was reported to show anti-hypertensive, antitumor, and anti-obesity effects. The main alkaloids of EF were reported as the reason for toxicity of EF by metabolic activation majority through CYP3A. Up till the present moment, the cytotoxicity mechanisms of EF have not yet to be fully clarified. For the purposes of this article, the influence of CYP3A inducer and inhibitor on cytotoxicity of EF and metabolism in L02 cells of five alkaloids related to toxicity of EF were evaluated. The results indicated that CYP3A inducer aggravated the toxicity and CYP3A inhibitor alleviated the toxicity. UPLC-Q-Exactive-MS was used for the identification of five alkaloids of EF in L02 cells. A total of 13 metabolites were detected in L02 cells. In general, five alkaloids were widely metabolized in L02 cells such as oxygenation, demethylation, dehydrogenation, and etc. In addition, oxygenation was the main metabolic pathway. It was inferred that the toxicity of EF was closely related to the CYP3A and the metabolic intermediate might be one of the reasons for the toxicity of EF. Hence, the choice of optimal dose might be critical to avoid the adverse reactions owing to combination of EF and CYP3A inducer.


Assuntos
Alcaloides/química , Inibidores do Citocromo P-450 CYP3A/toxicidade , Medicamentos de Ervas Chinesas/toxicidade , Evodia/toxicidade , Fígado/efeitos dos fármacos , Alcaloides/metabolismo , Alcaloides/toxicidade , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Evodia/química , Evodia/metabolismo , Frutas/química , Frutas/metabolismo , Frutas/toxicidade , Humanos , Fígado/enzimologia , Espectrometria de Massas
16.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681769

RESUMO

The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. Evodia rutaecarpa (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation. To address a research gap, we investigated the inhibitory mechanisms of Rut in washed human platelets and experimental mice. At low concentrations (1-5 µM), Rut strongly inhibited collagen-induced platelet aggregation, whereas it exerted only a slight or no effect on platelets stimulated with other agonists (e.g., thrombin). Rut markedly inhibited P-selectin expression; adenosine triphosphate release; [Ca2+]i mobilization; hydroxyl radical formation; and phospholipase C (PLC)γ2/protein kinase C (PKC), mitogen-activated protein kinase, and phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß) phosphorylation stimulated by collagen. SQ22536 (an adenylate cyclase inhibitor) or ODQ (a guanylate cyclase inhibitor) did not reverse Rut-mediated antiplatelet aggregation. Rut was not directly responding to vasodilator-stimulated phosphoprotein phosphorylation. Rut significantly increased the occlusion time of fluorescence irradiated thrombotic platelet plug formation. The findings demonstrated that Rut exerts a strong effect against platelet activation through the PLCγ2/PKC and PI3K/Akt/GSK3ß pathways. Thus, Rut can be a potential therapeutic agent for thromboembolic disorders.


Assuntos
Alcaloides Indólicos/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Quinazolinas/farmacologia , Trombose/prevenção & controle , Alcaloides/química , Alcaloides/farmacologia , Animais , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Evodia/química , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Proteínas dos Microfilamentos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/isolamento & purificação , Quinazolinas/uso terapêutico , Quinolinas/química , Quinolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Trombose/metabolismo , Trombose/patologia
17.
Curr Issues Mol Biol ; 43(2): 996-1018, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34563040

RESUMO

Active constituents isolated from Euodia ruticarpa (ER) steam distilled essential oil (SDEO) against PC-3 prostate cancer cell growth remain unclear. To clarify the puzzle, ER SDEO was extracted and further resolved into six isolated fractions ERF1-F6 with Sephadex LH-20 gel filtration chromatography to analyze their biological activities. Active ingredients in the isolated fractions were analyzed with GC-MS. Potential isolated fractions were selected to treat PC-3 cells with direct action and indirect treatment by mouse splenocyte- (SCM) and macrophage-conditioned media (MCM). The relationship between PC-3 cell viabilities and corresponding total polyphenols, flavonoid contents as well as Th1/Th2 cytokine profiles in SCM was analyzed using the Pearson product-moment correlation coefficient (r). As a result, ERF1-F3 was abundant in total polyphenols and flavonoids contents with diverse active ingredients. Treatments with ERF1-F3 at appropriate concentrations more or less inhibit PC-3 cell growth in a direct action manner. Only SCM, respectively, cultured with ER SDEO and ERF1-F3 markedly enhanced the effects to inhibit PC-3 cell growth, suggesting that secretions by splenocytes might involve anti-PC-3 effects. There are significantly negative correlations between PC-3 cell viabilities and IL-2, IL-10 as well as IL-10/IL-2 ratios in the corresponding SCM. Total polyphenol and flavonoid contents in the media cultured with ER SDEO isolated fractions positively correlated with IL-10 (Th2) and IL-10/IL-2 (Th2/Th1) cytokine secretion ratios by splenocytes, indicating that polyphenol and flavonoid components in ER SDEO isolated fractions promote Th2-polarized and anti-inflammatory characteristics. These new findings concluded that the inhibitory effects against PC-3 prostate cancer cell growth are attributed to active anti-inflammatory ingredients in ER SDEO and its active ERF1-F3 fractions through direct action and indirect treatment by modulating splenocytes' cytokine secretion profiles.


Assuntos
Anti-Inflamatórios/farmacologia , Evodia/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultivo Condicionados , Citocinas/análise , Destilação , Feminino , Flavonoides/análise , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Óleos Voláteis/química , Células PC-3 , Óleos de Plantas/química , Polifenóis/análise , Vapor
18.
Anal Bioanal Chem ; 413(23): 5871-5884, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331552

RESUMO

Herbal medicines have historically been practiced in combinatorial way, which achieves therapeutic efficacy by integrative effects of multi-components. Thus, the accurate and precise measurement of multi bioactive components in matrices is inalienable to understanding the metabolism and disposition of herbal medicines. In this study, aiming to provide a strategy that improves analyte coverage, evaluation of six protocols employing sample pretreatment methods- protein precipitation (PPT), liquid-liquid extraction (LLE), sugaring-out-assisted liquid-liquid extraction (SULLE), and salting-out-assisted liquid-liquid extraction (SALLE)- was performed by LC-MS/MS using rat plasma and a mixture of alkaloid (evodiamine, rutaecarpine, dehydroevodiamine), terpenoid (limonin, rutaevin, obacunone), and flavonoid (liquiritin, isoliquiritin, liquiritigenin) standards isolated from Tetradium ruticarpum and Glycyrrhiza uralensis. These protocols were as follows: (1) PPT with methanol, (2) PPT with acetonitrile, (3) LLE with methyl tertiary-butyl ether-dichloromethane, (4) LLE with ethyl acetate-n-butanol, (5) SALLE with ammonium acetate, (6) SULLE with glucose. The results suggested that SALLE produced broader analyte coverage with satisfactory reproducibility, acceptable recovery, and low matrix interference. Then, sample preparation procedure of SALLE, chromatographic conditions, and mass spectrometric parameters were optimized, followed by method validation, showing that good sensitivity (LLOQ ≤ 1 ng mL-1), linearity (r ≥ 0.9933), precision (RSD ≤ 14.45%), accuracy (89.54~110.87%), and stability could be achieved. Next, the developed method was applied successfully to determine the pharmacokinetic behavior of the nine compounds in rat plasma after intragastric administration with an extract from Tetradium ruticarpum and Glycyrrhiza uralensis (Wuzhuyu-Gancao pair). Based on an extensive review and experiments, a sample preparation procedure that matches with LC-MS/MS technique and can get wider analyte coverage was outlined. The developed SALLE method is rapid, reliable, and suitable for bioanalysis of analytes with diverse polarity, which was expected to be a promising strategy for the pharmacokinetic studies of herbal medicines. Graphical abstract.


Assuntos
Alcaloides/sangue , Cromatografia Líquida/métodos , Evodia/química , Flavonoides/sangue , Glycyrrhiza uralensis/química , Medicina Herbária , Extração Líquido-Líquido/métodos , Extratos Vegetais/administração & dosagem , Espectrometria de Massas em Tandem/métodos , Terpenos/sangue , Administração Oral , Animais , Feminino , Limite de Detecção , Masculino , Ratos , Ratos Sprague-Dawley , Padrões de Referência
19.
Artigo em Inglês | MEDLINE | ID: mdl-34052561

RESUMO

Evodiae Fructus (EF) is generally divided into three categories: small flower EF (SEF), medium flower EF (MEF) and big flower EF (BEF) in commodity circulation according to the size of the fruit. It is a well-known and frequently used herbal medicine for treating gastrointestinal disorder-related stomachache and headache, which has aroused wide attention for its hepatotoxicity. However, reports about hepatotoxicity is controversial and hepatotoxic components are inconclusive. The study aimed to explain the controversial hepatotoxicity of EF and screen the components associated with hepatotoxicity of EF based on the spectrum-toxicity relationship. UPLC fingerprints of 39 batches of EF collected from different regions were established. Combined with the results of L02 cell viability assays, the spectrum-toxicity relationship was investigated on the basic of orthogonal partial least squares (OPLS). The results of the research demonstrated that the toxicity of EF was obviously various among the different categories, in particularly, SEF was with less toxicity, MEF except for adulterants and BEF had mild toxicity and adulterants of MEF (A-MEF) produced more damage to L02 cell and no regions specificity in hepatotoxicity of EF. Thereinto, samples, the contents of which do not meet the requirements of Chinese Pharmacopoeia, were adulterants. It was worth noting that P11, P17, P20 and P25 were closely related to hepatotoxicity of EF and they were respectively identified as limonin (LIM), evodiamine (EVO), 1-methyl-2-nonyl-4(1H)-quinolone (MNQ), and 1-methyl-2-undecyl-4(1H)-quinolone (MUQ) by UPLC-Q-Exactive-MS. The hepatoprotection of P11 and hepatotoxicity of P17 were consistent with the results of spectrum-toxicity relationship. In summary, A-MEF was more toxic than other categories and SEF was less toxic than the others. It was noteworthy that EVO was the main hepatotoxic component of EF and LIM was the main hepatoprotective component of EF. The results provided worthy evidence for better utilization and development of EF.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Evodia/química , Extratos Vegetais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Frutas/química , Hepatócitos/efeitos dos fármacos , Humanos , Espectrometria de Massas , Extratos Vegetais/química , Extratos Vegetais/toxicidade
20.
Fitoterapia ; 152: 104875, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675886

RESUMO

One new limonoid, named 19-hydroxy methyl isoobacunoate diosphenol (1); one new degraded limonoid, named 9α-methoxyl dictamdiol (9); two new quinolone alkaloids, 1-methyl-3-[(7E,9E,12Z)-7,9,12-pentadecadienyl]-4(1H)-quinolone (11) and 1-methyl-3-[(7E,9E,11E)-7,9,11-pentadecadienyl]-4(1H)-quinolone (12), along with eight known compounds, evodol (2), 7ß-acetoxy-5-epilimonin (3), rutaevine (4), 6ß-acetoxy-5-epilimonin (5), limonin (6), obacunone (7), clauemargine L (8), hiiranlactone E (10) were isolated from the fruits of Evodia rutaecarpa (Juss.) Benth.. Structures of the four new compounds were elucidated on the basis of extensive spectroscopic techniques, including 1D and 2D NMR techniques. Compounds 3, 5, 9, 11 and 12 showed obviously cytotoxic activity against six human tumor lines, while compounds 11, 12 displayed anti-platelet aggregation induced by ADP at 50 µM and 100 µM.


Assuntos
Alcaloides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Evodia/química , Limoninas/farmacologia , Quinolonas/farmacologia , Alcaloides/isolamento & purificação , Antineoplásicos Fitogênicos/isolamento & purificação , Plaquetas/efeitos dos fármacos , Linhagem Celular Tumoral , China , Frutas/química , Humanos , Limoninas/isolamento & purificação , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Quinolonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA