Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 700
Filtrar
1.
Ecotoxicol Environ Saf ; 284: 117036, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39270415

RESUMO

Heavy metal pollutants can be effectively removed from soil through phytoremediation using root exudates. Herein, experiments were conducted to assess the phytoremediation capabilities of Rumex acetosa L. and Rumex K-1 root exudates for copper (Cu) and lead (Pb) contamination. Results indicated that these root exudates effectively adsorbed Cu and Pb. Furthermore, the optimal adsorption conditions of Cu by the root exudates of both plants were as follows: light duration of 36 h, light intensity of 8000 Lx, temperature of 25 °C and CO(NH2)2 concentration of 0 %. Moreover, the optimal adsorption conditions of Pb by Rumex acetosa L. and Rumex K-1 root exudates were light duration of 48 h and 24 h, respectively, light intensity of 8000 Lx, temperature of 25 °C and CO(NH2)2 concentration of 0 %. In addition, the root exudates from both plants enhanced the enrichment and transport of Cu and Pb. Moreover, the root was found to be the main accumulation site of Pb, while the stems and leaves were the main accumulation sites of Cu. With the application of root exudates, plant growth increased, with growth indices in Rumex acetosa L. and Rumex K-1 groups treated with exudates being 1.08-1.81-fold and 1.06-1.9-fold higher, respectively, compared with the untreated ones; physiological indexes showed 1.14-2.62-fold and 1.14-2.71-fold improvements, respectively. Remediation efficiency indexes showed 1.05-1.62-fold and 1.10-1.89-fold improvements, respectively. Rumex acetosa L. and Rumex K-1 exhibited promising potential for the phytoremediation of Cu and Pb, with root exudates playing a critical role in metal adsorption and stabilisation, suggesting their potential for enhancing remediation capabilities. This study sheds light on the mechanisms of root exudate-assisted phytoremediation and provides insights into alleviating heavy metal pollution.


Assuntos
Biodegradação Ambiental , Cobre , Chumbo , Raízes de Plantas , Rumex , Poluentes do Solo , Rumex/metabolismo , Chumbo/metabolismo , Cobre/metabolismo , Raízes de Plantas/metabolismo , Poluentes do Solo/metabolismo , Adsorção , Exsudatos de Plantas/química , Exsudatos de Plantas/metabolismo
2.
Anal Chim Acta ; 1327: 343126, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39266059

RESUMO

BACKGROUND: Within the plant kingdom, there is an exceptional amount of chemical diversity that has yet to be annotated. It is for this reason that non-targeted analysis is of interest for those working in novel natural products. To increase the number and diversity of compounds observable in root exudate extracts, several workflows which differ at three key stages were compared: 1) sample extraction, 2) chromatography, and 3) data preprocessing. RESULTS: Plants were grown in Hoagland's solution for two weeks, and exudates were initially extracted with water, followed by a 24-h regeneration period with subsequent extraction using methanol. Utilizing the second extraction showed improved results with less ion suppression and reduced retention time shifting compared to the first extraction. A single column method, utilizing a pentafluorophenyl column, paired with high-resolution mass spectrometry ionized and correctly identified 34 mock root exudate compounds, while the dual column method, incorporating a pentafluorophenyl column and a porous graphitic carbon column, retained and identified 43 compounds. In a pooled quality control sample of exudate extracts, the single column method detected 1,444 compounds. While the dual method detected fewer compounds overall (1,050), it revealed a larger number of small polar compounds. Three preprocessing methods (targeted, proprietary, and open source) successfully identified 43, 31, and 38 mock root exudate compounds to confidence level 1, respectively. SIGNIFICANCE: Enhancing signal strength and analytical method stability involves removing the high ionic strength nutrient solution before sampling root exudate extracts. Despite signal intensity loss, a dual column method enhances compound coverage, particularly for small polar metabolites. Open-source software proves a viable alternative for non-targeted analysis, even surpassing proprietary software in peak picking.


Assuntos
Espectrometria de Massas , Raízes de Plantas , Raízes de Plantas/química , Espectrometria de Massas/métodos , Exsudatos de Plantas/química , Cromatografia Líquida de Alta Pressão/métodos
3.
Microbiome ; 12(1): 173, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267187

RESUMO

BACKGROUND: Trees are associated with a broad range of microorganisms colonising the diverse tissues of their host. However, the early dynamics of the microbiota assembly microbiota from the root to shoot axis and how it is linked to root exudates and metabolite contents of tissues remain unclear. Here, we characterised how fungal and bacterial communities are altering root exudates as well as root and shoot metabolomes in parallel with their establishment in poplar cuttings (Populus tremula x tremuloides clone T89) over 30 days of growth. Sterile poplar cuttings were planted in natural or gamma irradiated soils. Bulk and rhizospheric soils, root and shoot tissues were collected from day 1 to day 30 to track the dynamic changes of fungal and bacterial communities in the different habitats by DNA metabarcoding. Root exudates and root and shoot metabolites were analysed in parallel by gas chromatography-mass spectrometry. RESULTS: Our study reveals that microbial colonisation triggered rapid and substantial alterations in both the composition and quantity of root exudates, with over 70 metabolites exclusively identified in remarkably high abundances in the absence of microorganisms. Noteworthy among these were lipid-related metabolites and defence compounds. The microbial colonisation of both roots and shoots exhibited a similar dynamic response, initially involving saprophytic microorganisms and later transitioning to endophytes and symbionts. Key constituents of the shoot microbiota were also discernible at earlier time points in the rhizosphere and roots, indicating that the soil constituted a primary source for shoot microbiota. Furthermore, the microbial colonisation of belowground and aerial compartments induced a reconfiguration of plant metabolism. Specifically, microbial colonisation predominantly instigated alterations in primary metabolism in roots, while in shoots, it primarily influenced defence metabolism. CONCLUSIONS: This study highlighted the profound impact of microbial interactions on metabolic pathways of plants, shedding light on the intricate interplay between plants and their associated microbial communities. Video Abstract.


Assuntos
Bactérias , Fungos , Metaboloma , Microbiota , Raízes de Plantas , Brotos de Planta , Populus , Microbiologia do Solo , Populus/microbiologia , Populus/metabolismo , Populus/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Fungos/classificação , Fungos/metabolismo , Rizosfera , Exsudatos de Plantas/metabolismo
4.
Microbiome ; 12(1): 183, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342284

RESUMO

BACKGROUND: Cover cropping is an agricultural practice that uses secondary crops to support the growth of primary crops through various mechanisms including erosion control, weed suppression, nutrient management, and enhanced biodiversity. Cover crops may elicit some of these ecosystem services through chemical interactions with the soil microbiome via root exudation, or the release of plant metabolites from roots. Phytohormones are one metabolite type exuded by plants that activate the rhizosphere microbiome, yet managing this chemical interaction remains an untapped mechanism for optimizing plant-soil-microbiome interactions. Currently, there is limited understanding on the diversity of cover crop phytohormone root exudation patterns and our aim was to understand how phytochemical signals selectively enrich specific microbial taxa and functionalities in agricultural soils. RESULTS: Here, we link variability in cover crop root exudate composition to changes in soil microbiome functionality. Exudate chemical profiles from 4 cover crop species (Sorghum bicolor, Vicia villosa, Brassica napus, and Secale cereal) were used as the chemical inputs to decipher microbial responses. These distinct exudate profiles, along with a no exudate control, were amended to agricultural soil microcosms with microbial responses tracked over time using metabolomes and genome-resolved metatranscriptomes. Our findings illustrated microbial metabolic patterns were unique in response to cover crop exudate inputs over time, particularly by sorghum and cereal rye amended microcosms. In these microcosms, we identify novel microbial members (at the genera and family level) who produced IAA and GA4 over time. Additionally, we identified cover crop exudates exclusively enriched for bacterial nitrite oxidizers, while control microcosms were discriminated for nitrogen transport, mineralization, and assimilation, highlighting distinct changes in microbial nitrogen cycling in response to chemical inputs. CONCLUSIONS: We highlight that root exudate amendments alter microbial community function (i.e., N cycling) and microbial phytohormone metabolisms, particularly in response to root exudates isolated from cereal rye and sorghum plants. Additionally, we constructed a soil microbial genomic catalog of microorganisms responding to commonly used cover crops, a public resource for agriculturally relevant microbes. Many of our exudate-stimulated microorganisms are representatives from poorly characterized or novel taxa, revealing the yet to be discovered metabolic reservoir harbored in agricultural soils. Our findings emphasize the tractability of high-resolution multi-omics approaches to investigate processes relevant for agricultural soils, opening the possibility of targeting specific soil biogeochemical outcomes through biological precision agricultural practices that use cover crops and the microbiome as levers for enhanced crop production. Video Abstract.


Assuntos
Produtos Agrícolas , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Solo , Raízes de Plantas/microbiologia , Produtos Agrícolas/microbiologia , Solo/química , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Agricultura , Reguladores de Crescimento de Plantas/metabolismo , Exsudatos de Plantas/metabolismo , Sorghum/metabolismo , Sorghum/microbiologia
5.
J Hazard Mater ; 479: 135637, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39208633

RESUMO

While laccase humification has an efficient capacity to convert estrogenic pollutants, the roles of wheat (Triticum aestivum L.) root exudates (W-REs) in the enzymatic humification remain poorly understood. Herein, we presented the research into the effects of W-REs on 17ß-estradiol (E2) and bisphenol A (BPA) conversion in vitro laccase humification. W-REs inhibited E2 removal but promoted BPA conversion in the enzymatic humification, and the first-order kinetic constants for E2 and BPA were 0.27-0.69 and 0.28-0.55 h-1, respectively. Specialized small phenols and amino acids in W-REs were susceptible to laccase humification, resulting in increased copolymerization of estrogen and W-REs. In greenhouse hydroponics, the accumulated amounts of E2 (BPA) in the roots and shoots were estimated to be 0.87 (2.15) and 0.43 (0.51) nmol·plant-1 at day 3, respectively. By forming low- and eventually non-toxic copolymeric precipitates between estrogen and W-REs, laccase humification lowered the phytotoxicity and bioavailability of estrogen in the rhizosphere solution, consequently relieving its uptake, accumulation, and distribution in the wheat cells. This work sheds light on the roles of W-REs in regulating laccase-catalyzed estrogen humification, and gives an insight into the path of addressing organic contamination in the rhizosphere and ensuring food safety.


Assuntos
Compostos Benzidrílicos , Estradiol , Substâncias Húmicas , Lacase , Raízes de Plantas , Triticum , Triticum/metabolismo , Lacase/metabolismo , Estradiol/metabolismo , Estradiol/química , Raízes de Plantas/metabolismo , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/química , Fenóis/metabolismo , Fenóis/química , Estrogênios/metabolismo , Estrogênios/química , Poluentes do Solo/metabolismo , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/química
6.
PeerJ ; 12: e17850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161966

RESUMO

Background: The bark of Chinese fir (Cunninghamia lanceolata), the largest afforestation tree species in the forest areas of southern China, is susceptible to injuries and bites from small animals. The population of small animals has recently increased owing to improvements in the ecological environment across various forested areas, thus increasing the incidence of injuries in the bark of Chinese fir. Following such injuries, the bark secretes light yellow or milky white secretions, the function of which remains unclear. The present study aimed to reveal the antibacterial effect of exudates of different Chinese fir cultivars on five bacterial species. Methods: The research involved three-year-old plantations of Taxus chinensis var. koraiensis and Yangkou3 and three-year-old container plantations of Taxus chinensis var. pendula, Yang 061, and Yang 020. The antibacterial effects of exudates were analyzed using the filter paper diffusion method. The minimum inhibitory concentration for each secretion and the bacterial inhibition zone were determined. Results: The exudates of the different Chinese fir bark exhibited notable antibacterial effects on Bacillus subtilis, Salmonella paratyphi B, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. However, the extent of these antibacterial effects varied among the different Chinese fir cultivars, as the minimum inhibitory concentrations (MICs) of the exudates against the five bacterial species varied. The mean MIC of Pseudomonas aeruginosa was lower potency, whereas that of Escherichia coli was the lowest. Notably, the antibacterial efficacy of the exudates was mainly influenced by the composition of the secretions rather than the number of secretions, with organic acid compounds and terpenoids potentially contributing to the antibacterial effects against E. coli and Bacillus subtilis, respectively. Conclusion: This study demonstrates the antibacterial effect of wound secretion of different Chinese fir cultivars, highlighting their varying efficacy on different bacterial species. Moreover, the antibacterial ability of the exudates of the strains was mainly determined by the composition of the wound secretions, and there was no noticeable relationship with the number of wound secretions. The results of this study offers a theoretical basis for screen Chinese fir cultivars with high-disease-resistant.


Assuntos
Antibacterianos , Cunninghamia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Cunninghamia/química , Casca de Planta/química , China , Taxus/química , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia
7.
PLoS One ; 19(8): e0298910, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39150950

RESUMO

The closed nutrient solution management method allows for the recycling and utilization of nutrient solutions, improving the efficiency of water and fertilizer utilization. This study was conducted to investigate the effects of changing the frequency of nutrient solution renewal and method of nutrient supply on the microbial communities composition, yield, and quality in closed soilless systems by using high-throughput sequencing technology and combining the physicochemical properties of root exudate solution. The results showed that different nutrient solution management modes had a significant impact on the structure and diversity of root exudate solution microbial communities. The abundance and diversity of microorganisms in inorganic perlites were correlative with EC. The abundance and diversity of bacterial communities in the root exudate solution of open liquid supply (CK) were higher than that of closed liquid supply, while the abundance and diversity of fungal communities in the root exudate solution of closed liquid supply (T1, T2, T3) were higher than that of open liquid supply. As the frequency of nutrient solution interval decreased, the accumulation of salt in root exudate solution and the richness and diversity of the fungal community also decreased, especially increasing the K+, Ca2+, and Mg2+ contents, which were positively correlated with potential beneficial Candidatus_Xiphinematobacter, Arachidicoccus, Cellvibrio, Mucilaginibacter, Taibaiella communities and decreasing the content of soluble protein, Vitamin C content, but not significantly increased cucumber yield.


Assuntos
Cucumis sativus , Cucumis sativus/microbiologia , Microbiota , Raízes de Plantas/microbiologia , Nutrientes/análise , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Microbiologia do Solo , Fungos , Exsudatos de Plantas/química , Fertilizantes/análise
8.
Microbiol Res ; 286: 127829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018940

RESUMO

The impact of climate warming on soil microbes has been well documented, with studies revealing its effects on diversity, community structure and network dynamics. However, the consistency of soil microbial community assembly, particularly in response to diverse plant root exudates under varying temperature conditions, remains an unresolved issue. To address this issue, we employed a growth chamber to integrate temperature and root exudates in a controlled experiment to examine the response of soil bacteria, fungi, and protists. Our findings revealed that temperature independently regulated microbial diversity, with distinct patterns observed among bacteria, fungi, and protists. Both root exudates and temperature significantly influenced microbial community composition, yet interpretations of these factors varied among prokaryotes and eukaryotes. In addition to phototrophic bacteria and protists, as well as protistan consumers, root exudates determined to varying degrees the enrichment of other microbial functional guilds at specific temperatures. The effects of temperature and root exudates on microbial co-occurrence patterns were interdependent; root exudates primarily simplified the network at low and high temperatures, while responses to temperature varied between single and mixed exudate treatments. Moreover, temperature altered the composition of keystone species within the microbial network, while root exudates led to a decrease in their number. These results emphasize the substantial impact of plant root exudates on soil microbial community responses to temperature, underscoring the necessity for future climate change research to incorporate additional environmental variables.


Assuntos
Bactérias , Fungos , Raízes de Plantas , Microbiologia do Solo , Temperatura , Raízes de Plantas/microbiologia , Fungos/classificação , Fungos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Microbiota , Mudança Climática , Eucariotos/crescimento & desenvolvimento , Biodiversidade , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/química , Solo/química
9.
Sci Total Environ ; 946: 174396, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38950634

RESUMO

Salt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s). To achieve this, we used a laboratory incubation to quantify both the root exudates and soil nitrogen purification rates, in addition to the enzyme activities and functional genes under Phragmites australis populations with different nitrogen forms addition (NO3-, NH4+ and urea). We found that NO3- and urea addition significantly stimulate P. australis root exudation of total acids, amino acids, total sugars and total organic carbon, while NH4+ addition only significantly increased total acids, amino acids and total phenol exudation. High total sugars, amino acids and total organic carbon concentrations enlarged nitrogen purification potential by stimulating the nitrogen purifying bacterial activities (including enzyme activities and related genes expression). Potential denitrification rates were not significantly elevated under NH4+ addition in comparison to NO3- and urea addition, which should be ascribed to total phenol self-toxicity and selective inhibition. Further, urea addition stimulated urease and protease activities with providing more NH4+ and NO2- substrates for elevated anaerobic ammonium oxidation rates among the nitrogen addition treatments. Overall, this study revealed that exogenous nitrogen could increase the nitrogen purification-associated bacterial activity through accelerating the root exudate release, which could stimulate the activity of nitrogen transformation, and then improve the nitrogen removal capacity in salt marsh.


Assuntos
Nitrogênio , Raízes de Plantas , Solo , Áreas Alagadas , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Poaceae , Exsudatos de Plantas , Desnitrificação
10.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063028

RESUMO

The interactions between plants and rhizosphere microbes mediated by plant root exudates are increasingly being investigated. The root-derived metabolites of medicinal plants are relatively diverse and have unique characteristics. However, whether medicinal plants influence their rhizosphere microbial community remains unknown. How medicinal plant species drive rhizosphere microbial community changes should be clarified. In this study involving high-throughput sequencing of rhizosphere microbes and an analysis of root exudates using a gas chromatograph coupled with a time-of-flight mass spectrometer, we revealed that the root exudate metabolites and microorganisms differed among the rhizosphere soils of five medicinal plants. Moreover, the results of a correlation analysis indicated that bacterial and fungal profiles in the rhizosphere soils of the five medicinal plants were extremely significantly or significantly affected by 10 root-associated metabolites. Furthermore, among the 10 root exudate metabolites, two (carvone and zymosterol) had opposite effects on rhizosphere bacteria and fungi. Our study findings suggest that plant-derived exudates modulate changes to rhizosphere microbial communities.


Assuntos
Bactérias , Microbiota , Raízes de Plantas , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Plantas Medicinais/microbiologia , Plantas Medicinais/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Exsudatos de Plantas/metabolismo , Fungos/metabolismo
11.
Sci Total Environ ; 949: 175009, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053533

RESUMO

The heavy metals (HMs) spatial distribution in soil is intricately shaped by aggregation processes involving chemical reactions and biological activities, which modulate HMs toxicity, migration, and accumulation. Pioneer plants play a central role in preventing HMs at source, yet the precise mechanisms underlying their involvement in soil aggregation remain unclear. This study investigates HMs distribution within rhizosphere and bulk soil aggregates of Miscanthus sp. grown in tailings to elucidate the impact of root exudates (REs) and rhizosphere microbes. The results indicate that Miscanthus sp. enhance soil stability, increasing the proportion of macroaggregates by 4.06 %-9.78 %. HMs tend to concentrate in coarse-aggregates, particularly within rhizosphere environments, while diminishing in fine-aggregates. Under HMs stress, lipids and lipid-like molecules are the most abundant REs produced by Miscanthus sp., accounting for under up to 26.74 %. These REs form complex with HMs, promoting microaggregates formation. Charged components such as sugars and amino acids further contribute to soil aggregation. REs also regulates rhizosphere bacteria and fungi, with Acidobacteriota, Chloroflexi were the dominant bacterial phyla, while Ascomycota and Basidiomycota dominate the fungal community. The synergistic effect of REs and microorganisms impact soil organic matter and nutrient content, facilitating HMs nanoparticle heteroaggregation and macroaggregates formation. Consequently, soil structure and REs shape the distribution of HMs in soil aggregation. Pioneer plants mediate REs interaction with rhizosphere microbes, promoting the distribution of HMs into macroaggregates, leading to immobilization. This study sheds light on the role of pioneer plants in regulating soil HMs, offering valuable insights for soil remediation strategies.


Assuntos
Metais Pesados , Microbiota , Raízes de Plantas , Poaceae , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Exsudatos de Plantas , Bactérias
12.
Sci Total Environ ; 940: 173663, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823714

RESUMO

In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.


Assuntos
Ficus , Feromônios , Raízes de Plantas , Taxus , Taxus/fisiologia , Alelopatia , Solo/química , Microbiologia do Solo , Exsudatos de Plantas
13.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1064-1072, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884241

RESUMO

Transpiration is a significant part of water cycle in forest ecosystems, influenced by meteorological factors and potentially constrained by soil moisture. We used Granier-type thermal dissipation probes to monitor xylem sap flow dynamics of three tree species (Quercus liaotungensis, Platycladus orientalis, and Robinia pseudoacacia) in a semi-arid loess hilly region, and to continuously monitor the key meteorological factors and soil water content (SWC). We established the SWC thresholds delineating soil moisture-limited and -unlimited sap flow responses to transpiration drivers. The results showed that mean sap flux density (Js) of Q. liaotungensis and R. pseudoacacia was significantly higher during period with higher soil moisture compared to lower soil moisture, while the difference in Js for P. orientalis between the two periods was not significant. We used an exponential saturation function to fit the relationship between the Js of each tree species and the integrated transpiration variable (VT) which reflected solar radiation and vapor pressure deficit. The difference in the fitting curve parameters indicated that there were distinct response patterns between Js and VT under different soil moisture conditions. There was a threshold in soil moisture limitation on sap flow for each species, which was identified as 0.129 m3·m-3 for Q. liaotungensis, 0.116 m3·m-3 for P. orientalis, and 0.108 m3·m-3 for R. pseudoacacia. Below the thresholds, Js was limited by soil moisture. Above these points, the normalized sensitivity index (NSI) for Q. liaotungensis and P. orientalis reached saturation, while that of R. pseudoacacia did not reach saturation but exhibited a significant reduction in moisture limitation. Among the three species, P. orientalis was the most capable of overcoming soil moisture constraints.


Assuntos
Transpiração Vegetal , Solo , Árvores , Água , Solo/química , Água/metabolismo , Água/análise , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Árvores/metabolismo , China , Quercus/fisiologia , Quercus/crescimento & desenvolvimento , Quercus/metabolismo , Ecossistema , Robinia/fisiologia , Robinia/crescimento & desenvolvimento , Robinia/metabolismo , Florestas , Xilema/fisiologia , Xilema/metabolismo , Exsudatos de Plantas/metabolismo
14.
Nat Commun ; 15(1): 5125, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879580

RESUMO

The plant health status is determined by the interplay of plant-pathogen-microbiota in the rhizosphere. Here, we investigate this tripartite system focusing on the pathogen Fusarium oxysporum f. sp. lycopersici (FOL) and tomato plants as a model system. First, we explore differences in tomato genotype resistance to FOL potentially associated with the differential recruitment of plant-protective rhizosphere taxa. Second, we show the production of fusaric acid by FOL to trigger systemic changes in the rhizosphere microbiota. Specifically, we show this molecule to have opposite effects on the recruitment of rhizosphere disease-suppressive taxa in the resistant and susceptible genotypes. Last, we elucidate that FOL and fusaric acid induce changes in the tomato root exudation with direct effects on the recruitment of specific disease-suppressive taxa. Our study unravels a mechanism mediating plant rhizosphere assembly and disease suppression by integrating plant physiological responses to microbial-mediated mechanisms in the rhizosphere.


Assuntos
Ácido Fusárico , Fusarium , Microbiota , Doenças das Plantas , Exsudatos de Plantas , Raízes de Plantas , Rizosfera , Solanum lycopersicum , Ácido Fusárico/metabolismo , Fusarium/patogenicidade , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Exsudatos de Plantas/metabolismo , Microbiologia do Solo , Resistência à Doença , Genótipo
15.
Food Chem ; 455: 139937, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850973

RESUMO

Debittering of pomelo juice was conducted using 3.7 g of activated resin, resulting in a 36.8% reduction in bitterness without affecting the bioactive properties of juice. The debittered juice was then encapsulated with Moringa oleifera exudate at various ratios (1-5%), yielding a powder with a slightly rough surface. Total phenol content (TPC) increased by 46-56% compared to the debittered juice. Functional yoghurt containing encapsulates at concentrations of 1% and 2% demonstrated that the 2% concentration led to longer storage duration, resulting in increased acidity and syneresis compared to the control. TPC of the yoghurt (161.89-198.22 µg Gallic acid equivalent (GAE)/g) remained significantly higher (p < 0.05) than that of the control (47.15 µg GAE/g) and acacia gum-based yoghurt (141.89-171.37 µg GAE/g), decreasing with storage duration. Addition of encapsulates significantly altered the yoghurt's texture, resulting in lower firmness (0.57 to 0.64 N) compared to the control, while adhesiveness values remained comparable (6.33 to 6.25 g.s). The highest values of G' and G" were observed in samples containing 2% encapsulates with moringa compared to those with acacia gum. This study suggests potential avenues for further exploration in functional foods with enhanced health benefits.


Assuntos
Sucos de Frutas e Vegetais , Moringa oleifera , Iogurte , Moringa oleifera/química , Iogurte/análise , Sucos de Frutas e Vegetais/análise , Punica granatum/química , Fenóis/química , Paladar , Exsudatos de Plantas/química , Extratos Vegetais/química , Manipulação de Alimentos
16.
Appl Environ Microbiol ; 90(6): e0058924, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38814059

RESUMO

Dormant microsclerotia play a vital role in the survival and spread of Verticillium longisporum, as they can stay viable in the soil and maintain their infectivity for many years. In our previous work, we revealed that soil bacterial volatiles are a key inhibitory factor causing microsclerotia dormancy in the soil. In this study, we further demonstrate that root exudates collected from both host and non-host plants can effectively rescue microsclerotia from bacterial suppression and initiate germination. To identify the specific compounds in root exudates responsible for microsclerotia germination, we fractionated the collected root exudates into polar and non-polar compounds. Subsequently, we conducted comprehensive bioassays with each fraction on germination-suppressed microsclerotia. The result revealed a pivotal role of primary metabolites in root exudates, particularly glutamic acid, in triggering microsclerotia germination and overcoming bacterial inhibition. Moreover, our studies revealed a decrease in inhibitory bacterial volatile fatty acids when bacteria were cultured in the presence of root exudates or glutamic acid. This suggests a potential mechanism, by which root exudates set-off bacterial suppression on microsclerotia. Here, we reveal for the first time that plant root exudates, instead of directly inducing the germination of microsclerotia, enact a set-off effect by counteracting the suppressive impact of soil bacteria on the microsclerotia germination process. This nuanced interaction advances our understanding of the multifaceted dynamics governing microsclerotia dormancy and germination in the soil environment. IMPORTANCE: Our research provides first-time insights into the crucial interaction between plant root exudates and soil bacteria in regulating the germination of Verticillium longisporum microsclerotia, a significant structure in the survival and proliferation of this soil-borne pathogen. We describe so far unknown mechanisms, which are key to understand how root infections on oilseed rape can occur. By pinpointing primary metabolites in root exudates as key factors in overcoming bacteria-induced dormancy and promote microsclerotia germination, our study highlights the potential for exploiting plant - as well as soil microbe-derived - compounds to control V. longisporum. This work underscores the importance of elucidating the nuanced interactions within the soil ecosystem to devise innovative strategies for managing root infective plant diseases, thereby contributing to the resilience and health of cropping systems.


Assuntos
Exsudatos de Plantas , Raízes de Plantas , Microbiologia do Solo , Verticillium , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Verticillium/crescimento & desenvolvimento , Verticillium/fisiologia , Exsudatos de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bactérias/metabolismo , Bactérias/classificação
17.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2128-2137, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812228

RESUMO

The rhizosphere is an important place for material exchange between medicinal plants and soil. Root exudates are the medium of material and signal exchange between plants and soil and are the key factors in the regulation of rhizosphere microecology. Rhizosphere microorganisms are an important part of the rhizosphere microecology of medicinal plants, and the interaction between root exudates and rhizosphere microorganisms has an important influence on the growth and quality formation of medicinal plants. Rational utilization of the interaction between root exudates and rhizosphere microorganisms of medicinal plants is one of the important ways to ensure the healthy growth of medicinal plants and promote the development of ecological planting of Chinese medicinal materials. In the paper, the research status of root exudates and rhizosphere microorganisms of medicinal plants in recent years was summarized. The interaction mechanism between root exudates and rhizosphere microorganisms of medicinal plants, as well as the influence of rhizosphere microorganisms on the growth of medicinal plants, were analyzed. In addition, the advantages and promoting effects of intercropping ecological planting mode on rhizosphere microecology of medicinal plants and quality improvement of Chinese medicinal materials were explained, providing a good basis for the study of the interaction among medicinal plants, microorganisms, and soil. Furthermore, it could produce important theoretical and practical significance for the ecological planting and sustainable utilization of medicinal plants.


Assuntos
Raízes de Plantas , Plantas Medicinais , Rizosfera , Microbiologia do Solo , Plantas Medicinais/metabolismo , Plantas Medicinais/microbiologia , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Bactérias/metabolismo , Bactérias/classificação , Exsudatos de Plantas/metabolismo , Exsudatos de Plantas/química
18.
Sci Rep ; 14(1): 11274, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760388

RESUMO

Soil sickness a severe problem in tobacco production, leading to soil-borne diseases and reduce in tobacco yield. This occurs as a result of the interaction between root exudates and rhizosphere microorganisms, which is however, little studied until now. By combining the field investigation and pot experiment, we found the output yield consistently decreased during the first 10 years of continuous cropping in a tobacco field, but increased at the 15th year (15Y). The root exudate and rhizosphere bacterial community was further analyzed to reveal the underlying mechanism of the suppressive soil formation. Root exudate of 15Y tobacco enriched in amino acids and derivatives, while depleted in the typical autotoxins including phenolic acids and alkaloids. This was correlated to the low microbial diversity in 15Y, but also the changes in community composition and topological properties of the co-occurrence network. Especially, the reduced autotoxins were associated with low Actinobacteria abundance, low network complexity and high network modularity, which significantly correlated with the recovered output yield in 15Y. This study revealed the coevolution of rhizosphere microbiota and root exudate as the soil domesticated by continuous cropping of tobacco, and indicated a potential role of the autotoxins and theirs effect on the microbial community in the formation of suppressive soil.


Assuntos
Microbiota , Nicotiana , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Nicotiana/microbiologia , Nicotiana/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Exsudatos de Plantas/metabolismo , Solo/química
19.
Int J Biol Macromol ; 269(Pt 2): 132065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714280

RESUMO

Natural gums due to availability, multifunctionality, and nontoxicity are multifaceted in application. In corrosion inhibition applications, their performance, in unmodified form is unsatisfactory because of high hydration rate, solubility issues, algal and microbial contamination, as well as thermal instability. This work attempts to enhance the inhibitive performance of Berlinia grandiflora (BEG) and cashew (CEG) exudate gums through various modification approaches. The potential of biogenic BEG and CEG gums-silver (Ag) nanocomposites (NCPs) for corrosion inhibition of mild steel in 1 M HCl is studied. The nanocomposites were characterized using the FTIR, UV-vis, and TEM techniques. The corrosion studies through the gravimetric and electrochemical (PDP, EIS, LPR, and EFM) analyses reveal moderate inhibition performance by the nanocomposites. Furthermore, the PDP results reveal that both inhibitors are mixed-type with maximum corrosion inhibition efficiencies (IEs) of 61.2 % and 54.2 % for BEG-Ag NCP and CEG-Ag NCP, respectively at an optimum concentration of 1.0 %. Modification of these inhibitors with iodide ion (KI) significantly increased the IE values to 90.1 % and 88.5 % for BEG-Ag NCP and CEG-Ag NCP at the same concentration. Surface observation of the uninhibited and inhibited steel samples using SEM/EDAX, 3D Surface profilometer, and AFM affirm that the modified nanocomposites are highly effective.


Assuntos
Ácido Clorídrico , Nanocompostos , Gomas Vegetais , Prata , Aço , Prata/química , Aço/química , Nanocompostos/química , Corrosão , Ácido Clorídrico/química , Gomas Vegetais/química , Exsudatos de Plantas/química , Exsudatos de Plantas/farmacologia , Anacardium/química
20.
Mol Plant Microbe Interact ; 37(7): 552-560, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38619862

RESUMO

Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudate re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, which is pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.


Assuntos
Bacillus , Biofilmes , Herbicidas , Raízes de Plantas , Rizosfera , Zea mays , Zea mays/microbiologia , Bacillus/metabolismo , Bacillus/fisiologia , Herbicidas/metabolismo , Raízes de Plantas/microbiologia , Biodegradação Ambiental , Exsudatos de Plantas/metabolismo , Éteres Fenílicos/metabolismo , Poluentes do Solo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA