Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Biotechnol Prog ; 39(3): e3328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36700726

RESUMO

Oxidative damage has been implicated in the pathogenesis of numerous disorders by affecting the normal functions of several tissues. Further, oxidative stress acts within cells to influence cell morphology and the behavior of cell migration. The movement and migration of cells are crucial during the development of organisms as they transition from embryo to adult, and for the homeostasis of adult tissues. Epicatechin (EC) is a natural flavonoid derived mostly from tea, chocolate, and red wine. We investigated the protective impact of EC on D-galactose(D-gal)/rotenone-injured NIH3T3 cells and found alterations in cell dynamics throughout the procedure. The results reveal that D-gal/rotenone stimulation can cause the cell area to expand and the number of cellular protrusions to increase. EC intervention can considerably minimize the oxidative damage of rotenone on NIH3T3 cells (p < 0.05) but showed little influence on cell damage induced by D-gal. Furthermore, the corrective ability of EC as an antioxidant is reflected in a dose-dependent effect on cell movement, including variations in movement speed and distance. Overall, from the perspective of cell morphology and cell motility, EC has a good protective impact on cells harmed by rotenone induced oxidative damage, as well as corrective properties as an antioxidant to balance intracellular oxidative stress, which allowing for a more comprehensive evaluation of antioxidant performance of EC.


Assuntos
Antioxidantes , Catequina , Animais , Camundongos , Antioxidantes/farmacologia , Catequina/farmacologia , Células NIH 3T3 , Estresse Oxidativo/efeitos dos fármacos , Rotenona/farmacologia , Galactose/farmacologia , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Substâncias Protetoras/farmacologia
2.
J Cell Mol Med ; 24(13): 7228-7238, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32452639

RESUMO

Microtubule-depolymerizing agents can selectively disrupt tumor vessels via inducing endothelial membrane blebbing. However, the mechanism regulating blebbing is largely unknown. IMB5046 is a newly discovered microtubule-depolymerizing agent. Here, the functions of focal adhesion kinase (FAK) during IMB5046-induced blebbing and the relevant mechanism are studied. We found that IMB5046 induced membrane blebbing and reassembly of focal adhesions in human vascular endothelial cells. Both FAK inhibitor and knock-down expression of FAK inhibited IMB5046-induced blebbing. Mechanism study revealed that IMB5046 induced the activation of FAK via GEF-H1/ Rho/ ROCK/ MLC2 pathway. cRGD peptide, a ligand of integrin, also blocked IMB5046-induced blebbing. After activation, FAK further promoted the phosphorylation of MLC2. This positive feedback loop caused more intensive actomyosin contraction and continuous membrane blebbing. FAK inhibitor blocked membrane blebbing via inhibiting actomyosin contraction, and stimulated stress fibre formation via promoting the phosphorylation of HSP27. Conclusively, these results demonstrate that FAK is a molecular switch controlling endothelial blebbing and stress fibre formation. Our study provides a new molecular mechanism for microtubule-depolymerizing agents to be used as vascular disrupting agents.


Assuntos
Benzoatos/farmacologia , Extensões da Superfície Celular/metabolismo , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microtúbulos/metabolismo , Morfolinas/farmacologia , Miosinas Cardíacas/metabolismo , Extensões da Superfície Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Integrinas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinolonas/farmacologia , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fibras de Estresse/efeitos dos fármacos , Fibras de Estresse/metabolismo , Sulfonas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
3.
J Neurosci ; 40(7): 1373-1388, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31896671

RESUMO

Microglia exhibit multiple, phenotype-dependent motility patterns often triggered by purinergic stimuli. However, little data exist on motility of human microglia in pathological situations. Here we examine motility of microglia stained with a fluorescent lectin in tissue slices from female and male epileptic patients diagnosed with mesial temporal lobe epilepsy or cortical glioma (peritumoral cortex). Microglial shape varied from ramified to amoeboid cells predominantly in regions of high neuronal loss or closer to a tumor. Live imaging revealed unstimulated or purine-induced microglial motilities, including surveillance movements, membrane ruffling, and process extension or retraction. At different concentrations, ADP triggered opposing motilities. Low doses triggered process extension. It was suppressed by P2Y12 receptor antagonists, which also reduced process length and surveillance movements. Higher purine doses caused process retraction and membrane ruffling, which were blocked by joint application of P2Y1 and P2Y13 receptor antagonists. Purinergic effects on motility were similar for all microglia tested. Both amoeboid and ramified cells from mesial temporal lobe epilepsy or peritumoral cortex tissue expressed P2Y12 receptors. A minority of microglia expressed the adenosine A2A receptor, which has been linked with process withdrawal of rodent cells. Laser-mediated tissue damage let us test the functional significance of these effects. Moderate damage induced microglial process extension, which was blocked by P2Y12 receptor antagonists. Overall, the purine-induced motility of human microglia in epileptic tissue is similar to that of rodent microglia in that the P2Y12 receptor initiates process extension. It differs in that retraction is triggered by joint activation of P2Y1/P2Y13 receptors.SIGNIFICANCE STATEMENT Microglial cells are brain-resident immune cells with multiple functions in healthy or diseased brains. These diverse functions are associated with distinct phenotypes, including different microglial shapes. In the rodent, purinergic signaling is associated with changes in cell shape, such as process extension toward tissue damage. However, there are little data on living human microglia, especially in diseased states. We developed a reliable technique to stain microglia from epileptic and glioma patients to examine responses to purines. Low-intensity purinergic stimuli induced process extension, as in rodents. In contrast, high-intensity stimuli triggered a process withdrawal mediated by both P2Y1 and P2Y13 receptors. P2Y1/P2Y13 receptor activation has not previously been linked to microglial morphological changes.


Assuntos
Epilepsia do Lobo Temporal/fisiopatologia , Glioma/fisiopatologia , Microglia/fisiologia , Receptores Purinérgicos P2Y12/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Receptores Purinérgicos P2/fisiologia , Neoplasias Supratentoriais/fisiopatologia , Difosfato de Adenosina/farmacologia , Adulto , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Epilepsia do Lobo Temporal/etiologia , Epilepsia do Lobo Temporal/patologia , Feminino , Glioma/patologia , Humanos , Microscopia Intravital , Masculino , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Pessoa de Meia-Idade , Lectinas de Plantas , Agonistas Purinérgicos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Neoplasias Supratentoriais/patologia , Esclerose Tuberosa/complicações
4.
Biochem Biophys Res Commun ; 524(1): 109-116, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980169

RESUMO

Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antineoplásicos/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Membrana Celular/metabolismo , Extensões da Superfície Celular/efeitos dos fármacos , Endocitose , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais , Células HEK293 , Humanos , Camundongos , Fosforilação , Transdução de Sinais , Suínos , Proteínas rho de Ligação ao GTP/química
5.
J Mol Neurosci ; 70(4): 600-609, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31907866

RESUMO

The purpose of the study was studying the influence of different NOD agonists on the morphological phenotype of primary murine microglia and to examine their influence on characteristic cytokines. Primary CD11b-positive cells were isolated from the brain of neonatal mice. The microglial phenotype of the cells was examined by ionized calcium-binding adapter molecule (Iba)1 staining. After14 days in culture, these cells were stimulated by iE-DAP, L18-MDP, or M-TriDAP as NOD1, NOD2, and NOD1/2 agonists, respectively. The cellular morphology was recorded and compared to the phenotype of cells cultured in medium alone or after LPS stimulation. The cells developed a specific phenotype only after treatment with the NOD2 agonist L18-MDP. These cells were characterized by straight extensions carrying tiny spikes and had a high ramification index. This was in sharp contrast to all other treatments, which always resulted in an amoeboid phenotype typically shown by activated microglia in vivo and by cultured microglia in vitro. The staining intensity of IL-6 and TNF-α did not reveal any clear difference independent of the NOD agonist treatment. In contrast, an increased staining intensity was observed for IL-10 after L18-MDP treatment. The NOD2 agonist L18-MDP induced a morphologically distinct phenotype characterized by microspike-decorated dendritiform extensions and a high degree of ramification in primary murine microglia. Increased ramification index and elevated staining intensity of anti-inflammatory IL-10 as hallmarks suggest that a M2-like phenotype of microglia was induced.


Assuntos
Acetilmuramil-Alanil-Isoglutamina/farmacologia , Adjuvantes Imunológicos/farmacologia , Ácido Diaminopimélico/análogos & derivados , Microglia/efeitos dos fármacos , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD2/agonistas , Fenótipo , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Forma Celular , Extensões da Superfície Celular/efeitos dos fármacos , Células Cultivadas , Ácido Diaminopimélico/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Neuromolecular Med ; 22(2): 293-303, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31902115

RESUMO

Microglial cells are resident macrophages of the central nervous system (CNS) that respond to bioactive lipids such as docosahexaenoic acid (DHA). Low micromolar concentrations of DHA typically promote anti-inflammatory functions of microglia, but higher concentrations result in a form of pro-inflammatory programmed cell death known as pyroptosis. This study used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the morphological characteristics of pyroptosis in BV-2 microglial cells following exposure to 200 µM DHA. Vehicle-treated cells are characterized by extended processes, spine-like projections or 0.4 to 5.2 µm in length, and numerous extracellular vesicles (EVs) tethered to the surface of the plasma membrane. In contrast to vehicle-treated cells, gross abnormalities are observed after treating cells with 200 µM DHA for 4 h. These include the appearance of numerous pits or pores of varying sizes across the cell surface, structural collapse and flattening of the cell shape. Moreover, EVs and spines were lost following DHA treatment, possibly due to release from the cell surface. The membrane pores appear after DHA treatment initially measured ~ 30 nm, consistent with the previously reported gasdermin D (GSDMD) pore complexes. Complete collapse of cytoplasmic organization and loss of nuclear envelope integrity were also observed in DHA-treated cells. These processes are morphologically distinct from the changes that occur during cisplatin-induced apoptosis, such as the appearance of apoptotic bodies and tightly packed organelles, and the maintenance of EVs and nuclear envelope integrity. Cumulatively, this study provides a systematic description of the ultrastructural characteristics of DHA-induced pyroptosis, including distinguishing features that differentiate this process from apoptosis.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Microglia/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/ultraestrutura , Cisplatino/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/ultraestrutura , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/ultraestrutura , Camundongos , Microglia/ultraestrutura , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microscopia de Contraste de Fase , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/ultraestrutura , Pseudópodes/efeitos dos fármacos , Pseudópodes/ultraestrutura , Propriedades de Superfície
7.
Apoptosis ; 24(11-12): 862-877, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31489517

RESUMO

During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.


Assuntos
Actinas/metabolismo , Apoptose , Extensões da Superfície Celular/metabolismo , Citoesqueleto/metabolismo , Vesículas Extracelulares/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Técnicas de Cultura de Células , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/genética , Extensões da Superfície Celular/efeitos da radiação , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/efeitos da radiação , Vesículas Extracelulares/genética , Feminino , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/efeitos da radiação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/efeitos da radiação , Tubulina (Proteína)/genética , Vimentina/genética , Vimentina/metabolismo
8.
Nat Commun ; 10(1): 1518, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944331

RESUMO

When migrating in vivo, cells are exposed to numerous conflicting signals: chemokines, repellents, extracellular matrix, growth factors. The roles of several of these molecules have been studied individually in vitro or in vivo, but we have yet to understand how cells integrate them. To start addressing this question, we used the cephalic neural crest as a model system and looked at the roles of its best examples of positive and negative signals: stromal-cell derived factor 1 (Sdf1/Cxcl12) and class3-Semaphorins. Here we show that Sdf1 and Sema3A antagonistically control cell-matrix adhesion via opposite effects on Rac1 activity at the single cell level. Directional migration at the population level emerges as a result of global Semaphorin-dependent confinement and broad activation of adhesion by Sdf1 in the context of a biased Fibronectin distribution. These results indicate that uneven in vivo topology renders the need for precise distribution of secreted signals mostly dispensable.


Assuntos
Movimento Celular/fisiologia , Junções Célula-Matriz/fisiologia , Crista Neural/citologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Junções Célula-Matriz/efeitos dos fármacos , Junções Célula-Matriz/metabolismo , Quimiocina CXCL12/metabolismo , Feminino , Fibronectinas/metabolismo , Masculino , Manganês/metabolismo , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Receptores CXCR4/metabolismo , Semaforinas/metabolismo , Xenopus laevis/embriologia , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Nature ; 566(7742): 110-114, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30675063

RESUMO

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Assuntos
Bactérias/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Extensões da Superfície Celular/metabolismo , Intestino Delgado/citologia , Intestino Delgado/microbiologia , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bactérias/imunologia , Receptor 1 de Quimiocina CX3C/deficiência , Receptor 1 de Quimiocina CX3C/genética , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/imunologia , Feminino , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Ácido Láctico/farmacologia , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Ácido Pirúvico/farmacologia , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Salmonella/imunologia , Salmonella/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-30197879

RESUMO

Entamoeba histolytica, the causal agent of human amoebiasis, has two morphologically different phases: a resistant cyst and a trophozoite responsible for the invasion of the host tissues such as the colonic mucosa and the intestinal epithelium. During in vitro migration, trophozoites usually produce protuberances such as pseudopods and rarely filopodia, structures that have been observed in the interaction of trophozoites with human colonic epithelial tissue. To study the different membrane projections produced by the trophozoites, including pseudopods, filopodia, uropods, blebs, and others, we designed an induction system using erythrocyte extract or fibronectin (FN) in micropatterned grill lines (each micro-line containing multiple micro-portions of FN or erythrocyte extract) on which the trophozoites were placed in culture for migration assays. Using light, confocal, and scanning electron microscopy, we established that E. histolytica trophozoites frequently produce short and long filopodia, large retractile uropods in the rear, pseudopods, blebs, and others structures, also showing continuous migration periods. The present study provides a simple migration method to induce trophozoites to generate abundant membrane protrusion structures that are rarely obtained in normal or induced cultures, such as long filopodia; this method will allow a-better understanding of the interactions of trophozoites with FN and cell debris. E. histolytica trophozoites motility plays an important role in invasive amoebiasis. It has been proposed that both physical forces and chemical signals are involved in the trophozoite motility and migration. However, the in vivo molecules that drive the chemotactic migration remain to be determined. We propose the present assay to study host molecules that guide chemotactic behavior because the method is highly reproducible, and a live image of cell movement and migration can be quantified.


Assuntos
Movimento Celular , Extensões da Superfície Celular/fisiologia , Extensões da Superfície Celular/ultraestrutura , Entamoeba histolytica/fisiologia , Entamoeba histolytica/ultraestrutura , Trofozoítos/fisiologia , Trofozoítos/ultraestrutura , Extratos Celulares/isolamento & purificação , Extensões da Superfície Celular/efeitos dos fármacos , Entamoeba histolytica/efeitos dos fármacos , Eritrócitos/química , Fibronectinas/isolamento & purificação , Fibronectinas/metabolismo , Humanos , Microscopia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Trofozoítos/efeitos dos fármacos
11.
Sci Rep ; 8(1): 9484, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930346

RESUMO

Intercellular communication plays a critical role in the ever-evolving landscape of invasive cancers. Recent studies have elucidated the potential role of tunneling nanotubes (TNTs) in this function. TNTs are long, filamentous, actin-based cell protrusions that mediate direct cell-to-cell communication between malignant cells. In this study, we investigated the formation of TNTs in response to variable concentrations of the chemotherapeutic drug doxorubicin, which is used extensively in the treatment of cancer patients. Doxorubicin stimulated an increased formation of TNTs in pancreatic cancer cells, and this occurred in a dose-dependent fashion. Furthermore, TNTs facilitated the intercellular redistribution of this drug between connected cells in both pancreatic and ovarian cancer systems in vitro. To provide supportive evidence for the relevance of TNTs in pancreatic cancer in vivo, we performed multiphoton fluorescence microscopy and imaged TNTs in tumor specimens resected from three human patients with pancreatic adenocarcinoma, and one with neuroendocrine carcinoma. In sum, TNT formation was upregulated in aggressive forms of pancreatic carcinoma, was further stimulated after chemotherapy exposure, and acted as a novel method for drug efflux. These findings implicate TNTs as a potential novel mechanism of drug resistance in chemorefractory forms of cancer.


Assuntos
Adenocarcinoma/metabolismo , Antineoplásicos/farmacologia , Extensões da Superfície Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/patologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia
12.
Mol Neurobiol ; 55(4): 3185-3195, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28477140

RESUMO

Brain injuries such as trauma and stroke lead to glial scar formation by reactive astrocytes which produce and secret axonal outgrowth inhibitors. Chondroitin sulfate proteoglycans (CSPG) constitute a well-known class of extracellular matrix molecules produced at the glial scar and cause growth cone collapse. The CSPG glycosaminoglycan side chains composed of chondroitin sulfate (CS) are responsible for its inhibitory activity on neurite outgrowth and are dependent on RhoA activation. Here, we hypothesize that CSPG also impairs neural stem cell migration inhibiting their penetration into an injury site. We show that DCX+ neuroblasts do not penetrate a CSPG-rich injured area probably due to Nogo receptor activation and RhoA/ROCK signaling pathway as we demonstrate in vitro with neural stem cells cultured as neurospheres and pull-down for RhoA. Furthermore, CS-impaired cell migration in vitro induced the formation of large mature adhesions and altered cell protrusion dynamics. ROCK inhibition restored migration in vitro as well as decreased adhesion size.


Assuntos
Movimento Celular/efeitos dos fármacos , Sulfatos de Condroitina/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Quinases Associadas a rho/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Células Cultivadas , Proteína Duplacortina , Ativação Enzimática/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Kidney Int ; 93(2): 519-524, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28890327

RESUMO

Highly organized cell processes characterize glomerular podocytes in vivo. However, podocytes in culture have a simple morphology lacking cell processes, especially upon reaching confluence. Here, we aimed to establish culture conditions under which cultured podocytes extend cell processes at confluence. Among various culture conditions that could possibly cause phenotypic changes in podocytes, we examined the effects of heparin, all-trans retinoic acid, fetal bovine serum, and extracellular matrices on the morphology of podocytes in rat primary culture. Consequently, long arborized cell processes were observed to radiate extensively from the cell body only when cells were cultured in the presence of heparin and all-trans retinoic acid on laminin-coated dishes with decreasing concentrations of fetal bovine serum. Primary processes branching repeatedly into terminal processes and cell process insertion under adjacent cell bodies were evident by electron microscopy-based analysis. Immunostaining for podocin showed conspicuous elongations of intercellular junctions. Under these conditions, the expression levels of podocyte-specific proteins and genes were markedly upregulated. Thus, we succeeded in establishing culture conditions in which the cultured podocytes exhibit phenotypes similar to those under in vivo conditions.


Assuntos
Técnicas de Cultura de Células , Forma Celular , Extensões da Superfície Celular/ultraestrutura , Podócitos/ultraestrutura , Animais , Proliferação de Células , Forma Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Células Cultivadas , Regulação da Expressão Gênica , Heparina/farmacologia , Laminina/metabolismo , Masculino , Fenótipo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Ratos Wistar , Fatores de Tempo , Tretinoína/farmacologia
14.
BMC Cell Biol ; 18(1): 28, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851287

RESUMO

BACKGROUND: Eph signaling is known to induce contrasting cell behaviors such as promoting and inhibiting cell adhesion/spreading by altering F-actin organization and influencing integrin activities. We have previously demonstrated that EphA2 stimulation by ephrin-A1 promotes cell adhesion through interaction with integrins and integrin ligands in two monocyte/macrophage cell lines. Although mature mononuclear leukocytes express several members of the EphA/ephrin-A subclass, their expression has not been examined in monocytes undergoing during differentiation and maturation. RESULTS: Using RT-PCR, we have shown that EphA2, ephrin-A1, and ephrin-A2 expression was upregulated in murine bone marrow mononuclear cells during monocyte maturation. Moreover, EphA2 and EphA4 expression was induced, and ephrin-A4 expression was upregulated, in a human promyelocytic leukemia cell line, HL60, along with monocyte differentiation toward the classical CD14++CD16- monocyte subset. Using RT-PCR and flow cytometry, we have also shown that expression levels of αL, αM, αX, and ß2 integrin subunits were upregulated in HL60 cells along with monocyte differentiation while those of α4, α5, α6, and ß1 subunits were unchanged. Using a cell attachment stripe assay, we have shown that stimulation by EphA as well as ephrin-A, likely promoted adhesion to an integrin ligand-coated surface in HL60 monocytes. Moreover, EphA and ephrin-A stimulation likely promoted the formation of protrusions in HL60 monocytes. CONCLUSIONS: Notably, this study is the first analysis of EphA/ephrin-A expression during monocytic differentiation/maturation and of ephrin-A stimulation affecting monocyte adhesion to an integrin ligand-coated surface. Thus, we propose that monocyte adhesion via integrin activation and the formation of protrusions is likely promoted by stimulation of EphA as well as of ephrin-A.


Assuntos
Diferenciação Celular/fisiologia , Efrinas/genética , Efrinas/metabolismo , Monócitos , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Animais , Células da Medula Óssea/citologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/enzimologia , Extensões da Superfície Celular/metabolismo , Células Cultivadas , Efrina-A1/genética , Efrina-A1/metabolismo , Efrina-A1/farmacologia , Células HL-60 , Humanos , Integrinas/genética , Integrinas/metabolismo , Ligantes , Masculino , Camundongos , Monócitos/citologia , Monócitos/enzimologia , Monócitos/metabolismo , Receptores da Família Eph/farmacologia , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos
15.
Angiogenesis ; 20(4): 663-672, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28638990

RESUMO

De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.


Assuntos
Anilidas/farmacologia , Benzamidas/farmacologia , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Actinas/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células Endoteliais/efeitos dos fármacos , Humanos , Camundongos Knockout , Profilinas/metabolismo , Peixe-Zebra/embriologia
16.
J Leukoc Biol ; 101(3): 683-692, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28250113

RESUMO

Although growth factors and chemokines elicit different overall effects on cells-growth and chemotaxis, respectively-and activate distinct classes of cell-surface receptors, nonetheless, they trigger similar cellular activities and signaling pathways. The growth factor M-CSF and the chemokine CXCL12 both stimulate the endocytic process of macropinocytosis, and both activate the mechanistic target of rapamycin complex 1 (mTORC1), a protein complex that regulates cell metabolism. Recent studies of signaling by M-CSF in macrophages identified a role for macropinocytosis in the activation of mTORC1, in which delivery of extracellular amino acids into lysosomes via macropinocytosis was required for activation of mTORC1. Here, we analyzed the regulation of macropinosome (MP) formation in response to CXCL12 and identified 2 roles for macropinocytosis in the activation of mTORC1. Within 5 min of adding CXCL12, murine macrophages increased ruffling, macropinocytosis and amino acid-dependent activation of mTORC1. Inhibitors of macropinocytosis blocked activation of mTORC1, and various isoform-specific inhibitors of type 1 PI3K and protein kinase C (PKC) showed similar patterns of inhibition of macropinocytosis and mTORC1 activity. However, unlike the response to M-CSF, Akt phosphorylation (pAkt) in response to CXCL12 required the actin cytoskeleton and the formation of macropinocytic cups. Quantitative fluorescence microscopy showed that phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of PI3K and an upstream activator of Akt, localized to macropinocytic cups and that pAkt occurred primarily in cups. These results indicate that CXCL12 activates mTORC1 via 2 mechanisms: 1) that the macropinocytic cup localizes Akt signaling and 2) that MPs convey extracellular nutrients to lysosomes.


Assuntos
Quimiocina CXCL12/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , Pinocitose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Células da Medula Óssea/citologia , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Espaço Extracelular/metabolismo , Isoenzimas/metabolismo , Macrófagos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas/metabolismo
17.
Neurochem Res ; 42(4): 1006-1014, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27995495

RESUMO

Oxytocin is a neuropeptide widely expressed in the brain. Oxytocin plays a role in both proliferation and differentiation of various cells. Previous studies have suggested that oxytocin could affect the morphology of neuronal cells, therefore the objective of the present study was to test whether (1) oxytocin receptor stimulation/inhibition by specific ligands may change cell morphology and gene expression of selected cytoskeletal proteins (2) oxytocin receptor silencing/knockdown may decrease the length of cell projections (3) oxytocin receptor knockdown may affect human glioblastoma U-87MG cell survival. We confirmed the stimulatory effect of retinoic acid (10 µM) and oxytocin (1 µM) on projection growth. The combination of retinoic acid (10 µM) and oxytocin receptor antagonist (L-371,257, 1 µM) decreased projections length. Contrary to our assumptions, oxytocin receptor silencing did not prevent stimulation of length of projection by retinoic acid. Retinoic acid's and oxytocin's stimulation of projections length was significantly blunted in U-87MG cells with oxytocin receptor knockdown. Cell viability was significantly decreased in U-87MG cells with oxytocin receptor knockdown. Significantly higher levels of mRNA for cytoskeletal proteins drebrin and vimentin were observed in response to oxytocin incubation for 48 h. The data obtained in the present study clearly show that oxytocin induces formation and elongation of cell projections in astrocyte-like U-87MG cells. The effect is mediated by oxytocin receptors and it is accompanied by an increase in gene expression of drebrin and vimentin. Thus, oxytocin receptor signaling, particularly in the glial cells, may play an important role in native cell life, differentiation processes, and tumor progression, as well.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Glioblastoma/metabolismo , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Tretinoína/farmacologia , Linhagem Celular Tumoral , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/fisiologia , Humanos
18.
J Cell Sci ; 129(18): 3511-7, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27505892

RESUMO

Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling. This structural polymorphism allows for the classification of the stages of the sickling process. Recent studies have shown that elevated sphingosine kinase 1 (Sphk1)-mediated sphingosine 1-phosphate production contributes to sickling. Here, we further demonstrate that compound 5C, an inhibitor of Sphk1, has anti-sickling properties. Additionally, the variation in cellular morphology upon treatment suggests that this drug acts to delay the sickling process. SXT is an effective tool that can be used to identify the morphology of the sickling process and assess the effectiveness of potential therapeutics.


Assuntos
Anemia Falciforme/enzimologia , Eritrócitos/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Tomografia por Raios X/métodos , Animais , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia
19.
Biophys J ; 110(5): 1150-7, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26958891

RESUMO

During leukocyte rolling on the endothelium, surface protrusion and membrane tether extraction occur consecutively on leukocytes. Both surface protrusion and tether extraction of leukocytes stabilize leukocyte rolling. Tethers can also be extracted from endothelial cells (ECs), but surface protrusion of ECs has never been confirmed to exist. In this study, we examined EC surface protrusion with the micropipette aspiration technique. We found that, like leukocytes, surface protrusion on an EC did exist when a point force was imposed. Both the protrusional stiffness and the crossover force of EC surface protrusion were dependent on the force loading rate and the cytoskeletal integrity, but neither of them was dependent on tumor necrosis factor α stimulation. Temperature (37°C) affected the protrusional stiffness only at small force loading rates. When a neutrophil was employed to directly impose the pulling force on the EC, simultaneous surface protrusion from both cells occurred, and it can be modeled as two springs connected in series, although the spring constants should be adjusted according to the force loading rate. Therefore, EC surface protrusion is an important aspect of leukocyte rolling, and it should not be ignored when leukocyte rolling stability is studied systematically.


Assuntos
Extensões da Superfície Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fenômenos Biomecânicos/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Adesão Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Microesferas , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Pressão , Temperatura , Tiazolidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Gravação em Vídeo
20.
Bone ; 86: 106-18, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26959175

RESUMO

E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities.


Assuntos
Proteínas Cdh1/metabolismo , Diferenciação Celular , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese , Animais , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ligante RANK/farmacologia , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA