Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.108
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 79, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773545

RESUMO

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Assuntos
Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Niacinamida , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Camundongos , Administração Oral , Injeções Intravítreas , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Intoxicação por MPTP/patologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/tratamento farmacológico
2.
Brain Behav ; 14(5): e3503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775292

RESUMO

BACKGROUND: Crocin has a good prospect in the treatment of Alzheimer's disease (AD), but the mechanisms underlying its neuroprotective effects remain elusive. This study aimed to investigate the neuroprotective effects of Crocin and its underlying mechanisms in AD. METHODS: AD mice were set up by injecting Aß25-35 solution into the hippocampus. Then, the AD mice were injected intraperitoneally with 40 mg/kg/day of Crocin for 14 days. Following the completion of Crocin treatment, an open-field test, Y-maze test and Morris water maze test were conducted to evaluate the impact of Crocin on spatial learning and memory deficiency in mice. The effects of Crocin on hippocampal neuron injury, proinflammatory cytokine expressions (IL-1ß, IL-6, and TNF-α), and PI3K/AKT signaling-related protein expressions were measured using hematoxylin and eosin staining, Western blot, and quantitative real-time polymerase chain reaction (qRT-PCR) experiments, respectively. RESULTS: Crocin attenuated Aß25-35-induced spatial learning and memory deficiency and hippocampal neuron injury. Furthermore, the Western blot and qRT-PCR results showed that Crocin effectively suppressed inflammation and activated the PI3K/AKT pathway in Aß25-35-induced mice. CONCLUSION: Crocin restrained neuroinflammation via the activation of the PI3K/AKT pathway, thereby ameliorating the cognitive dysfunction of AD mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Carotenoides , Disfunção Cognitiva , Hipocampo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carotenoides/farmacologia , Carotenoides/administração & dosagem , Camundongos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Modelos Animais de Doenças , Fragmentos de Peptídeos/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
3.
Am J Ther ; 31(3): e258-e267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691665

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is characterized by loss of motor neurons due to degeneration of nerve cells within the brain and spinal cord. Early symptoms include limb weakness, twitching or muscle cramping, and slurred speech. As the disease progresses, difficulty breathing, swallowing, and paralysis can lead to death. Currently, there are no medications that cure ALS, and guidelines recommend treatments focused on symptom management. Intravenous (IV) edaravone was approved by the US Food and Drug Administration (FDA) in 2017 as a treatment to slow the progression of ALS. In May 2022, the FDA approved an oral suspension (ORS) formulation of edaravone. MECHANISM OF ACTION: The mechanism of action of edaravone is not well defined. However, its neuroprotective effects are thought to result from antioxidant properties occurring through elimination of free radicals. PHARMACOKINETICS: Edaravone ORS (105 mg) has a bioavailability of 57% when compared with edaravone IV (60 mg). The ORS should be taken on an empty stomach in the morning, with water and no food or beverages, for 1 hour. Edaravone is bound to albumin (92%), has a mean volume of distribution of 63.1 L, a half-life of 4.5-9 hours, and a total clearance of 35.9 L/h after intravenous administration. Edaravone is metabolized into nonactive sulfate and glucuronide conjugates. CLINICAL TRIALS: The FDA approval was based on studies of the pharmacokinetics, safety, tolerability, and bioavailability of edaravone ORS. A phase III, global, multicenter, open-label safety study was conducted on edaravone ORS in 185 patients with ALS over 48 weeks. The most reported treatment-emergent adverse events were falls, muscular weakness, and constipation. Serious treatment-emergent adverse events included disease worsening, dysphagia, dyspnea, and respiratory failure. THERAPEUTIC ADVANCE: Oral edaravone is an ALS treatment that can be self-administered or administered by a caregiver, precluding the need for administration by a health care professional in an institutional setting.


Assuntos
Esclerose Lateral Amiotrófica , Edaravone , Fármacos Neuroprotetores , Edaravone/administração & dosagem , Edaravone/farmacologia , Edaravone/uso terapêutico , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/efeitos adversos , Administração Oral , Suspensões , Disponibilidade Biológica
4.
EBioMedicine ; 103: 105143, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691938

RESUMO

BACKGROUND: Argon (Ar) has been proposed as a potential therapeutic agent in multiple clinical conditions, specifically in organ protection. However, conflicting data on pre-clinical models, together with a great variability in Ar administration protocols and outcome assessments, have been reported. The aim of this study was to review evidence on treatment with Ar, with an extensive investigation on its neuroprotective effect, and to summarise all tested administration protocols. METHODS: Using the PubMed database, all existing pre-clinical and clinical studies on the treatment with Ar were systematically reviewed (registration: https://doi.org/10.17605/OSF.IO/7983D). Study titles and abstracts were screened, extracting data from relevant studies post full-text review. Exclusion criteria included absence of full text and non-English language. Furthermore, meta-analysis was also performed to assess Ar potential as neuroprotectant agent in different clinical conditions: cardiac arrest, traumatic brain injury, ischemic stroke, perinatal hypoxic-ischemic encephalopathy, subarachnoid haemorrhage. Standardised mean differences for neurological, cognitive and locomotor, histological, and physiological measures were evaluated, through appropriate tests, clinical, and laboratory variables. In vivo studies were evaluated for risk of bias using the Systematic Review Center for Laboratory Animal Experimentation tool, while in vitro studies underwent assessment with a tool developed by the Office of Health Assessment and Translation. FINDINGS: The systematic review detected 60 experimental studies (16 in vitro, 7 ex vivo, 31 in vivo, 6 with both in vitro and in vivo) investigating the role of Ar. Only one clinical study was found. Data from six in vitro and nineteen in vivo studies were included in the meta-analyses. In pre-clinical models, Ar administration resulted in improved neurological, cognitive and locomotor, and histological outcomes without any change in physiological parameters (i.e., absence of adverse events). INTERPRETATION: This systematic review and meta-analysis based on experimental studies supports the neuroprotective effect of Ar, thus providing a rationale for potential translation of Ar treatment in humans. Despite adherence to established guidelines and methodologies, limitations in data availability prevented further analyses to investigate potential sources of heterogeneity due to study design. FUNDING: This study was funded in part by Italian Ministry of Health-Current researchIRCCS and by Ministero della Salute Italiano, Ricerca Finalizzata, project no. RF 2019-12371416.


Assuntos
Argônio , Fármacos Neuroprotetores , Argônio/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Humanos , Animais , Administração por Inalação , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos
5.
Eur Rev Med Pharmacol Sci ; 28(9): 3318-3329, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766790

RESUMO

OBJECTIVE: This study aimed to investigate the impact of tert-butylhydroquinone (TBHQ), chitosan, and their combination on memory and neurobiochemical parameters in a rat model. The primary objectives were to assess the cognitive effects of TBHQ, explore the cognitive-enhancing properties of chitosan, and evaluate the combined effects of these substances. MATERIALS AND METHODS: A rat model was employed for behavioral tests, biochemical analyses, and histological examinations. Rats were exposed to TBHQ, chitosan, or a combination of both, and cognitive function was assessed through behavioral tests. Biochemical analyses focused on neurobiochemical parameters associated with memory and oxidative stress. Histological examinations were conducted to observe any structural changes in the brain. RESULTS: TBHQ exposure was associated with memory impairments and increased oxidative stress, indicating potential neurotoxic effects. Chitosan supplementation demonstrated cognitive-enhancing effects and showed promise in mitigating the memory impairments and oxidative stress induced by TBHQ. The combination of chitosan and TBHQ presented a potential protective effect on neurological health. CONCLUSIONS: Chitosan supplementation alongside TBHQ may mitigate memory impairments and oxidative stress associated with TBHQ exposure in a rat model. The study provides valuable insights into the cognitive effects of TBHQ and the neuroprotective potential of chitosan, highlighting the need for further research to elucidate molecular pathways and clinical implications. These findings contribute to understanding chitosan's role in safeguarding neurological health in conditions where TBHQ exposure is a concern, warranting further investigations for translational applications in human health.


Assuntos
Quitosana , Disfunção Cognitiva , Modelos Animais de Doenças , Hidroquinonas , Estresse Oxidativo , Animais , Hidroquinonas/farmacologia , Hidroquinonas/administração & dosagem , Quitosana/farmacologia , Quitosana/química , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Ratos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Ratos Sprague-Dawley
6.
N Engl J Med ; 390(13): 1176-1185, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38598572

RESUMO

BACKGROUND: Lixisenatide, a glucagon-like peptide-1 receptor agonist used for the treatment of diabetes, has shown neuroprotective properties in a mouse model of Parkinson's disease. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assessed the effect of lixisenatide on the progression of motor disability in persons with Parkinson's disease. Participants in whom Parkinson's disease was diagnosed less than 3 years earlier, who were receiving a stable dose of medications to treat symptoms, and who did not have motor complications were randomly assigned in a 1:1 ratio to daily subcutaneous lixisenatide or placebo for 12 months, followed by a 2-month washout period. The primary end point was the change from baseline in scores on the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III (range, 0 to 132, with higher scores indicating greater motor disability), which was assessed in patients in the on-medication state at 12 months. Secondary end points included other MDS-UPDRS subscores at 6, 12, and 14 months and doses of levodopa equivalent. RESULTS: A total of 156 persons were enrolled, with 78 assigned to each group. MDS-UPDRS part III scores at baseline were approximately 15 in both groups. At 12 months, scores on the MDS-UPDRS part III had changed by -0.04 points (indicating improvement) in the lixisenatide group and 3.04 points (indicating worsening disability) in the placebo group (difference, 3.08; 95% confidence interval, 0.86 to 5.30; P = 0.007). At 14 months, after a 2-month washout period, the mean MDS-UPDRS motor scores in the off-medication state were 17.7 (95% CI, 15.7 to 19.7) with lixisenatide and 20.6 (95% CI, 18.5 to 22.8) with placebo. Other results relative to the secondary end points did not differ substantially between the groups. Nausea occurred in 46% of participants receiving lixisenatide, and vomiting occurred in 13%. CONCLUSIONS: In participants with early Parkinson's disease, lixisenatide therapy resulted in less progression of motor disability than placebo at 12 months in a phase 2 trial but was associated with gastrointestinal side effects. Longer and larger trials are needed to determine the effects and safety of lixisenatide in persons with Parkinson's disease. (Funded by the French Ministry of Health and others; LIXIPARK ClinicalTrials.gov number, NCT03439943.).


Assuntos
Antiparkinsonianos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Doença de Parkinson , Peptídeos , Humanos , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/efeitos adversos , Antiparkinsonianos/uso terapêutico , Pessoas com Deficiência , Método Duplo-Cego , Transtornos Motores/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Peptídeos/administração & dosagem , Peptídeos/efeitos adversos , Peptídeos/uso terapêutico , Resultado do Tratamento , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/efeitos adversos , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Progressão da Doença , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico , Injeções Subcutâneas
7.
Neurosurg Rev ; 47(1): 193, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662220

RESUMO

This critique examines a 12-year retrospective study on serum magnesium concentration-guided administration of magnesium sulfate in 548 patients with aneurysmal subarachnoid hemorrhage (aSAH). The study reported that maintaining serum magnesium levels between 2 and 2.5 mmol/L reduced rates of delayed cerebral infarction and improved clinical outcomes. However, limitations due to its retrospective nature, single-center design, and unequal treatment group sizes may affect generalizability. Future multicentric randomized controlled trials are recommended to validate these findings and refine magnesium dosing strategies for aSAH treatment.


Assuntos
Sulfato de Magnésio , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Sulfato de Magnésio/administração & dosagem , Estudos Retrospectivos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento , Feminino , Administração Intravenosa , Pessoa de Meia-Idade , Masculino , Neuroproteção/efeitos dos fármacos , Infarto Cerebral/prevenção & controle , Infarto Cerebral/tratamento farmacológico , Adulto
8.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630337

RESUMO

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Assuntos
Morte Celular , Etanol , Neurônios , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Sterculia , Animais , Ratos , Caspase 3/metabolismo , Etanol/administração & dosagem , Etanol/química , Etanol/toxicidade , Peróxido de Hidrogênio/toxicidade , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Ratos Wistar , Sterculia/química , Folhas de Planta/química , Plantas Medicinais/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/patologia , Lactato Desidrogenases/metabolismo , Proteína GAP-43/análise , Apoptose/genética , Estresse Oxidativo/genética , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/patologia , Cerebelo/fisiologia , Masculino , Feminino , Células Cultivadas , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Espectrometria de Massa com Cromatografia Líquida , Metabolismo Secundário
9.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673871

RESUMO

Mild traumatic brain injury (mTBI) affects millions of people in the U.S. Approximately 20-30% of those individuals develop adverse symptoms lasting at least 3 months. In a rat mTBI study, the closed-head impact model of engineered rotational acceleration (CHIMERA) produced significant axonal injury in the optic tract (OT), indicating white-matter damage. Because retinal ganglion cells project to the lateral geniculate nucleus (LGN) in the thalamus through the OT, we hypothesized that synaptic density may be reduced in the LGN of rats following CHIMERA injury. A modified SEQUIN (synaptic evaluation and quantification by imaging nanostructure) method, combined with immunofluorescent double-labeling of pre-synaptic (synapsin) and post-synaptic (PSD-95) markers, was used to quantify synaptic density in the LGN. Microglial activation at the CHIMERA injury site was determined using Iba-1 immunohistochemistry. Additionally, the effects of ketamine, a potential neuroprotective drug, were evaluated in CHIMERA-induced mTBI. A single-session repetitive (ssr-) CHIMERA (3 impacts, 1.5 joule/impact) produced mild effects on microglial activation at the injury site, which was significantly enhanced by post-injury intravenous ketamine (10 mg/kg) infusion. However, ssr-CHIMERA did not alter synaptic density in the LGN, although ketamine produced a trend of reduction in synaptic density at post-injury day 4. Further research is necessary to characterize the effects of ssr-CHIMERA and subanesthetic doses of intravenous ketamine on different brain regions and multiple time points post-injury. The current study demonstrates the utility of the ssr-CHIMERA as a rodent model of mTBI, which researchers can use to identify biological mechanisms of mTBI and to develop improved treatment strategies for individuals suffering from head trauma.


Assuntos
Ketamina , Microglia , Ratos Sprague-Dawley , Sinapses , Animais , Ketamina/administração & dosagem , Ketamina/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Ratos , Masculino , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Traumatismos Cranianos Fechados/patologia , Axônios/efeitos dos fármacos , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Corpos Geniculados/patologia , Corpos Geniculados/efeitos dos fármacos , Concussão Encefálica/patologia , Concussão Encefálica/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapsinas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem
10.
Acta Neuropathol Commun ; 12(1): 65, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649962

RESUMO

The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.


Assuntos
Vesículas Extracelulares , Glaucoma , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Niacinamida , Células Ganglionares da Retina , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Esclera/metabolismo , Esclera/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Masculino
11.
Brain Res ; 1834: 148905, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565372

RESUMO

Alzheimer's disease (AD) is a primary cause of dementia that affects millions of people worldwide and its prevalence is likely to increase largely in the coming decades. Multiple complex pathways, such as oxidative stress, tau and amyloid-beta (Aß) pathology, and cholinergic dysfunction, are involved in the pathogenesis of Alzheimer's disease. The conventional treatments provide only symptomatic relief and not a complete cure for the disease. On the other hand, recent studies have looked into the possibility of flavonoids as an effective therapeutic strategy for treating AD. Quercetin, a well-known flavonol, has been extensively studied for AD treatment. Therefore, this review mainly focuses on the pharmacokinetics properties of quercetin and its modes of action, such as antioxidant, anti-inflammatory, anti-amyloidogenic, and neuroprotective properties, which are beneficial in treating AD. It also highlights the nano delivery systems of quercetin, including liposomes, nanostructures lipid carriers, solid lipid nanoparticles, nanoemulsions, microemulsions, self-emulsifying drug delivery systems, and nanoparticles reported for AD treatment. The remarkable potential of quercetin nanocarriers has been reflected in enhancing its bioavailability and therapeutic efficacy. Therefore, clinical studies must be conducted to explore it as a therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Antioxidantes , Fármacos Neuroprotetores , Quercetina , Quercetina/administração & dosagem , Quercetina/farmacocinética , Quercetina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Humanos , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas
12.
Eur J Obstet Gynecol Reprod Biol ; 297: 197-201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678795

RESUMO

BACKGROUND: The effectiveness of MgSO4 for foetal neuroprotection is acknowledged, but the best time to provide it in relation to birth is a conundrum, and dose schedule is yet unknown. Understanding the determinants of the magnesium levels in cord blood aids in determining the appropriate timing and length of administration. AIM AND OBJECTIVE: To assess the cord blood magnesium concentration in relation to the timing of MgSO4 and delivery. To achieve ROC in relation to optimum level of cord blood magnesium concentration in relation to neonatal outcome variables. STUDY DESIGN: A prospective observational study conducted in a tertiary care hospital over 2 years in women having preterm delivery from 26 weeks to 33 + 6 weeks, who received Neuroprophylaxis. Cord blood was collected for magnesium level estimation. Baby followed 24 h after delivery. ROC analysis performed for predicting an optimal cut-off for a continuous predictor predicting binary outcome. RESULTS: 85 recruited cases divided into bolus group, bolus + infusion group. The mean cord blood magnesium (n = 85) was 3.8 mg/dl. The AUROC for Gestational Age at Administration predicting Baby Outcome: 0.699, It was statistically significant (p = 0.034). The AUROC for Cord Blood Mg predicting Baby Outcome: 0.606, It was not statistically significant (p = 0.262). CONCLUSION: Mean cord blood magnesium levels served as a tool to determine the timing and duration of Neuroprophylaxis. Mean cord blood magnesium of 3.8 mg/dl should be achieved to serve the purpose of Neuroprotection. To achieve this, Bolus followed by Infusion should be administered for at-least 6 h prior to delivery.


Assuntos
Sangue Fetal , Recém-Nascido Prematuro , Sulfato de Magnésio , Magnésio , Humanos , Sulfato de Magnésio/administração & dosagem , Feminino , Sangue Fetal/química , Gravidez , Estudos Prospectivos , Recém-Nascido , Magnésio/sangue , Magnésio/administração & dosagem , Recém-Nascido Prematuro/sangue , Adulto , Nascimento Prematuro/prevenção & controle , Nascimento Prematuro/sangue , Fármacos Neuroprotetores/administração & dosagem , Idade Gestacional
13.
Int J Dev Neurosci ; 84(3): 251-261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38469915

RESUMO

OBJECTIVE: The aim of this study is to evaluate whether exogenous melatonin (MEL) mitigates the deleterious effects of high-dose caffeine (CAF) administration in pregnant rats upon the fetal hippocampus. MATERIALS AND METHODS: A total of 32 adult Wistar albino female rats were divided into four groups after conception (n = 8). At 9-20 days of pregnancy, intraperitoneal (i.p.) MEL was administered at a dose of 10 mg/kg/day in the MEL group, while i.p. CAF was administered at a dose of 60 mg/kg/day in the CAF group. In the CAF plus MEL group, i.p. CAF and MEL were administered at a dose of 60 and 10 mg/kg/day, respectively, at the same period. Following extraction of the brains of the fetuses sacrificed on the 21st day of pregnancy, their hippocampal regions were analyzed by hematoxylin and eosin and Cresyl Echt Violet, anti-GFAP, and antisynaptophysin staining methods. RESULTS: While there was a decrease in fetal and brain weights in the CAF group, it was found that the CAF plus MEL group had a closer weight average to that of the control group. Histologically, it was observed that the pyramidal cell layer consisted of 8-10 layers of cells due to the delay in migration in hippocampal neurons in the CAF group, while the MEL group showed similar characteristics with the control group. It was found that these findings decreased in the CAF plus MEL group. CONCLUSION: It is concluded that high-dose CAF administration causes a delay in neurogenesis of the fetal hippocampus, and exogenous MEL is able to mitigate its deleterious effects.


Assuntos
Cafeína , Hipocampo , Melatonina , Fármacos Neuroprotetores , Ratos Wistar , Animais , Feminino , Melatonina/farmacologia , Melatonina/administração & dosagem , Hipocampo/efeitos dos fármacos , Gravidez , Cafeína/administração & dosagem , Cafeína/farmacologia , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Estimulantes do Sistema Nervoso Central/toxicidade , Estimulantes do Sistema Nervoso Central/administração & dosagem , Relação Dose-Resposta a Droga
14.
Expert Opin Drug Deliv ; 21(3): 437-456, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38507231

RESUMO

INTRODUCTION: The current treatment modalities available for Parkinson's disease (PD) prove inadequate due to the inherent constraints in effectively transporting bioactive compounds across the blood-brain barrier. The utilization of synergistic combinations of multiple drugs in conjunction with advanced nanotechnology, emerges as a promising avenue for the treatment of PD, offering potential breakthroughs in treatment efficacy, targeted therapy, and personalized medicine. AREAS COVERED: This review provides a comprehensive analysis of the efficacy of multifactorial interventions for PD, simultaneously addressing the primary challenges of conventional therapies and highlighting how advanced technologies can help overcome these limitations. Part II focuses on the effectiveness of nanotechnology for improving pharmacokinetics of conventional therapies, through the synergistic use of dual or multiple therapeutic agents into a single nanoformulation. Significant emphasis is laid on the advancements toward innovative integrations, such as CRISPR/Cas9 with neuroprotective agents and stem cells, all effectively synergized with nanocarriers. EXPERT OPINION: By using drug combinations, we can leverage their combined effects to enhance treatment efficacy and mitigate side effects through lower dosages. This article is meant to give nanocarrier-mediated co-delivery of drugs and the strategic incorporation of CRISPR/Cas9, either as an independent intervention or synergized with a neuroprotective agent.


Assuntos
Antiparkinsonianos , Portadores de Fármacos , Nanopartículas , Nanotecnologia , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Portadores de Fármacos/química , Animais , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacocinética , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos , Medicina de Precisão , Quimioterapia Combinada , Sistemas CRISPR-Cas , Combinação de Medicamentos , Terapia Combinada , Desenvolvimento de Medicamentos , Desenho de Fármacos
17.
Neurochem Int ; 171: 105637, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923298

RESUMO

Prohibitin (PHB) is a mitochondrial inner membrane protein with neuroprotective, antioxidant, and apoptosis-reducing effects. This study aimed to explore the role of PHB in pathological symptoms, behavioral deficits, and cognitive impairment in a collagenase-IV-induced intracerebral hemorrhage (ICH) murine model. In this study, mice that received collagenase IV injection were pretreated with PHB or saline 21 days prior to modeling. The role of PHB in memory and learning ability was monitored using the Morris water maze, Y-maze, and rotarod, social, startle, and nest-building tests. The effect of PHB on depression-like symptoms was examined using the forced swimming, tail suspension, and sucrose preference tests. Subsequently, mouse samples were analyzed using immunohistochemistry, western blotting, Perls staining, Nissl staining, and gene sequencing. Results showed that collagenase IV significantly induced behavioral deficits, brain edema, cognitive impairment, and depressive symptoms. PHB overexpression effectively alleviated memory, learning, and motor deficits in mice with ICH. PHB markedly inhibited the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling-positive cells and protein levels of ionized calcium-binding adapter molecule 1, glial fibrillary acidic protein, and interleukin-1ß in the perihematomal region of ICH mice. PHB overexpression also remarkably promoted production of neurologin1 (NLGL1), and upregulated levels of Ca2+-calmodulin-dependent kinase II (CaMKII) and collapsin response mediator protein-1 (CRMP1) proteins. In conclusion, PHB overexpression can effectively alleviate the neurological deficits and neurodegeneration around the hematoma region. This may play a protective role by upregulating the expression of NLGL1 and promoting expression of CaMKII and CRMP1.


Assuntos
Proibitinas , Animais , Camundongos , Ratos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hemorragia Cerebral/metabolismo , Colagenases , Proteínas Mitocondriais/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Proibitinas/administração & dosagem , Ratos Sprague-Dawley , Transdução de Sinais
19.
Epilepsy Behav ; 141: 109066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36609129

RESUMO

We present the rationale for testing ketamine as an add-on therapy for treating benzodiazepine refractory (established) status epilepticus. In animal studies, ketamine terminates benzodiazepine refractory status epilepticus by interfering with the pathophysiological mechanisms and is a neuroprotectant. Ketamine does not suppress respiration when used for sedation and anesthesia. A Series of reports suggest that ketamine can help terminate refractory and super refractory status epilepticus. We propose to use 1 or 3 mg/Kg ketamine intravenously based on animal-to-human conversion and pharmacokinetic studies. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.


Assuntos
Ketamina , Fármacos Neuroprotetores , Estado Epiléptico , Ketamina/administração & dosagem , Ketamina/uso terapêutico , Anticonvulsivantes , Benzodiazepinas/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Humanos
20.
N Engl J Med ; 387(2): 148-159, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35830641

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy is an important cause of death as well as long-term disability in survivors. Erythropoietin has been hypothesized to have neuroprotective effects in infants with hypoxic-ischemic encephalopathy, but its effects on neurodevelopmental outcomes when given in conjunction with therapeutic hypothermia are unknown. METHODS: In a multicenter, double-blind, randomized, placebo-controlled trial, we assigned 501 infants born at 36 weeks or more of gestation with moderate or severe hypoxic-ischemic encephalopathy to receive erythropoietin or placebo, in conjunction with standard therapeutic hypothermia. Erythropoietin (1000 U per kilogram of body weight) or saline placebo was administered intravenously within 26 hours after birth, as well as at 2, 3, 4, and 7 days of age. The primary outcome was death or neurodevelopmental impairment at 22 to 36 months of age. Neurodevelopmental impairment was defined as cerebral palsy, a Gross Motor Function Classification System level of at least 1 (on a scale of 0 [normal] to 5 [most impaired]), or a cognitive score of less than 90 (which corresponds to 0.67 SD below the mean, with higher scores indicating better performance) on the Bayley Scales of Infant and Toddler Development, third edition. RESULTS: Of 500 infants in the modified intention-to-treat analysis, 257 received erythropoietin and 243 received placebo. The incidence of death or neurodevelopmental impairment was 52.5% in the erythropoietin group and 49.5% in the placebo group (relative risk, 1.03; 95% confidence interval [CI], 0.86 to 1.24; P = 0.74). The mean number of serious adverse events per child was higher in the erythropoietin group than in the placebo group (0.86 vs. 0.67; relative risk, 1.26; 95% CI, 1.01 to 1.57). CONCLUSIONS: The administration of erythropoietin to newborns undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy did not result in a lower risk of death or neurodevelopmental impairment than placebo and was associated with a higher rate of serious adverse events. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT02811263.).


Assuntos
Eritropoetina , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Administração Intravenosa , Paralisia Cerebral/etiologia , Método Duplo-Cego , Eritropoetina/administração & dosagem , Eritropoetina/efeitos adversos , Eritropoetina/uso terapêutico , Humanos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/terapia , Lactente , Recém-Nascido , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA