Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.284
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731421

RESUMO

The phenyl(piperidin-4-yl)methanone fragment (here referred to as the benzoylpiperidine fragment) is a privileged structure in the development of new drugs considering its presence in many bioactive small molecules with both therapeutic (such as anti-cancer, anti-psychotic, anti-thrombotic, anti-arrhythmic, anti-tubercular, anti-parasitic, anti-diabetic, and neuroprotective agents) and diagnostic properties. The benzoylpiperidine fragment is metabolically stable, and it is also considered a potential bioisostere of the piperazine ring, thus making it a feasible and reliable chemical frame to be exploited in drug design. Herein, we discuss the main therapeutic and diagnostic agents presenting the benzoylpiperidine motif in their structure, covering articles reported in the literature since 2000. A specific section is focused on the synthetic strategies adopted to obtain this versatile chemical portion.


Assuntos
Química Farmacêutica , Piperidinas , Piperidinas/química , Química Farmacêutica/métodos , Humanos , Desenho de Fármacos , Estrutura Molecular , Antineoplásicos/química , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia
2.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731472

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid beta (Aß) plaques in the brain. Aß1-42 is the main component of Aß plaque, which is toxic to neuronal cells. Si nanowires (Si NWs) have the advantages of small particle size, high specific surface area, and good biocompatibility, and have potential application prospects in suppressing Aß aggregation. In this study, we employed the vapor-liquid-solid (VLS) growth mechanism to grow Si NWs using Au nanoparticles as catalysts in a plasma-enhanced chemical vapor deposition (PECVD) system. Subsequently, these Si NWs were transferred to a phosphoric acid buffer solution (PBS). We found that Si NWs significantly reduced cell death in PC12 cells (rat adrenal pheochromocytoma cells) induced by Aß1-42 oligomers via double staining with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescein diacetate/propyl iodide (FDA/PI). Most importantly, pre-incubated Si NWs largely prevented Aß1-42 oligomer-induced PC12 cell death, suggesting that Si NWs exerts an anti-Aß neuroprotective effect by inhibiting Aß aggregation. The analysis of Fourier Transform Infrared (FTIR) results demonstrates that Si NWs reduce the toxicity of fibrils and oligomers by intervening in the formation of ß-sheet structures, thereby protecting the viability of nerve cells. Our findings suggest that Si NWs may be a potential therapeutic agent for AD by protecting neuronal cells from the toxicity of Aß1-42.


Assuntos
Peptídeos beta-Amiloides , Nanofios , Silício , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Nanofios/química , Animais , Células PC12 , Ratos , Silício/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Fragmentos de Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo
3.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731618

RESUMO

Neurodegeneration is a gradual decay process leading to the depletion of neurons in both the central and peripheral nervous systems, ultimately resulting in cognitive dysfunctions and the deterioration of brain functions, alongside a decline in motor skills and behavioral capabilities. Neurodegenerative disorders (NDs) impose a substantial socio-economic strain on society, aggravated by the advancing age of the world population and the absence of effective remedies, predicting a negative future. In this context, the urgency of discovering viable therapies is critical and, despite significant efforts by medicinal chemists in developing potential drug candidates and exploring various small molecules as therapeutics, regrettably, a truly effective treatment is yet to be found. Nitrogen heterocyclic compounds, and particularly those containing the indole nucleus, which has emerged as privileged scaffold, have attracted particular attention for a variety of pharmacological applications. This review analyzes the rational design strategy adopted by different research groups for the development of anti-neurodegenerative indole-based compounds which have the potential to modulate various molecular targets involved in NDs, with reference to the most recent advances between 2018 and 2023.


Assuntos
Indóis , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Indóis/química , Indóis/farmacologia , Indóis/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química
4.
Eur J Med Chem ; 271: 116453, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701713

RESUMO

Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.


Assuntos
Ferroptose , Hipóxia-Isquemia Encefálica , Ferroptose/efeitos dos fármacos , Humanos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/metabolismo , Animais , Recém-Nascido , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/síntese química
5.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701714

RESUMO

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Inibidores da Colinesterase , Desenho de Fármacos , Quinazolinas , Quinazolinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/química , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ratos , Relação Estrutura-Atividade , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Dose-Resposta a Droga , Butirilcolinesterase/metabolismo , Masculino
6.
Food Res Int ; 187: 114334, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763634

RESUMO

Red-fleshed apple cultivars with an enhanced content of polyphenolic compounds have attracted increasing interest due to their promising health benefits. Here, we have analysed the polyphenolic content of young, red-fleshed apples (RFA) and optimised extraction conditions of phenolics by utilising natural deep eutectic solvents (NDES). We also compare the antioxidant, neuroprotective and antimicrobial activities of NDES- and methanol-extracted phenolics from young RFA. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was used for phenolics identification and quantification. Besides young RFA, ripe red-fleshed, young and ripe white-fleshed apples were analysed, revealing that young RFA possess the highest phenolic content (2078.4 ± 4.0 mg gallic acid equivalent/100 g), and that ripe white-fleshed apples contain the least amount of phenolics (545.0 ± 32.0 mg gallic acid equivalent/100 g). The NDES choline chloride-glycerol containing 40 % w/w H2O gave similar yields at 40 °C as methanol. In addition, the polyphenolics profile, and bioactivities of the NDES extract from young RFA were comparable that of methanol extracts. Altogether, our data show that NDES extracts of young RFA are a promising source of bioactive polyphenolics with potential applications in diverse sectors, e.g., for functional food production, smart material engineering and natural therapies.


Assuntos
Antioxidantes , Solventes Eutéticos Profundos , Frutas , Malus , Polifenóis , Malus/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Antioxidantes/análise , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Frutas/química , Solventes Eutéticos Profundos/química , Extratos Vegetais/química , Colina/química , Glicerol/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/química , Espectrometria de Massas
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732097

RESUMO

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Assuntos
Fármacos Neuroprotetores , Azeite de Oliva , Fenóis , Azeite de Oliva/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Espanha , Ciclo-Oxigenase 2/metabolismo , Acetilcolinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Flavonoides/análise , Flavonoides/farmacologia , Flavonoides/química
8.
Org Biomol Chem ; 22(20): 4179-4189, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38716654

RESUMO

Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 µM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.


Assuntos
Aspergillus , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Policetídeos , alfa-Glucosidases , Aspergillus/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Células PC12 , Animais , Ratos , alfa-Glucosidases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular
9.
J Nanobiotechnology ; 22(1): 251, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750597

RESUMO

BACKGROUND: Hypothermia is a promising therapy for traumatic brain injury (TBI) in the clinic. However, the neuroprotective outcomes of hypothermia-treated TBI patients in clinical studies are inconsistent due to several severe side effects. Here, an injectable refrigerated hydrogel was designed to deliver 3-iodothyronamine (T1AM) to achieve a longer period of local hypothermia for TBI treatment. Hydrogel has four advantages: (1) It can be injected into injured sites after TBI, where it forms a hydrogel and avoids the side effects of whole-body cooling. (2) Hydrogels can biodegrade and be used for controlled drug release. (3) Released T1AM can induce hypothermia. (4) This hydrogel has increased medical value given its simple operation and ability to achieve timely treatment. METHODS: Pol/T hydrogels were prepared by a low-temperature mixing method and characterized. The effect of the Pol/T hydrogel on traumatic brain injury in mice was studied. The degradation of the hydrogel at the body level was observed with a small animal imager. Brain temperature and body temperature were measured by brain thermometer and body thermometer, respectively. The apoptosis of peripheral nerve cells was detected by immunohistochemical staining. The protective effect of the hydrogels on the blood-brain barrier (BBB) after TBI was evaluated by the Evans blue penetration test. The protective effect of hydrogel on brain edema after injury in mice was detected by Magnetic resonance (MR) in small animals. The enzyme linked immunosorbent assay (ELISA) method was used to measure the levels of inflammatory factors. The effects of behavioral tests on the learning ability and exercise ability of mice after injury were evaluated. RESULTS: This hydrogel was able to cool the brain to hypothermia for 12 h while maintaining body temperature within the normal range after TBI in mice. More importantly, hypothermia induced by this hydrogel leads to the maintenance of BBB integrity, the prevention of cell death, the reduction of the inflammatory response and brain edema, and the promotion of functional recovery after TBI in mice. This cooling method could be developed as a new approach for hypothermia treatment in TBI patients. CONCLUSION: Our study showed that injectable and biodegradable frozen Pol/T hydrogels to induce local hypothermia in TBI mice can be used for the treatment of traumatic brain injury.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Hidrogéis , Hipotermia Induzida , Animais , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Camundongos , Hidrogéis/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Hipotermia Induzida/métodos , Neuroproteção/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Temperatura Corporal , Camundongos Endogâmicos C57BL
10.
Food Funct ; 15(10): 5566-5578, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38712886

RESUMO

Free radical damage and oxidative stress are thought to play a crucial role in the development of neurodegenerative diseases. Walnut peptides, especially walnut oligopeptides, have been shown to protect nerve cells from oxidative stress and inflammatory damage, as well as improve memory function. In this study, walnut peptides were obtained from walnut meal through enzymatic hydrolysis, ultrafiltration, and gel filtration chromatography. A novel oligopeptide called AQ was successfully isolated and its chemical structure was identified as AASCDQ using ESI-MS/MS. AQ demonstrated remarkable scavenging activity against O2- free radicals (81.00%), DPPH free radicals (79.40%), and ABTS free radicals (67.09%) at a concentration of 1 mg mL-1. Furthermore, AQ exhibited strong neuroprotective effects against hydrogen peroxide-induced damage in SH-SY5Y cells, reducing cell injury and apoptosis. AQ also effectively inhibited the secretion of pro-inflammatory factors NO (IC50 = 46.03 ± 0.32 µM) and suppressed the expression of IL-6 and TNF-α in RAW264.7 cells stimulated by LPS. In vivo experiments demonstrated that AQ promoted angiogenesis in the quail chick chorioallantoic membrane assay and reduced ROS accumulation in Caenorhabditis elegans, thereby extending its lifespan. The anti-inflammatory mechanism of AQ was further confirmed by western blotting. In summary, the novel oligopeptide AQ possesses potential neuroprotective effects, including antioxidant, anti-inflammatory, angiogenic, and anti-aging properties, making it a promising candidate for the development of functional foods and pharmaceutical products.


Assuntos
Caenorhabditis elegans , Juglans , Fármacos Neuroprotetores , Oligopeptídeos , Animais , Juglans/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Caenorhabditis elegans/efeitos dos fármacos , Células RAW 264.7 , Humanos , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Espécies Reativas de Oxigênio/metabolismo , Nozes/química , Antioxidantes/farmacologia , Antioxidantes/química
11.
Drug Des Devel Ther ; 18: 1399-1414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707612

RESUMO

Hydrogen, which is a novel biomedical molecule, is currently the subject of extensive research involving animal experiments and in vitro cell experiments, and it is gradually being applied in clinical settings. Hydrogen has been proven to possess anti-inflammatory, selective antioxidant, and antiapoptotic effects, thus exhibiting considerable protective effects in various diseases. In recent years, several studies have provided preliminary evidence for the protective effects of hydrogen on spinal cord injury (SCI). This paper provides a comprehensive review of the potential molecular biology mechanisms of hydrogen therapy and its application in treating SCI, with an aim to better explore the medical value of hydrogen and provide new avenues for the adjuvant treatment of SCI.


Assuntos
Hidrogênio , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Hidrogênio/farmacologia , Hidrogênio/química , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Apoptose/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química
12.
Chem Biol Drug Des ; 103(5): e14556, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772881

RESUMO

Histone deacetylase 6 (HDAC6), as the key regulatory enzyme, plays an important role in the development of the nervous system. More and more studies indicate that HDAC6 has become a promising therapeutic target for CNS diseases. Herein we designed and synthesized a series of novel HDAC6 inhibitors with benzothiadiazinyl systems as cap groups and evaluated their activity in vitro and in vivo. Among them, compound 3 exhibited superior selective inhibitory activity against HDAC6 (IC50 = 5.1 nM, about 30-fold selectivity over HDAC1). The results of docking showed that compound 3 can interact well with the key amino acid residues of HDAC6. Compound 3 showed lower cytotoxicity (20 µM to SH-SY5Y cells, inhibition rate = 25.75%) and better neuroprotective activity against L-glutamate-induced SH-SY5Y cell injury model in vitro. Meanwhile, compound 3 exhibited weak cardiotoxicity (10 µM hERG inhibition rate = 17.35%) and possess good druggability properties. Especially, compound 3 could significantly reduce cerebral infarction from 49.87% to 32.18%, and similar with butylphthalide in MCAO model, indicating potential clinical application prospects for alleviating ischemic stroke-induced brain infarction.


Assuntos
Desenho de Fármacos , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Animais , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Masculino , Camundongos , Sítios de Ligação , Ratos
13.
J Ethnopharmacol ; 330: 118223, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38642624

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Leonurus japonicus Houtt. (Labiatae), commonly known as Chinese motherwort, is a herbaceous flowering plant that is native to Asia. It is widely acknowledged in traditional medicine for its diuretic, hypoglycemic, antiepileptic properties and neuroprotection. Currently, Leonurus japonicus (Leo) is included in the Pharmacopoeia of the People's Republic of China. Traditional Chinese Medicine (TCM) recognizes Leo for its myriad pharmacological attributes, but its efficacy against ICH-induced neuronal apoptosis is unclear. AIMS OF THE STUDY: This study aimed to identify the potential targets and regulatory mechanisms of Leo in alleviating neuronal apoptosis after ICH. MATERIALS AND METHODS: The study employed network pharmacology, UPLC-Q-TOF-MS technique, molecular docking, pharmacodynamic studies, western blotting, and immunofluorescence techniques to explore its potential mechanisms. RESULTS: Leo was found to assist hematoma absorption, thus improving the neurological outlook in an ICH mouse model. Importantly, molecular docking highlighted JAK as Leo's potential therapeutic target in ICH scenarios. Further experimental evidence demonstrated that Leo adjusts JAK1 and STAT1 phosphorylation, curbing Bax while augmenting Bcl-2 expression. CONCLUSION: Leo showcases potential in mitigating neuronal apoptosis post-ICH, predominantly via the JAK/STAT mechanism.


Assuntos
Apoptose , Hemorragia Cerebral , Leonurus , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neurônios , Animais , Apoptose/efeitos dos fármacos , Leonurus/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Masculino , Hemorragia Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo , Modelos Animais de Doenças
14.
Int J Biol Macromol ; 267(Pt 2): 131423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583832

RESUMO

This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.


Assuntos
Ácido Glicirrízico , Agregados Proteicos , Sinucleinopatias , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/química , Sobrevivência Celular/efeitos dos fármacos , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia
15.
Bioorg Chem ; 147: 107339, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643566

RESUMO

Stroke poses a serious risk to the physical and mental health of patients. Endogenous compounds are widely used to treat ischemic stroke. Lipoic acid, a naturally occurring (R)-5-(1,2-dithiolan-3-yl)pentanoic acid, has therapeutic potential for the treatment of ischemic stroke. However, the direct application of lipoic acid is limited by its relatively low efficacy and instability. Therefore, there is a need to modify the structure of lipoic acid to improve its pharmaceutical capabilities. Currently, 37 lipoic acid derivatives have been synthesized, and compound AA-9 demonstrated optimal therapeutic potential in an in vitro model of induced oxidative damage using tert-butyl hydroperoxide (t-BHP). In addition, in vitro experiments have shown that compound AA-9 has an excellent safety profile. Subsequently, the therapeutic effect of AA-9 was significant in the rat MCAO ischemic stroke model, which may be attributed to the antioxidant and anti-inflammatory effects of compound AA-9 by activating PGC-1α and inhibiting NLRP3. Notably, compound AA-9 exhibited higher stability and better bioavailability properties than ALA in plasma stability and pharmacokinetic properties. In conclusion, AA-9 may be a promising neuroprotective agent for the treatment of ischemic stroke and warrants further investigation.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Ácido Tióctico , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Ácido Tióctico/síntese química , Animais , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Estresse Oxidativo/efeitos dos fármacos , Ratos , AVC Isquêmico/tratamento farmacológico , Estrutura Molecular , Relação Estrutura-Atividade , Masculino , Descoberta de Drogas , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Humanos
16.
Bioorg Chem ; 147: 107399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678778

RESUMO

Two pairs of enantiomers (1a-2b), namely (±)-alterpyrone F and (±)-alterpyrone G, along with a rare benzothiazole meroterpenoid granulathiazole A (3, GA), and two undescribed compounds called respectively granulahydeoate (4) and granulaone (5), were obtained from the co-cultivation of Alternaria brassicicola and Penicillium sp. HUBU0120. Exhaustive analyses of NMR, single crystal XRD, Mo2(OAc)4-induced circular dichroism data, and a modified Mosher's method distinguished the absolute configurations of isolates. Bioactive evaluations exhibited that GA possessed promising anti-PD activity in both in vitro and in vivo PD models viz. 6-OHDA-induced SH-SY5Y cells and 6-OHDA-induced zebrafish, respectively. Moreover, our research demonstrated that ferroptosis activated by 6-OHDA was mitigated in PD models after treated with GA. Extensive molecular mechanism studies in PD-modelled cells manifested that GA attenuated the decreased expressions of SLC7A11, GPX4, and FSP-1, and the increased level of ACSL4 via activating Nrf2/HO-1 pathway as well as ameliorated the accumulation of α-synuclein.


Assuntos
Ferroptose , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Oxidopamina , Ferroptose/efeitos dos fármacos , Oxidopamina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Animais , Estrutura Molecular , Heme Oxigenase-1/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Peixe-Zebra , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química
17.
Eur J Med Chem ; 271: 116386, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38614063

RESUMO

Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aß oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.


Assuntos
Doenças Neurodegenerativas , Inibidores de Fosfodiesterase , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Estrutura Molecular
18.
Chem Biol Interact ; 395: 111026, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679115

RESUMO

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Nitrocompostos , Piperazinas , Propionatos , Animais , Propionatos/toxicidade , Nitrocompostos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Piperazinas/farmacologia , Piperazinas/química , Humanos , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Masculino , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos
19.
Bioorg Chem ; 147: 107373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653149

RESUMO

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aß) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from ß,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aß aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aß aggregation. BD23, selected for its better solubility (0.045 ± 0.0012 mg/ml), was further subjected to in vitro Parallel Artificial Membrane Permeability Assay to determine the Blood-Brain-Barrier permeability and emerged as BBB permeable with permeability rate (Pe) of 10.66 ± 8.11 × 10-6 cm/s. In addition to its Aß inhibitory properties, BD23 exhibited significant inhibition of heparin-induced tau aggregation and demonstrated non-toxicity in SHSY5Y cell lines. Subsequent in vivo assays were conducted, administering compound BD23 to an Aß induced mouse model of AD at various doses (1, 2, & 5 mg/kg). The results revealed a noteworthy enhancement in cognitive functions, particularly when BD23 was administered at a dosage of 5 mg/kg, comparable to the effects observed with the standard dose of Donepezil (DNP). In silico investigations, including molecular docking, molecular dynamics simulations, and Density Functional Theory calculations provided insights into BD23's interactions with the targets and electronic properties. These analyses contribute to the understanding of the therapeutic potential of the lead compounds BD23 which further pave the way for further exploration of its therapeutic potential in the context of AD.


Assuntos
Doença de Alzheimer , Amidas , Peptídeos beta-Amiloides , Relação Dose-Resposta a Droga , Agregados Proteicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Masculino
20.
Bioorg Chem ; 147: 107377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653150

RESUMO

The first systematic acylated diversification of naturally scarce premyrsinane diterpenes, together with their biosynthetic precursors lathyrane diterpene were carried out. Two new series of premyrsinane derivates (1a-32a) and lathyrane derivates (1-32) were synthesized from the naturally abundant lathyrane diterpene Euphorbia factor L3 through a bioinspired approach. The cholinesterase inhibitory and neuroprotective activities of these diterpenes were investigated to explore potential anti-Alzheimer's disease (AD) bioactive lead compounds. In general, the lathyrane diterpenes showed the better acetylcholinesterase (AChE) inhibitory activity than that of premyrsinanes. The lathyrane derivative 17 bearing a 3-dimethylaminobenzoyl moiety showed the best AChE inhibition effect with the IC50 value of 7.1 µM. Molecular docking demonstrated that 17 could bond with AChE well (-8 kal/mol). On the other hand, premyrsinanes showed a better neuroprotection profile against H2O2-induced injury in SH-SY5Y cells. Among them, the premyrsinane diterpene 16a had significant neuroprotective effect with the cell viability rate of 113.5 % at 12.5 µM (the model group with 51.2 %). The immunofluorescence, western blot and reactive oxygen species (ROS) analysis were conducted to demonstrate the mechanism of 16a. Furthermore, a preliminary SAR analysis of the two categories of diterpenes was performed to provide the insights for anti-AD drug development.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Diterpenos , Euphorbia , Fármacos Neuroprotetores , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/síntese química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Euphorbia/química , Humanos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA