Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Sci Rep ; 12(1): 1413, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082349

RESUMO

This study quantified the distribution of nerves and adjacent anatomies surrounding human common hepatic artery (CHA) as guidance for catheter based denervation. CHA collected from cadaveric human donors (n = 20) were histologically evaluated and periarterial dimensions and distributions of nerves, lymph nodes, pancreas and blood vessels quantified by digital morphometry. Nerve abundance decreased significantly with distance from the aortic ostium (P < 0.0001) and was higher in the Superior/Inferior compared to the Anterior/Posterior quadrants (P = 0.014). In each locational group, nerves were absent from the artery wall, and starting 0.5-1.0 mm from the lumen exhibited a first order dependence on radial distance, fully defined by the median distance. Median subject-averaged nerve distance to the lumen was 2.75 mm, ranging from 2.1-3.1 mm in different arterial segments and quadrants and 2.0-3.5 mm in individuals. Inter-individual variance was high, with certain individuals exhibiting 50th and 75th nerve distances of, respectively, 3.5 and 6.5 mm The pancreas rarely approached within 4 mm of the lumen proximally and 2.5 mm more distally. The data indicate that the CHA is a rich and accessible target for sympathetic denervation regardless of sex and diabetes, with efficacy and safety most optimally balanced proximally.


Assuntos
Artéria Hepática/inervação , Fígado/inervação , Linfonodos/inervação , Pâncreas/inervação , Simpatectomia/métodos , Idoso , Autopsia , Vasos Sanguíneos , Ablação por Cateter/métodos , Feminino , Artéria Hepática/anatomia & histologia , Humanos , Fígado/anatomia & histologia , Fígado/irrigação sanguínea , Circulação Hepática/fisiologia , Linfonodos/anatomia & histologia , Linfonodos/irrigação sanguínea , Masculino , Pâncreas/anatomia & histologia , Pâncreas/irrigação sanguínea , Sistema Nervoso Simpático
2.
Endocrinology ; 162(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388249

RESUMO

The brain influences liver metabolism through many neuroendocrine and autonomic mechanisms that have evolved to protect the organism against starvation and hypoglycemia. Unfortunately, this effective way of preventing death has become dysregulated in modern obesogenic environments, although the pathophysiological mechanisms behind metabolic dyshomeostasis are still unclear. In this Mini-Review, we provide our thoughts regarding obesity and type 2 diabetes as diseases of the autonomic nervous system. We discuss the pathophysiological mechanisms that alter the autonomic brain-liver communication in these diseases, and how they could represent important targets to prevent or treat metabolic dysfunctions. We discuss how sympathetic hyperactivity to the liver may represent an early event in the progression of metabolic diseases and could progressively lead to hepatic neuropathy. We hope that this discussion will inspire and help to frame a model based on better understanding of the chronology of autonomic dysfunctions in the liver, enabling the application of the right strategy at the right time.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Encéfalo/fisiopatologia , Fígado/fisiopatologia , Doenças Metabólicas , Animais , Sistema Nervoso Autônomo/patologia , Encéfalo/metabolismo , Comunicação Celular , Humanos , Fígado/inervação , Fígado/metabolismo , Doenças Metabólicas/fisiopatologia , Doenças Metabólicas/psicologia , Sistemas Neurossecretores/fisiopatologia
3.
Radiology ; 301(1): 223-228, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34254852

RESUMO

Background Image-guided procedures for treatment of liver diseases can be painful and require heavy sedation of the patient. Local-regional nerve blocks improve pain control and reduce oversedation risks, but there are no documented liver-specific nerve blocks. Purpose To develop a safe and technically simple liver-specific nerve block. Materials and Methods Between March 2017 and October 2019, three cadavers were dissected to evaluate the hepatic hilar anatomy. The hepatic hilar nerves were targeted with transhepatic placement of a needle adjacent to the main portal vein, under US guidance, and evaluated with use of an injection of methylene blue. A hepatic nerve block, using similar technique and 0.25% bupivacaine, was offered to patients undergoing liver tumoral ablation. In a prospective pilot study, 12 patients who received the nerve block were compared with a control group regarding complications, safety, pain scores, and intraoperative opioid requirement. Student t tests were used to compare the groups' characteristics, and Mann-Whitney U tests were used for the measured outcomes. Results Cadaver results confirmed that the hepatic nerves coursing in the hepatic hilum can be targeted with US for injection of anesthetic agents, with adequate spread of injected methylene blue around the nerves in the hepatic hilar perivascular space. The 12 participants (mean age ± standard deviation, 66 years ± 13; eight men) who received a hepatic hilar block before liver thermal ablations demonstrated reduced pain compared with a control group of 12 participants (mean age, 63 years ± 15; eight men) who received only intravenous sedation. Participants who received the nerve block had a lower mean visual analog scale score for pain than the control group (3.9 ± 2.4 vs 7.0 ± 2.8, respectively; P = .01) and decreased need for intraprocedural fentanyl (mean dose, 152 µg ± 78.0 vs 235.4 µg ± 58.2, respectively; P = .01). No major complications occurred in the hepatic hilar nerve block group. Conclusion A dedicated hepatic hilar nerve block with 0.25% bupivacaine can be safely performed to provide anesthesia during liver tumoral ablation. © RSNA, 2021.


Assuntos
Técnicas de Ablação/métodos , Neoplasias Hepáticas/cirurgia , Bloqueio Nervoso/métodos , Manejo da Dor/métodos , Ultrassonografia de Intervenção/métodos , Idoso , Cadáver , Feminino , Humanos , Fígado/anatomia & histologia , Fígado/inervação , Fígado/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
4.
Hepatology ; 74(6): 3513-3522, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34256416

RESUMO

The liver is innervated by autonomic and sensory fibers of the sympathetic and parasympathetic nervous systems that regulate liver function, regeneration, and disease. Although the importance of the hepatic nervous system in maintaining and restoring liver homeostasis is increasingly appreciated, much remains unknown about the specific mechanisms by which hepatic nerves both influence and are influenced by liver diseases. While recent work has begun to illuminate the developmental mechanisms underlying recruitment of nerves to the liver, evolutionary differences contributing to species-specific patterns of hepatic innervation remain elusive. In this review, we summarize current knowledge on the development of the hepatic nervous system and its role in liver regeneration and disease. We also highlight areas in which further investigation would greatly enhance our understanding of the evolution and function of liver innervation.


Assuntos
Hepatopatias/patologia , Regeneração Hepática , Fígado/inervação , Animais , Humanos , Fígado/crescimento & desenvolvimento , Fígado/patologia , Regeneração Hepática/fisiologia , Camundongos
5.
Cell Rep ; 35(13): 109301, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34192532

RESUMO

Hepatic lipid accumulation is a hallmark of type II diabetes (T2D) associated with hyperinsulinemia, insulin resistance, and hyperphagia. Hepatic synthesis of GABA, catalyzed by GABA-transaminase (GABA-T), is upregulated in obese mice. To assess the role of hepatic GABA production in obesity-induced metabolic and energy dysregulation, we treated mice with two pharmacologic GABA-T inhibitors and knocked down hepatic GABA-T expression using an antisense oligonucleotide. Hepatic GABA-T inhibition and knockdown decreased basal hyperinsulinemia and hyperglycemia and improved glucose intolerance. GABA-T knockdown improved insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps in obese mice. Hepatic GABA-T knockdown also decreased food intake and induced weight loss without altering energy expenditure in obese mice. Data from people with obesity support the notion that hepatic GABA production and transport are associated with serum insulin, homeostatic model assessment for insulin resistance (HOMA-IR), T2D, and BMI. These results support a key role for hepatocyte GABA production in the dysfunctional glucoregulation and feeding behavior associated with obesity.


Assuntos
Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Fígado/metabolismo , Fígado/fisiopatologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Animais , Biomarcadores/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Comportamento Alimentar , Glucose/metabolismo , Técnica Clamp de Glucose , Homeostase , Humanos , Hiperinsulinismo/complicações , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Hiperfagia/complicações , Resistência à Insulina , Fígado/inervação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/complicações , Vagotomia , Nervo Vago/fisiopatologia
6.
J Neuroendocrinol ; 33(5): e12977, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33942389

RESUMO

A neural circuit between the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) constitutes part of an important parasympathetic autonomic pathway that controls hepatic glucose production. Intracerebroventricular injection of insulin activates oxytocinergic neurones in the PVN and elicits the release of oxytocin into the circulation, which plays an important role in the metabolism of glucose. Moreover, the central action of insulin can reduce the concentration of glucose in blood taken from the hepatic vein of Wistar rats via activation of vagal efferent nerves to the liver. This mechanism is impaired in sedentary spontaneously hypertensive rats (SHR). Because aerobic exercise increases vagal tone, partly mediated by increasing the oxytocinergic connections between the PVN and DMNV, we hypothesised that oxytocin (OT) might alter the excitability of liver-projecting DMNV neurones. Thus, we investigated the effects of OT on electrical properties of the liver-projecting DMNV neurones from Wistar, SHR subjected to 4 weeks of exercise training, as well sedentary controls, using whole cell patch-clamping. The results show that OT increased the resting membrane potential of DMNV neurones in Wistar rats, as well as the firing frequency of these cells, but not in sedentary SHR. However, in SHR subjected to 4 weeks of exercise training, the effects of OT on liver-projecting DMNV neurones of were similar to those seen in Wistar rats. These findings show that OT elicits similar changes in the electrophysiological properties of liver-projecting DMNV neurones of Wistar and exercise-trained but not sedentary SHR. These results indicate that exercise training can restore the sensitivity of liver-projecting DMNV neurones of exercise-trained SHR to OT.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Fígado/inervação , Neurônios/efeitos dos fármacos , Ocitocina/farmacologia , Condicionamento Físico Animal , Animais , Glicemia , Tronco Encefálico/metabolismo , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Neurônios/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
7.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921881

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common liver disease affecting a quarter of the global population and is often associated with adverse health outcomes. The increasing prevalence of MAFLD occurs in parallel to that of metabolic syndrome (MetS), which in fact plays a major role in driving the perturbations of cardiometabolic homeostasis. However, the mechanisms underpinning the pathogenesis of MAFLD are incompletely understood. Compelling evidence from animal and human studies suggest that heightened activation of the sympathetic nervous system is a key contributor to the development of MAFLD. Indeed, common treatment strategies for metabolic diseases such as diet and exercise to induce weight loss have been shown to exert their beneficial effects at least in part through the associated sympathetic inhibition. Furthermore, pharmacological and device-based approaches to reduce sympathetic activation have been demonstrated to improve the metabolic alterations frequently present in patients with obesity, MetSand diabetes. Currently available evidence, while still limited, suggests that sympathetic activation is of specific relevance in the pathogenesis of MAFLD and consequentially may offer an attractive therapeutic target to attenuate the adverse outcomes associated with MAFLD.


Assuntos
Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Fígado/inervação , Sistema Nervoso Simpático/metabolismo
8.
Am J Physiol Endocrinol Metab ; 320(6): E1007-E1019, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900850

RESUMO

Intraportal islet transplantation has been clinically applied for treatment of unstable type 1 diabetes. However, in the liver, systematic assessment of the dispersed islet grafts and the graft-hepatic integration remains difficult, even in animal models. This is due to the lack of global and in-depth analyses of the transplanted islets and their microenvironment. Here, we apply three-dimensional (3-D) mouse liver histology to investigate the islet graft microstructure, vasculature, and innervation. Streptozotocin-induced diabetic mice were used in syngeneic intraportal islet transplantation to achieve euglycemia. Optically cleared livers were prepared to enable 3-D morphological and quantitative analyses of the engrafted islets. 3-D image data reveal the clot- and plaque-like islet grafts in the liver: the former are derived from islet emboli and associated with ischemia, whereas the latter (minority) resemble the plaques on the walls of portal vessels (e.g., at the bifurcation) with mild, if any, perigraft tissue damage. Three weeks after transplantation, both types of grafts are revascularized, yet significantly more lymphatics are associated with the plaque- than clot-like grafts. Regarding the islet reinnervation, both types of grafts connect to the periportal nerve plexus and develop peri- and intragraft innervation. Specifically, the sympathetic axons and varicosities contact the α-cells, highlighting the graft-host neural integration. We present the heterogeneity of the intraportally transplanted islets and the graft-host neurovascular integration in mice. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue and cellular analyses of human islet grafts in the liver.NEW & NOTEWORTHY Modern 3-D histology identifies the clot- and plaque-like islet grafts in the mouse liver, which otherwise cannot be distinguished with the standard microtome-based histology. The two types of grafts are similar in blood microvessel density and sympathetic reinnervation. Their differences, however, are their locations, severity of associated liver injury, and access to lymphatic vessels. Our work provides the technical and morphological foundation for future high-definitional 3-D tissue/cellular analyses of human islet grafts in the liver.


Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Fígado/patologia , Animais , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/patologia , Sobrevivência de Enxerto/fisiologia , Técnicas Histológicas , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas/métodos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Fígado/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta , Regeneração/fisiologia
9.
Gastric Cancer ; 24(1): 232-244, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32705445

RESUMO

BACKGROUND: Injury to the vagus nerve has been proposed to be associated with occurrence of gallstones after gastrectomy. We investigated the effect of preservation of hepatic branch of the vagus nerve on prevention of gallstones during laparoscopic distal (LDG) and pylorus-preserving gastrectomy (LPPG). METHODS: Preservation of the vagus nerve was reviewed of cT1N0M0 gastric cancer patients underwent LDG (n = 323) and LPPG (n = 144) during 2016-2017. Presence of gallstones was evaluated by ultrasonography (US) and computed tomography (CT). Incidences of gallstones were compared between the nerve preserved (h-DG, h-PPG) group and sacrificed (s-DG, s-PPG) group. Clinicopathological features were also compared. RESULTS: The 3-year cumulative incidence of gallstones was lower in the h-DG (2.7%, n = 85) than the s-DG (14.6%, n = 238) (p = 0.017) and lower in the h-PPG (1.6%, n = 123) than the s-PPG (12.9%, n = 21) (p = 0.004). Overall postoperative complication rate was similar between the h-DG and s-DG (p = 0.861) as well as between the h-PPG and s-PPG (p = 0.768). The number of retrieved lymph nodes station #1 and 3-year recurrence-free survival were not significantly different between the preserved group and sacrificed group. Injury to the vagus nerve (p = 0.001) and high body mass index (BMI) (≥ 27.5 kg/m2) (p = 0.040) were found to be independent risk factors of gallstone formation in multivariate analysis. CONCLUSIONS: Preservation of hepatic branch of the vagus nerve can be recommended for LDG as well as LPPG of early gastric cancer patients to reduce postoperative gallstone formation.


Assuntos
Cálculos Biliares/prevenção & controle , Gastrectomia/métodos , Laparoscopia/métodos , Complicações Pós-Operatórias/prevenção & controle , Piloro/cirurgia , Nervo Vago/cirurgia , Índice de Massa Corporal , Feminino , Cálculos Biliares/epidemiologia , Cálculos Biliares/etiologia , Gastrectomia/efeitos adversos , Humanos , Incidência , Laparoscopia/efeitos adversos , Fígado/inervação , Masculino , Pessoa de Meia-Idade , Tratamentos com Preservação do Órgão/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Fatores de Risco , Neoplasias Gástricas/cirurgia , Resultado do Tratamento , Traumatismos do Nervo Vago/etiologia , Traumatismos do Nervo Vago/prevenção & controle
10.
Nat Commun ; 11(1): 6295, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293550

RESUMO

The central melanocortin system plays a fundamental role in the control of feeding and body weight. Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) also regulate overall glucose homeostasis via insulin-dependent and -independent pathways. Here, we report that a subset of ARC POMC neurons innervate the liver via preganglionic parasympathetic acetylcholine (ACh) neurons in the dorsal motor nucleus of the vagus (DMV). Optogenetic stimulation of this liver-projecting melanocortinergic pathway elevates blood glucose levels that is associated with increased expression of hepatic gluconeogenic enzymes in female and male mice. Pharmacological blockade and knockdown of the melanocortin-4 receptor gene in the DMV abolish this stimulation-induced effect. Activation of melanocortin-4 receptors inhibits DMV cholinergic neurons and optogenetic inhibition of liver-projecting parasympathetic cholinergic fibers increases blood glucose levels. This elevated blood glucose is not due to altered pancreatic hormone release. Interestingly, insulin-induced hypoglycemia increases ARC POMC neuron activity. Hence, this liver-projecting melanocortinergic circuit that we identified may play a critical role in the counterregulatory response to hypoglycemia.


Assuntos
Glicemia/metabolismo , Hipoglicemia/etiologia , Fígado/inervação , Pró-Opiomelanocortina/metabolismo , Nervo Vago/metabolismo , Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/metabolismo , Glicemia/análise , Neurônios Colinérgicos/metabolismo , Corticosterona/sangue , Corticosterona/metabolismo , Modelos Animais de Doenças , Vias Eferentes/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Glucagon/sangue , Glucagon/metabolismo , Gluconeogênese/genética , Humanos , Hipoglicemia/sangue , Hipoglicemia/diagnóstico , Insulina/sangue , Insulina/metabolismo , Fígado/enzimologia , Masculino , Camundongos , Optogenética , RNA Mensageiro/metabolismo , Receptor Tipo 4 de Melanocortina/antagonistas & inibidores , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Regulação para Cima , Nervo Vago/citologia
11.
Front Immunol ; 11: 584048, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178216

RESUMO

Foxp3+ regulatory T (Treg) cells are pivotal in maintaining immunological self-tolerance and tissue homeostasis; however, it remains unclear how tissue Treg cells respond to liver injury and regulate chronic inflammation, which can cause liver fibrosis. We report here that hepatic Treg cells play a critical role in preventing liver pathology by suppressing inflammatory cellular immunity that can promote liver damage and fibrosis. Chronic liver inflammation induced by injections of carbon tetrachloride (CCl4) led to preferential expansion of hepatic Treg cells that prevented liver fibrosis. In contrast, depletion of Treg cells in the CCl4-induced liver fibrosis model exacerbated the severity of liver pathology. Treg depletion unleashed tissue cellular immunity and drove the activation and expansion of the pro-fibrotic IL-4-producing T helper 2 cells, as well as CCR2high Ly-6Chigh inflammatory monocytes/macrophages in the inflamed liver. Although Treg expression of amphiregulin plays a key role in tissue remodeling and repair in various inflammation models, amphiregulin from hepatic Treg cells, the largest producer among liver immune cells, was dispensable for maintaining liver homeostasis and preventing liver fibrosis during CCl4-induced chronic inflammation. Our results indicate that Treg cells control chronic liver inflammation and fibrosis by regulating the aberrant activation and functions of immune effector cells. Harnessing Treg functions, which effectively regulate tissue cellular immunity, may be a therapeutic strategy for preventing and treating liver fibrosis.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Imunidade Celular/imunologia , Cirrose Hepática/imunologia , Fígado/inervação , Linfócitos T Reguladores/imunologia , Animais , Tetracloreto de Carbono/farmacologia , Homeostase/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Fígado/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia
12.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050486

RESUMO

Chronic HCV (CHC) infection is the only chronic viral infection for which curative treatments have been discovered. These direct acting antiviral (DAA) agents target specific steps in the viral replication cycle with remarkable efficacy and result in sustained virologic response (SVR) or cure in high (>95%) proportions of patients. These treatments became available 6-7 years ago and it is estimated that their real impact on HCV related morbidity, including outcomes such as cirrhosis and hepatocellular carcinoma (HCC), will not be known for the next decade or so. The immune system of a chronically infected patient is severely dysregulated and questions remain regarding the immune system's capacity in limiting liver pathology in a cured individual. Another important consequence of impaired immunity in patients cleared of HCV with DAA will be the inability to generate protective immunity against possible re-infection, necessitating retreatments or developing a prophylactic vaccine. Thus, the impact of viral clearance on restoring immune homeostasis is being investigated by many groups. Among the important questions that need to be answered are how much the immune system normalizes with cure, how long after viral clearance this recalibration occurs, what are the consequences of persisting immune defects for protection from re-infection in vulnerable populations, and does viral clearance reduce liver pathology and the risk of developing hepatocellular carcinoma in individuals cured with these agents. Here, we review the recent literature that describes the defects present in various lymphocyte populations in a CHC patient and their status after viral clearance using DAA treatments.


Assuntos
Hepacivirus/imunologia , Hepatite C Crônica/etiologia , Hepatite C Crônica/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Imunidade Adaptativa , Animais , Antivirais/uso terapêutico , Gerenciamento Clínico , Suscetibilidade a Doenças , Hepatite C Crônica/tratamento farmacológico , Humanos , Imunidade Inata , Fígado/inervação , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Carga Viral
13.
Science ; 370(6514): 314-321, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32855216

RESUMO

The gut microbiota affects tissue physiology, metabolism, and function of both the immune and nervous systems. We found that intrinsic enteric-associated neurons (iEANs) in mice are functionally adapted to the intestinal segment they occupy; ileal and colonic neurons are more responsive to microbial colonization than duodenal neurons. Specifically, a microbially responsive subset of viscerofugal CART+ neurons, enriched in the ileum and colon, modulated feeding and glucose metabolism. These CART+ neurons send axons to the prevertebral ganglia and are polysynaptically connected to the liver and pancreas. Microbiota depletion led to NLRP6- and caspase 11-dependent loss of CART+ neurons and impaired glucose regulation. Hence, iEAN subsets appear to be capable of regulating blood glucose levels independently from the central nervous system.


Assuntos
Glicemia , Colo/inervação , Gânglios Simpáticos/fisiologia , Microbioma Gastrointestinal/fisiologia , Íleo/inervação , Neurônios/fisiologia , Animais , Antibacterianos/farmacologia , Caspases Iniciadoras/genética , Caspases Iniciadoras/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/inervação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/análise , Neurônios/química , Pâncreas/inervação , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia
14.
Kaohsiung J Med Sci ; 36(9): 721-731, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627922

RESUMO

Our study aimed to explore the molecular mechanisms involved in the improvement of postoperative cognitive dysfunction (POCD) by dexmedetomidine (DEX). BV2 microglia cells were cultured under normal condition, DEX exposure (0.1 µg/mL), and lipopolysacchride (LPS) treatment (0.1 µg/mL) or with pretreatment of DEX before LPS incubation. For BV2 microglia cells, LPS induced markedly increased release of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha [TNF-α]) and expressions of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-κB), while DEX pretreatment inhibited the LPS-induced production of pro-inflammatory cytokines and expressions of TLR4 and NF-κB. The spatial memory function was impaired in the aged mice following partial hepatectomy since the percentage of time spent in the target quadrant and the number of crossings over the former platform location were reduced. Pretreatment of DEX may attenuate neuroinflammation and improve POCD in aged mice through inhibiting the TLR4-NF-κB signaling pathway in the hippocampus.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Envelhecimento/genética , Dexmedetomidina/farmacologia , Hipocampo/efeitos dos fármacos , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Envelhecimento/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Hepatectomia/efeitos adversos , Hepatectomia/métodos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Fígado/inervação , Fígado/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/genética , Complicações Cognitivas Pós-Operatórias/fisiopatologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Nature ; 585(7826): 591-596, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526765

RESUMO

Recent clinical and experimental evidence has evoked the concept of the gut-brain axis to explain mutual interactions between the central nervous system and gut microbiota that are closely associated with the bidirectional effects of inflammatory bowel disease and central nervous system disorders1-4. Despite recent advances in our understanding of neuroimmune interactions, it remains unclear how the gut and brain communicate to maintain gut immune homeostasis, including in the induction and maintenance of peripheral regulatory T cells (pTreg cells), and what environmental cues prompt the host to protect itself from development of inflammatory bowel diseases. Here we report a liver-brain-gut neural arc that ensures the proper differentiation and maintenance of pTreg cells in the gut. The hepatic vagal sensory afferent nerves are responsible for indirectly sensing the gut microenvironment and relaying the sensory inputs to the nucleus tractus solitarius of the brainstem, and ultimately to the vagal parasympathetic nerves and enteric neurons. Surgical and chemical perturbation of the vagal sensory afferents at the hepatic afferent level reduced the abundance of colonic pTreg cells; this was attributed to decreased aldehyde dehydrogenase (ALDH) expression and retinoic acid synthesis by intestinal antigen-presenting cells. Activation of muscarinic acetylcholine receptors directly induced ALDH gene expression in both human and mouse colonic antigen-presenting cells, whereas genetic ablation of these receptors abolished the stimulation of antigen-presenting cells in vitro. Disruption of left vagal sensory afferents from the liver to the brainstem in mouse models of colitis reduced the colonic pTreg cell pool, resulting in increased susceptibility to colitis. These results demonstrate that the novel vago-vagal liver-brain-gut reflex arc controls the number of pTreg cells and maintains gut homeostasis. Intervention in this autonomic feedback feedforward system could help in the development of therapeutic strategies to treat or prevent immunological disorders of the gut.


Assuntos
Encéfalo/citologia , Intestinos/citologia , Intestinos/inervação , Fígado/citologia , Fígado/inervação , Neurônios/fisiologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Vias Aferentes , Animais , Células Apresentadoras de Antígenos/imunologia , Colite/imunologia , Colite/metabolismo , Colite/patologia , Homeostase , Humanos , Intestinos/imunologia , Masculino , Camundongos , Ratos , Receptores Muscarínicos/metabolismo , Baço/citologia , Baço/imunologia , Nervo Vago/fisiologia
16.
Virchows Arch ; 477(3): 383-384, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32394164
17.
FASEB J ; 34(5): 7058-7074, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275331

RESUMO

The role of central juxtaposed with another zinc finger gene 1 (JAZF1) in glucose regulation remains unclear. Here, we activated mediobasal hypothalamus (MBH) JAZF1 in high-fat diet (HFD)-fed rats by an adenovirus expressing JAZF1 (Ad-JAZF1). We evaluated the changes in the hypothalamic insulin receptor (InsR)-PI3K-Akt-AMPK pathway and hepatic glucose production (HGP). To investigate the impact of MBH Ad-JAZF1 on HGP, we activated MBH JAZF1 in the presence or absence of ATP-dependent potassium (KATP ) channel inhibition, hepatic branch vagotomy (HVG), or an AMPK activator (AICAR). In HFD-fed rats, MBH Ad-JAZF1 decreased body weight and food intake, and inhibited HGP by increasing hepatic insulin signaling. Under insulin stimulation, MBH Ad-JAZF1 increased InsR and Akt phosphorylation, and phosphatidylinositol 3, 4, 5-trisphosphate (PIP3) formation; however, AMPK phosphorylation was decreased in the hypothalamus. The positive effect of MBH JAZF1 on hepatic insulin signaling and HGP was prevented by treatment with a KATP channel inhibitor or HVG. The metabolic impact of hypothalamic JAZF1 was also blocked by MBH AICAR. Ad-JAZF1 treatment in SH-SY5Y cells resulted in an elevation of InsR and Akt phosphorylation following insulin stimulation. Our findings show that hypothalamic JAZF1 regulates HGP via the InsR-PI3K-Akt-AMPK pathway and KATP channels.


Assuntos
Proteínas Correpressoras/metabolismo , Proteínas de Ligação a DNA/metabolismo , Glucose/biossíntese , Hipotálamo Médio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Gluconeogênese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Resistência à Insulina , Fígado/inervação , Fígado/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Nervo Vago/metabolismo
18.
Gut ; 69(12): 2193-2202, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32205419

RESUMO

OBJECTIVE: Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN: To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS: We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION: We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.


Assuntos
Trato Gastrointestinal/metabolismo , Gluconeogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/fisiopatologia , Animais , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Interleucina-6/metabolismo , Fígado/inervação , Fígado/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Virchows Arch ; 477(3): 385-392, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31993770

RESUMO

The autonomic nervous system plays a role in a variety of liver regenerative and metabolic functions, including modulating bile secretion and cholangiocyte and hepatobiliary progenitors of the canals of Hering. However, the nature and location of nerves which link to the proximal biliary tree have remained uncertain. We investigate the anatomic relationship of nerves to the proximal biliary tree including the putative stem/progenitor cell niche of the canal of Hering. Using double immunostaining (fluorescence, histochemistry) to highlight markers of cholangiocytes (biliary-type keratins), nerves (S100, neurofilament protein, PGP9.5, tyrosine hydroxylase), and stellate cells (CRBP-1), we examined sections from normal adult livers from autopsy or surgical resections. There is extensive contact between nerves and interlobular bile ducts, bile ductules, and canals of Hering (CoH). In multiple serial sections from 4 normal livers, biliary-nerve contacts were seen in all of these structures and were more common in the interlobular bile ducts (78/137; 57%) than in the ductules and CoH (95/294; 33%) (p < 0.001). Contacts appear to consist of nerves in juxtaposition to the biliary basement membrane, though crossing through basement membrane to interface directly with cholangiocytes is also present. These nerves are positive for tyrosine hydroxylase and are, thus, predominately adrenergic. Electron microscopy confirms nerves closely approximating ductules. Nerve fiber-hepatic stellate cell juxtaposition is observed but without stellate cell approximation to cholangiocytes. We present novel findings of biliary innervation, perhaps mediated in part, by direct cholangiocyte-nerve interactions. The implications of these findings are protean for studies of neuromodulation of biliary physiology and hepatic stem/progenitor cells.


Assuntos
Sistema Biliar/inervação , Sistema Biliar/fisiologia , Adulto , Ductos Biliares/inervação , Ductos Biliares/fisiologia , Sistema Biliar/metabolismo , Vesícula Biliar/inervação , Vesícula Biliar/fisiologia , Humanos , Imuno-Histoquímica/métodos , Fígado/inervação , Fígado/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia
20.
Histol Histopathol ; 35(1): 47-56, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31173272

RESUMO

Amoebic liver abscess (ALA) is the main extra-intestinal complication caused by Entamoeba histolytica. Given the histological features of ALA in hamsters and the importance of the vagus nerve in the immune response, the aim of this study was to identify and analyze the major changes in ALA that are caused by a vagotomy. The changes found are related to inflammatory foci and abscess size, the type of collagen formed, and the number of trophozoites in lesions. Male hamsters were divided into three groups: Intact animals (IA) and those undergoing a false operation (SHAM) or a subdiaphragmatic vagotomy (VAG). In each group, E. histolytica trophozoites or culture medium (CM) were inoculated in hamsters by the intrahepatic route, and then euthanized at 6h, 12h, 24h, 48h, 4d or 7d post-infection. Initially the growth of the abscess was more rapid in the VAG group, but at day 7 it was faster in the IA and SHAM groups. VAG animals showed a higher quantity of type III collagen than the IA and SHAM groups. A larger number of amoebic trophozoites/mm² was observed up to day 4 in VAG hamsters (23.3±2.19) compared to IA (14.6±0.23) and SHAM (6.13±0.87) animals. This parameter decreased by day 7 in VAG (13.4±0.87) with respect to IA (24.7±1.47) and SHAM (21.7±1.48). The results show that a subdiaphragmatic vagotomy influenced the development of ALA in hamsters, suggesting a modification of the morphological structure of damaged hepatic tissue.


Assuntos
Entamoeba histolytica , Abscesso Hepático Amebiano/parasitologia , Fígado/parasitologia , Vagotomia , Nervo Vago/fisiologia , Animais , Colágeno/química , Cricetinae , Meios de Cultura , Modelos Animais de Doenças , Fígado/inervação , Fígado/patologia , Masculino , Mesocricetus , Nervo Vago/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA