Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
1.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732511

RESUMO

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Assuntos
Colina , Suplementos Nutricionais , Etanol , Fígado , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Colina/administração & dosagem , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/etiologia , Triglicerídeos/metabolismo , PPAR alfa/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Intolerância à Glucose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619434

RESUMO

BACKGROUND: Recent reports have unveiled the potential utility of l-carnitine to alleviate metabolic dysfunction-associated steatohepatitis (MASH) by enhancing mitochondrial metabolic function. However, its efficacy at preventing the development of HCC has not been assessed fully. METHODS: l-carnitine (2 g/d) was administered to 11 patients with MASH for 10 weeks, and blood liver function tests were performed. Five patients received a serial liver biopsy, and liver histology and hepatic gene expression were evaluated using this tissue. An atherogenic plus high-fat diet MASH mouse model received long-term l-carnitine administration, and liver histology and liver tumor development were evaluated. RESULTS: Ten-week l-carnitine administration significantly improved serum alanine transaminase and aspartate transaminase levels along with a histological improvement in the NAFLD activity score, while steatosis and fibrosis were not improved. Gene expression profiling revealed a significant improvement in the inflammation and profibrotic gene signature as well as the recovery of lipid metabolism. Long-term l-carnitine administration to atherogenic plus high-fat diet MASH mice substantially improved liver histology (inflammation, steatosis, and fibrosis) and significantly reduced the incidence of liver tumors. l-carnitine directly reduced the expression of the MASH-associated and stress-induced transcriptional factor early growth response 1. Early growth response 1 activated the promoter activity of neural precursor cell expressed, developmentally downregulated protein 9 (NEDD9), an oncogenic protein. Thus, l-carnitine reduced the activation of the NEDD9, focal adhesion kinase 1, and AKT oncogenic signaling pathway. CONCLUSIONS: Short-term l-carnitine administration ameliorated MASH through its anti-inflammatory effects. Long-term l-carnitine administration potentially improved the steatosis and fibrosis of MASH and may eventually reduce the risk of HCC.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Neoplasias Hepáticas/prevenção & controle , Carcinoma Hepatocelular/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Carnitina/farmacologia , Carnitina/uso terapêutico , Fibrose , Inflamação , Proteínas Adaptadoras de Transdução de Sinal
3.
Biomed Pharmacother ; 174: 116582, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642504

RESUMO

The aim of this study was to investigate whether the therapeutic effect of theabrownin extracted from Qingzhuan tea (QTB) on metabolic dysfunction-associated steatosis liver disease (MASLD) is related to the regulation of intestinal microbiota and its metabolite short-chain fatty acids (SCFAs). Mice were divided into four groups and received normal diet (ND), high-fat diet (HFD) and HFD+QTB (180, 360 mg/kg) for 8 weeks. The results showed that QTB significantly reduced the body weight of HFD mice, ameliorated liver lipid and dyslipidemia, and increased the level of intestinal SCFAs in HFD mice. The results of 16 S rRNA showed that the relative abundance of Bacteroides, Blautia and Lachnoclostridium and their main metabolites acetate and propionate were significantly increased after QTB intervention. The relative abundance of Colidextribacter, Faecalibaculum and Lactobacillus was significantly reduced. QTB can also significantly up-regulate the expression of ATGL, PPARα, FFAR2 and FFAR3, and inhibit the expression of LXRα, SREBP-1c, FAS and HMGCR genes. This makes it possible to act as a prebiotic to prevent MASLD.


Assuntos
Catequina/análogos & derivados , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Chá , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Masculino , Chá/química , Camundongos , Ácidos Graxos Voláteis/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Dislipidemias/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico
4.
Biomed Pharmacother ; 174: 116520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581924

RESUMO

A combination of liver and heart dysfunction worsens the prognosis of human survival. The aim of this study was to investigate whether empagliflozin (a sodium-glucose transporter-2 inhibitor) has beneficial effects not only on cardiac and renal function but also on hepatic function. Adult (6-month-old) male spontaneously hypertensive rats (SHR) were fed a high-fat diet (60% fat) for four months to induce hepatic steatosis and mild heart failure. For the last two months, the rats were treated with empagliflozin (empa, 10 mg.kg-1.day-1 in the drinking water). Renal function and oral glucose tolerance test were analyzed in control (n=8), high-fat diet (SHR+HF, n=10), and empagliflozin-treated (SHR+HF+empa, n=9) SHR throughout the study. Metabolic parameters and echocardiography were evaluated at the end of the experiment. High-fat diet feeding increased body weight and visceral adiposity, liver triglyceride and cholesterol concentrations, and worsened glucose tolerance. Although the high-fat diet did not affect renal function, it significantly worsened cardiac function in a subset of SHR rats. Empagliflozin reduced body weight gain but not visceral fat deposition. It also improved glucose sensitivity and several metabolic parameters (plasma insulin, uric acid, and HDL cholesterol). In the liver, empagliflozin reduced ectopic lipid accumulation, lipoperoxidation, inflammation and pro-inflammatory HETEs, while increasing anti-inflammatory EETs. In addition, empagliflozin improved cardiac function (systolic, diastolic and pumping) independent of blood pressure. The results of our study suggest that hepatoprotection plays a decisive role in the beneficial effects of empagliflozin in preventing the progression of cardiac dysfunction induced by high-fat diet feeding.


Assuntos
Compostos Benzidrílicos , Dieta Hiperlipídica , Glucosídeos , Fígado , Ratos Endogâmicos SHR , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Glucosídeos/farmacologia , Compostos Benzidrílicos/farmacologia , Masculino , Dieta Hiperlipídica/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Cardiotônicos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Hipertensão/tratamento farmacológico
5.
Nutrients ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38542814

RESUMO

(1) Background: Modulators of the Neuropeptide Y (NPY) system are involved in energy metabolism, but the effect of NPY receptor antagonists on metabolic-dysfunction-associated steatotic liver disease (MASLD), a common obesity-related comorbidity, are largely unknown. In this study, we report on the effects of antagonists of the NPY-2 receptor (Y2R) in comparison with empagliflozin and semaglutide, substances that are known to be beneficial in MASLD. (2) Methods: Diet-induced obese (DIO) male Wistar rats were randomized into the following treatment groups: empagliflozin, semaglutide ± PYY3-36, the Y2R antagonists JNJ 31020028 and a food-restricted group, as well as a control group. After a treatment period of 8 weeks, livers were weighed and histologically evaluated. QrtPCR was performed to investigate liver inflammation and de novo lipogenesis (in liver and adipose tissue). Serum samples were analysed for metabolic parameters. (3) Results: Semaglutide + PYY3-36 led to significant weight loss, reduced liver steatosis (p = 0.05), and decreased inflammation, insulin resistance, and leptin levels. JNJ-31020028 prevented steatosis (p = 0.03) without significant weight loss. Hepatic downregulation of de novo lipogenesis-regulating genes (SREBP1 and MLXIPL) was observed in JNJ-31020028-treated rats (p ≤ 0.0001). Food restriction also resulted in significantly reduced weight, steatosis, and hepatic de novo lipogenesis. (4) Conclusions: Body weight reduction (e.g., by food restriction or drugs like semaglutide ± PYY3-36) is effective in improving liver steatosis in DIO rats. Remarkably, the body-weight-neutral Y2R antagonists may be effective in preventing liver steatosis through a reduction in de novo lipogenesis, making this drug class a candidate for the treatment of (early) MASLD.


Assuntos
Benzamidas , Compostos Benzidrílicos , Fígado Gorduroso , Peptídeos Semelhantes ao Glucagon , Glucosídeos , Piperazinas , Receptores de Neuropeptídeo Y , Ratos , Masculino , Animais , Receptores de Neuropeptídeo Y/metabolismo , Ratos Wistar , Obesidade/complicações , Obesidade/tratamento farmacológico , Dieta , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Redução de Peso , Inflamação
6.
Diabetes Obes Metab ; 26(6): 2339-2348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38504118

RESUMO

AIM: Dipeptidyl peptidase-4 (DPP-4) inhibitors suppress the inactivation of incretin hormones and lower blood glucose levels by inhibiting DPP-4 function. Sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels in an insulin-independent manner by inhibiting renal reabsorption of glucose. DPP-4 and SGLT2 inhibitors each have the potential to improve hepatic steatosis; however, their combined effects remain unclear. In this study, we examined the effects of the combination of these drugs on hepatic steatosis using high-fat diet-fed mice. METHOD: C57BL/6J male mice were fed a 60% high-fat diet for 2 months to induce hepatic steatosis. Mice were divided into four groups (control; DPP-4 inhibitor anagliptin; SGLT2 inhibitor luseogliflozin; anagliptin and luseogliflozin combination), and the effects of each drug and their combination on hepatic steatosis after a 4-week intervention were evaluated. RESULTS: There were no differences in blood glucose levels among the four groups. Anagliptin suppresses inflammation- and chemokine-related gene expression. It also improved macrophage fractionation in the liver. Luseogliflozin reduced body weight, hepatic gluconeogenesis and blood glucose levels in the oral glucose tolerance test. The combination treatment improved hepatic steatosis without interfering with the effects of anagliptin and luseogliflozin, respectively, and fat content and inflammatory gene expression in the liver were significantly improved in the combination group compared with the other groups. CONCLUSION: The combination therapy with the DPP-4 inhibitor anagliptin and the SGLT2 inhibitor luseogliflozin inhibits fat deposition in the liver via anti-inflammatory effects during the early phase of diet-induced liver steatosis.


Assuntos
Dieta Hiperlipídica , Inibidores da Dipeptidil Peptidase IV , Camundongos Endogâmicos C57BL , Inibidores do Transportador 2 de Sódio-Glicose , Animais , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Masculino , Dieta Hiperlipídica/efeitos adversos , Camundongos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quimioterapia Combinada , Sorbitol/análogos & derivados , Sorbitol/farmacologia , Sorbitol/uso terapêutico , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Sinergismo Farmacológico , Transportador 2 de Glucose-Sódio
7.
Clin Sci (Lond) ; 138(5): 327-349, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38381799

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is always accompanied with hepatic fibrosis that could potentially progress to liver cirrhosis and hepatocellular carcinoma. Employing a rat model, we evaluated the role of human placental extract (HPE) to arrest the progression of hepatic fibrosis to cirrhosis in patients with MASH. SHRSP5/Dmcr rats were fed with a high-fat and high-cholesterol diet for 4 weeks and evaluated for the development of steatosis. The animals were divided into control and treated groups and received either saline or HPE (3.6 ml/kg body weight) subcutaneously thrice a week. A set of animals were killed at the end of 6th, 8th, and 12th weeks from the beginning of the experiment. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hepatic malondialdehyde (MDA), and glutathione content were measured. Immunohistochemical staining was performed for α-smooth muscle actin (α-SMA), 4-hydroxy-2-nonenal (4-HNE), collagen type I, and type III. Control rats depicted progression of liver fibrosis at 6 weeks, advanced fibrosis and bridging at 8 weeks, and cirrhosis at 12 weeks, which were significantly decreased in HPE-treated animals. Treatment with HPE maintained normal levels of MDA and glutathione in the liver. There was marked decrease in the staining intensity of α-SMA, 4-HNE, and collagen type I and type III in HPE treated rats compared with control animals. The results of the present study indicated that HPE treatment mediates immunotropic, anti-inflammatory, and antioxidant responses and attenuates hepatic fibrosis and early cirrhosis. HPE depicts therapeutic potential to arrest the progression of MASH towards cirrhosis.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Extratos Placentários , Humanos , Gravidez , Ratos , Feminino , Animais , Extratos Placentários/metabolismo , Extratos Placentários/uso terapêutico , Colágeno Tipo I/metabolismo , Placenta/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Fibrose , Glutationa/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica
8.
Nutr Res ; 123: 111-119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310647

RESUMO

Chaenomeles sinensis (Thouin) Koehne fruit is a rich source of medicinally and nutritionally important natural phytochemicals that benefit human health. Based on the information provided, we hypothesized that Chaenomeles sinensis (Thouin) Koehne fruit polyphenols (CSFP) possessed in vivo protective effect of on high-fat diet (HFD)-induced obesity and hepatic steatosis. Specific pathogen-free male C57BL/6J mice were randomly divided into 3 groups and fed with a low-fat diet, HFD, or HFD supplemented with CSFP by intragastric administration for 14 weeks. Obesity-related biochemical indexes and hepatic gene expression profile were determined. The findings of this study demonstrated notable reductions in body weight gain, serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, and steatosis grade in the group supplemented with CSFP compared with the HFD group. Gene expression analysis provided insights into the molecular mechanisms, demonstrating that CSFP downregulated the expression of key genes involved in lipogenesis (e.g., Fas, Fads2, Scd1) and upregulated the genes associated with fatty acid oxidation (e.g., Pparα, Cpt1a, Acox1), while also suppressing genes implicated in cholesterol homeostasis (e.g., HMGCoR, Insig1, AdipoR2). These molecular changes suggest that CSFP exerts protective effects by modulating hepatic lipid metabolism pathways, thereby mitigating the metabolic derangements associated with HFD-induced obesity and hepatic steatosis.


Assuntos
Fígado Gorduroso , Rosaceae , Humanos , Masculino , Camundongos , Animais , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , Frutas/química , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/análise , Camundongos Endogâmicos C57BL , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fígado/metabolismo , Colesterol
9.
Nutr Res ; 124: 43-54, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367426

RESUMO

Kimchi is a traditional fermented food that contains abundant nutrients and functional ingredients with various health benefits. We previously reported that kimchi active components suppress hepatic steatosis caused by endoplasmic reticulum (ER) stress in vitro and in vivo. Therefore, we assessed the effect of kimchi on the inhibition of hepatic steatosis caused by ER stress in HepG2 cells and C57BL/6N mice to verify the hypothesis that kimchi may potentially inhibit nonalcoholic fatty liver disease. We investigated the effect of kimchi on cell viability and triglyceride concentrations in cells and on lipid profile, lipid accumulation, and expression of related genes in cells and mice with hepatic steatosis. A mechanistic study was also performed using the liver X receptor α agonist T0901317 and the AMP-activated protein kinase agonist AICAR. Kimchi was noncytotoxic and effectively reduced triglyceride concentrations and suppressed hepatic steatosis-related gene expression in cells and mice. Additionally, kimchi recovered weight loss, lowered the serum and liver tissue lipid profiles, suppressed lipid accumulation, and reduced the effects of T0901317 and AICAR on lipogenic gene expression in tunicamycin-treated mice. Our results highlight that kimchi could prevent hepatic steatosis caused by ER stress in cells and mice.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Benzenossulfonamidas , Estresse do Retículo Endoplasmático , Alimentos Fermentados , Fluorocarbonos , Fígado , Camundongos Endogâmicos C57BL , Triglicerídeos , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Células Hep G2 , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Aminoimidazol Carboxamida/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/etiologia , Sulfonamidas/farmacologia , Ribonucleotídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Tunicamicina/farmacologia , Lipogênese/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/prevenção & controle
10.
Poult Sci ; 103(2): 103286, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100949

RESUMO

In this study, we evaluated the enrichment efficiency of lutein in eggs and its function in preventing fatty liver hemorrhagic syndrome (FLHS) in aged laying hens. Five groups of laying hens (65 wk old) were fed basal diets supplemented with 0, 30, 60, 90, or 120 mg/kg of lutein. The supplementation period lasted 12 wk followed by 2 wk of lutein depletion in feed. The results revealed that lutein efficiently enriched the egg yolks and improved their color with a significant increase in relative redness (P < 0.001). Lutein accumulation increased in the egg yolk until day 10, then depletion reached a minimum level after 14 d. Overall, zeaxanthin content in all the groups was similar throughout the experimental period. However, triglycerides and total cholesterol were significantly decreased in the liver (P < 0.05) but not significantly different in the serum (P > 0.05). In the serum, the lipid metabolism enzyme acetyl-CoA synthetase was significantly reduced (P < 0.05), whereas dipeptidyl-peptidase 4 was not significantly different (P > 0.05), and there was no statistical difference of either enzyme in the liver (P > 0.05). Regarding oxidation and inflammation-related indexes, malondialdehyde, tumor necrosis factors alpha, interleukin-6, and interleukin-1 beta were decreased, whereas superoxide dismutase and total antioxidant capacity increased in the liver (P < 0.001). The function of lutein for the same indexes in serum was limited. It was concluded that lutein efficiently enriched the egg yolk of old laying hens to improve their color and reached the highest level on day 10 without being subject to a significant conversion into zeaxanthin. At the same time, lutein prevented liver steatosis in aged laying hens by exerting strong antioxidant and anti-inflammatory functions, but also through the modulation of lipid metabolism, which may contribute to reducing the incidence of FLHS in poultry.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Fígado Gorduroso , Transtornos do Crescimento , Comunicação Interventricular , Luteína , Feminino , Animais , Luteína/metabolismo , Antioxidantes/metabolismo , Galinhas/metabolismo , Zeaxantinas/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Gema de Ovo/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/veterinária , Ração Animal/análise
11.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139133

RESUMO

Berberine (BBR) is a natural alkaloid with multiple biotical effects that has potential as a treatment for fatty liver hemorrhagic syndrome (FLHS). However, the mechanism underlying the protective effect of BBR against FLHS remains unclear. The present study aimed to investigate the effect of BBR on FLHS induced by a high-energy, low-protein (HELP) diet and explore the involvement of the gut microbiota and bile acid metabolism in the protective effects. A total of 90 healthy 140-day-old Hy-line laying hens were randomly divided into three groups, including a control group (fed a basic diet), a HELP group (fed a HELP diet), and a HELP+BBR group (high-energy, high-protein diet supplemented with BBR instead of maize). Our results show that BBR supplementation alleviated liver injury and hepatic steatosis in laying hens. Moreover, BBR supplementation could significantly regulate the gut's microbial composition, increasing the abundance of Actinobacteria and Romboutsia. In addition, the BBR supplement altered the profile of bile acid. Furthermore, the gut microbiota participates in bile acid metabolism, especially taurochenodeoxycholic acid and α-muricholic acid. BBR supplementation could regulate the expression of genes and proteins related to glucose metabolism, lipid synthesis (FAS, SREBP-1c), and bile acid synthesis (FXR, CYP27a1). Collectively, our findings demonstrate that BBR might be a potential feed additive for preventing FLHS by regulating the gut microbiota and bile acid metabolism.


Assuntos
Berberina , Fígado Gorduroso , Microbioma Gastrointestinal , Animais , Feminino , Berberina/farmacologia , Berberina/uso terapêutico , Berberina/metabolismo , Dieta com Restrição de Proteínas , Galinhas , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Ácidos e Sais Biliares/metabolismo
12.
Nutrients ; 15(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004120

RESUMO

Maternal dietary patterns during pregnancy have been demonstrated to impact the structure of the gut microbiota in offspring, altering their susceptibility to diseases. This study is designed to elucidate whether the impact of folic acid supplementation during pregnancy on hepatic steatosis in male offspring of rat dams exposed to a high-fat diet (HFD) is related to gut-liver axis homeostasis. In this study, female rats were administered a HFD and simultaneously supplemented with 5 mg/kg folic acid throughout their pregnancy. Histopathological examination showed that folic acid supplementation effectively ameliorated hepatic lipid accumulation and inflammatory infiltrate in male offspring subjected to a maternal HFD. Maternal folic acid supplementation reduced the abundance of Desulfobacterota and the Firmicutes/Bacteroidota (F/B) ratio in male offspring. The expression of tight junction proteins in the colon was significantly upregulated, and the serum LPS level was significantly reduced. Furthermore, there was a notable reduction in the hepatic expression of the TLR4/NF-κB signaling pathway and subsequent inflammatory mediators. Spearman's correlation analysis revealed significant associations between hepatic inflammation-related indices and several gut microbiota, particularly Desulfobacterota and Lactobacillus. With a reduction in hepatic inflammation, the expression of PPAR-α was upregulated, and the expression of SREBP-1c and its downstream lipid metabolism-related genes was downregulated. In summary, folic acid supplementation during pregnancy modulates gut microbiota and enhances intestinal barrier integrity in male offspring of HFD dams. This helps reduce the LPS leakage and suppress the expression of TLR4/NF-κB pathway in the liver, thereby improving lipid metabolism disorders, and alleviating hepatic steatosis.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Gravidez , Ratos , Animais , Masculino , Feminino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Suplementos Nutricionais , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Inflamação/metabolismo , Camundongos Endogâmicos C57BL
13.
Arch Biochem Biophys ; 750: 109811, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37926405

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder affecting a significant part of the global population. This study aimed to investigate the potential therapeutic effects of α-lipoic acid (α-LA) on the inflammatory response during simple steatosis development and progression into steatohepatitis. The study used the MASLD model in male Wistar rats that were fed a standard diet or a high-fat diet (HFD) for 8 weeks. Throughout the entire experiment, half of the animals received α-LA supplementation. The hepatic activity of pro-inflammatory n-6 and anti-inflammatory n-3 polyunsaturated fatty acid (PUFA) pathways and the concentration of arachidonic acid (AA) in selected lipid fractions were determined by the gas-liquid chromatography (GLC). The hepatic expression of proteins from inflammatory pathway was measured by the Western blot technique. The level of eicosanoids, cytokines and chemokines was assessed by the ELISA or multiplex assay kits. The results showed that α-LA supplementation attenuated the activity of n-6 PUFA pathway in FFA and DAG and increased the activity of n-3 PUFA pathway in PL, TAG and DAG. In addition, the administration of α-LA decreased the concentration of AA in DAG and FFA, indicating its potential protective effect on the deterioration of simple hepatic steatosis. The supplementation of α-LA also increased the expression of COX-1 and COX-2 with the lack of significant changes in prostaglandins profile. We observed an increase in the expression of 12/15-LOX, which was reflected in an increase in lipoxin A4 (LXA4) level. A decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines was also noticed in the liver of rats treated with HFD and α-LA. Our observations confirm that α-LA treatment has potential protective effects on inflammation development in the MASLD model. We believe that α-LA has a preventive impact when it comes to the progression of simple steatosis lesions to steatohepatitis.


Assuntos
Fígado Gorduroso , Ácido Tióctico , Ratos , Masculino , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ratos Wistar , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo
14.
J Med Food ; 26(12): 911-918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37971778

RESUMO

The health benefits of soy foods are attributed to the high-quality protein and the bioactive compounds such as isoflavones. We previously reported that feeding obese (fa/fa) Zucker rats soy protein concentrates (SPCs) with low isoflavone (LIF) and high isoflavone (HIF) for 9 weeks significantly reduced liver steatosis compared to a casein control (C) diet. The current study extended the dietary treatments to 18 weeks to investigate the long-term effect of LIF and HIF SPC diets. 6-week-old male lean (L, n = 21) and obese (O, n = 21) Zucker rats were fed a casein C diet, LIF and HIF SPC diets for 18 weeks and body weight (BW) was recorded twice weekly. Rats were killed after 18 weeks to measure liver steatosis and serum aspartate aminotransferase and alanine aminotransferase. Obese rats had significantly greater final BW, liver weight, liver weight as the percentage of BW, and steatosis score compared to lean rats in all three dietary groups. The obese high-isoflavones (OHIF) group had significantly higher BW compared to obese control (OC) group (P < .0001) and obese low-isoflavones (OLIF) group (P = .01). OC group had significantly greater liver weight, liver weight as the percentage of BW, and liver steatosis score compared to OLIF (P = .0077, P < .0001 and P < .0001, respectively) and OHIF (P = .0094, P < .0001, and P < .0001, respectively) groups. Taken together, long-term feeding of SPC diets protected against liver steatosis regardless of isoflavone levels.


Assuntos
Fígado Gorduroso , Isoflavonas , Masculino , Ratos , Animais , Proteínas de Soja , Caseínas/farmacologia , Isoflavonas/farmacologia , Ratos Zucker , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Obesidade/metabolismo
15.
Poult Sci ; 102(12): 103101, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37826904

RESUMO

The current experiment aimed to investigate the effect of dietary glycine (Gly) supplementation on productive performance, egg quality, stress response, and fatty liver incidence in laying hens raised under heat stress (HS) conditions. A total of two hundred eighty 24-wk-old Lohmann Brown-Lite laying hens were randomly allotted to 1 of 4 dietary treatments with 7 replicates. The negative control (NC) diet was prepared to meet or exceed the nutrient and energy requirement for Lohmann Brown laying hens, whereas the positive control (PC) diet was formulated to increase AMEn by 100 kcal/kg compared with the NC diet. Two additional diets were prepared by supplementing 0.341% and 0.683% Gly to the NC diet. All hens were exposed to cyclic HS at 31.4 ± 1.17°C for 8 h/d and 26.7 ± 1.10°C for the remaining time for a 12-wk trial. Results indicated that increasing supplementation of Gly in diets tended (linear, P = 0.088) to decrease the FCR of laying hens. Increasing supplementation of Gly in diets increased (linear, P < 0.05) eggshell lightness and decreased (linear, P < 0.05) egg yolk color. Moreover, a tendency for a quadratic association (P < 0.10) of serum aspartate aminotransferase and alanine aminotransferase concentrations with increasing supplementation of Gly was observed. Increasing supplementation of Gly in diets decreased (linear, P < 0.05) blood heterophil:lymphocyte ratio of laying hens. Hens fed the NC diet showed higher fatty liver incidence (P < 0.05) than those fed the PC diet, but increasing supplementation of Gly decreased (linear, P < 0.05) fatty liver incidence of laying hens. In conclusion, increasing supplementation of Gly up to 0.683% in diets decreases FCR, stress response, and fatty liver incidence in laying hens raised under HS conditions.


Assuntos
Suplementos Nutricionais , Fígado Gorduroso , Feminino , Animais , Glicina , Galinhas/fisiologia , Incidência , Ração Animal/análise , Óvulo , Dieta/veterinária , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/veterinária , Resposta ao Choque Térmico
16.
Food Funct ; 14(21): 9892-9906, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37853813

RESUMO

Accumulating evidence has shown that gut microbiota and its metabolites have important significance in the etiology of obesity and related disorders. Prebiotics prevent and alleviate obesity by modulating the gut microbiota. However, how pectin oligosaccharides (POS) derived from pectin degradation affect gut microbiota and obesity remains unclear. To investigate the potential anti-obesity effects of POS, mice were fed a high-fat diet (HFD) for 12 weeks and a POS supplement with drinking water during the last 8 weeks. The outcomes demonstrated that POS supplementation in HFD-fed mice decreased body weight (P < 0.01), improved glucose tolerance (P < 0.001), reduced fat accumulation (P < 0.0001) and hepatic steatosis, protected intestinal barrier, and reduced pro-inflammatory cytokine levels. After fecal metagenomic sequencing, the POS corrected the gut microbiota dysbiosis caused by the HFD, as shown by the increased populations of Bifidobacterium, Lactobacillus taiwanensis, and Bifidobacterium animalis, and decreased populations of Alistipes and Erysipelatoclostridium, which were previously considered harmful bacteria. Notably, the changed gut microbiota was associated with the obesity prevention of POS. These findings demonstrate that POS regulates particular gut microbiota, which is essential owing to its ability to prevent disorders associated with obesity.


Assuntos
Fígado Gorduroso , Microbioma Gastrointestinal , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Pectinas/farmacologia , Obesidade/prevenção & controle , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Oligossacarídeos/farmacologia , Camundongos Endogâmicos C57BL
17.
J Nutr Biochem ; 119: 109403, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307885

RESUMO

Niemann-pick C1-like 1 (NPC1L1) mediates cholesterol absorption and plays a key role in the pathogenesis of nonalcoholic simple fatty liver (NASFL). Our previous study showed that curcumin reduced NPC1L1 expression and cholesterol absorption in Caco-2 cells. This study aimed to investigate whether curcumin could inhibit intestinal and hepatic NPC1L1 expression through suppressing sterol regulatory element binding protein-2 (SREBP-2) / hepatocyte nuclear factor 1α (HNF1α) pathway, then exert anti-NASFL effects. Six-week hamsters were fed high-fat diet (HFD) with or without 0.1% curcumin for 12 weeks. Curcumin supplementation lowered blood total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol levels (20.2%, 48.7%, and 36.5%), and reduced liver TC and TG contents (26.1% and 26.5%). Oil Red O staining demonstrated that curcumin significantly alleviated HFD-induced liver fat accumulation and hepatic steatosis, which was accompanied by reduced intestinal and hepatic NPC1L1, SREBP-2 and HNF1α expression (P < .05) and increased fecal neutral sterol excretion (114.5%). Furthermore, curcumin decreased cholesterol absorption in Caco-2 cells and HepG2 cells (49.2 % and 52.7 %). The inhibitory effects of curcumin on NPC1L1 expression and cholesterol absorption could be prevented by blockade of the SREBP-2 and HNF1α pathway. These findings indicated that curcumin protected against HFD-induced NASFL by inhibiting intestinal and hepatic NPC1L1 expression via down-regulation of SREBP-2/HNF1α pathway, thus reducing intestinal cholesterol absorption and hepatic biliary cholesterol reabsorption, consequently alleviating liver cholesterol accumulation and steatosis. Our study provides evidence for curcumin as a potential nutritional therapy for NASFL by regulating NPC1L1 and enterohepatic circulation of cholesterol.


Assuntos
Curcumina , Fígado Gorduroso , Cricetinae , Animais , Humanos , Regulação para Baixo , Proteínas de Membrana Transportadoras/genética , Curcumina/farmacologia , Curcumina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Fator 1-alfa Nuclear de Hepatócito , Células CACO-2 , Fígado/metabolismo , Colesterol/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Triglicerídeos/metabolismo
18.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37314978

RESUMO

The aim of this study was to evaluate the beneficial effects and potential mechanisms of genistein (GEN) on production performance impairments and lipid metabolism disorders in laying hens fed a high-energy and low-protein (HELP) diet. A total of 120 Hy-line Brown laying hens were fed with the standard diet and HELP diet supplemented with 0, 50, 100, and 200 mg/kg GEN for 80 d. The results showed that the declines in laying rate (P < 0.01), average egg weight (P < 0.01), and egg yield (P < 0.01), and the increase of the ratio of feed to egg (P < 0.01) induced by HELP diet were markedly improved by 100 and 200 mg/kg of GEN treatment in laying hens (P < 0.05). Moreover, the hepatic steatosis and increases of lipid contents (P < 0.01) in serum and liver caused by HELP diet were significantly alleviated by treatment with 100 and 200 mg/kg of GEN in laying hens (P < 0.05). The liver index and abdominal fat index of laying hens in the HELP group were higher than subjects in the control group (P < 0.01), which were evidently attenuated by dietary 50 to 200 mg/kg of GEN supplementation (P < 0.05). Dietary 100 and 200 mg/kg of GEN supplementation significantly reduced the upregulations of genes related to fatty acid transport and synthesis (P < 0.01) but enhanced the downregulations of genes associated with fatty acid oxidation (P < 0.01) caused by HELP in the liver of laying hens (P < 0.05). Importantly, 100 and 200 mg/kg of GEN supplementation markedly increased G protein-coupled estrogen receptor (GPER) mRNA and protein expression levels and activated the AMP-activated protein kinase (AMPK) signaling pathway in the liver of laying hens fed a HELP diet (P < 0.05). These data indicated that the protective effects of GEN against the decline of production performance and lipid metabolism disorders caused by HELP diet in laying hens may be related to the activation of the GPER-AMPK signaling pathways. These data not only provide compelling evidence for the protective effect of GEN against fatty liver hemorrhagic syndrome in laying hens but also provide the theoretical basis for GEN as an additive to alleviate metabolic disorders in poultry.


Fatty liver hemorrhagic syndrome (FLHS) is a nutritional and metabolic disease that seriously threatens the health and performance of laying hens, which is characterized by hepatic steatosis and lipid metabolism disorders. As an isoflavone phytoestrogen, genistein (GEN) exerts many beneficial functions, including alleviating lipid metabolism disorders and anti-inflammatory properties. However, further research is needed on the protective effect and potential mechanism of GEN on the FLHS in laying hens. Here, we found that GEN treatment improved liver injury and decline of production performance in laying hens with FLHS. Moreover, GEN treatment alleviated hepatic steatosis and lipid metabolism disorders through reducing the expression levels of mRNA related to fatty acid transport and synthesis and enhancing the mRNA expression levels of factors associated with fatty acid oxidation in FLHS layers, which may be achieved by activation of the G protein-coupled estrogen receptor­adenosine 5'-monophosphate (AMP)-activated protein kinase signaling pathways. These data not only provide compelling evidence for the protective effects and mechanisms of GEN against FLHS in laying hens but also provide the theoretical basis for GEN to alleviate other metabolic disorders in poultry.


Assuntos
Fígado Gorduroso , Hemorragia , Transtornos do Metabolismo dos Lipídeos , Animais , Feminino , Genisteína/farmacologia , Genisteína/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Galinhas/metabolismo , Metabolismo dos Lipídeos , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/veterinária , Fígado/metabolismo , Dieta/veterinária , Transtornos do Metabolismo dos Lipídeos/complicações , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Hemorragia/genética , Hemorragia/metabolismo , Hemorragia/veterinária , Dieta com Restrição de Proteínas/veterinária , Transdução de Sinais , Estrogênios/metabolismo , Ácidos Graxos/metabolismo , Ração Animal/análise
19.
Nutrients ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299553

RESUMO

Pecans (Carya illinoinensis) are considered a functional food due to the high content of polyunsaturated fatty acids, dietary fiber and polyphenols. To determine the effect of whole pecans (WP) or a pecan polyphenol (PP) extract on the development of metabolic abnormalities in mice fed a high-fat (HF) diet, we fed C57BL/6 mice with a Control diet (7% fat), HF diet (23% fat), HF containing 30% WP or an HF diet supplemented with 3.6 or 6 mg/g of PP for 18 weeks. Supplementation of an HF diet with WP or PP reduced fat mass, serum cholesterol, insulin and HOMA-IR by 44, 40, 74 and 91%, respectively, compared to the HF diet. They also enhanced glucose tolerance by 37%, prevented pancreatic islet hypertrophy, and increased oxygen consumption by 27% compared to the HF diet. These beneficial effects were associated with increased thermogenic activity in brown adipose tissue, mitochondrial activity and AMPK activation in skeletal muscle, reduced hypertrophy and macrophage infiltration of subcutaneous and visceral adipocytes, reduced hepatic lipid content and enhanced metabolic signaling. Moreover, the microbial diversity of mice fed WP or PP was higher than those fed HF, and associated with lower circulating lipopolysaccharides (~83-95%). Additionally, a 4-week intervention study with the HF 6PP diet reduced the metabolic abnormalities of obese mice. The present study demonstrates that WP or a PP extract prevented obesity, liver steatosis and diabetes by reducing dysbiosis, inflammation, and increasing mitochondrial content and energy expenditure. Pecan polyphenols were mainly condensed tannin and ellagic acid derivatives including ellagitannins as determined by LC-MS. Herein we also propose a model for the progression of the HF diet-mediated metabolic disorder based on early and late events, and the possible molecular targets of WP and PP extract in preventive and intervention strategies. The body surface area normalization equation gave a conversion equivalent to a daily human intake dose of 2101-3502 mg phenolics that can be obtained from 110-183 g pecan kernels/day (22-38 whole pecans) or 21.6-36 g defatted pecan flour/day for an average person of 60 kg. This work lays the groundwork for future clinical studies.


Assuntos
Carya , Diabetes Mellitus , Fígado Gorduroso , Camundongos , Humanos , Animais , Dieta Hiperlipídica/efeitos adversos , Polifenóis/farmacologia , Polifenóis/metabolismo , Disbiose/prevenção & controle , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Fígado Gorduroso/prevenção & controle , Fígado/metabolismo , Inflamação/prevenção & controle , Inflamação/metabolismo , Diabetes Mellitus/metabolismo , Hipertrofia , Metabolismo Energético
20.
Nat Commun ; 14(1): 2748, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173315

RESUMO

Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is a soluble lipid-binding protein that transports phosphatidylcholine (PC) between cellular membranes. To better understand the protective metabolic effects associated with hepatic PC-TP, we generated a hepatocyte-specific PC-TP knockdown (L-Pctp-/-) in male mice, which gains less weight and accumulates less liver fat compared to wild-type mice when challenged with a high-fat diet. Hepatic deletion of PC-TP also reduced adipose tissue mass and decreases levels of triglycerides and phospholipids in skeletal muscle, liver and plasma. Gene expression analysis suggest that the observed metabolic changes are related to transcriptional activity of peroxisome proliferative activating receptor (PPAR) family members. An in-cell protein complementation screen between lipid transfer proteins and PPARs uncovered a direct interaction between PC-TP and PPARδ that was not observed for other PPARs. We confirmed the PC-TP- PPARδ interaction in Huh7 hepatocytes, where it was found to repress PPARδ-mediated transactivation. Mutations of PC-TP residues implicated in PC binding and transfer reduce the PC-TP-PPARδ interaction and relieve PC-TP-mediated PPARδ repression. Reduction of exogenously supplied methionine and choline reduces the interaction while serum starvation enhances the interaction in cultured hepatocytes. Together our data points to a ligand sensitive PC-TP- PPARδ interaction that suppresses PPAR activity.


Assuntos
Fígado Gorduroso , PPAR delta , Masculino , Animais , Camundongos , PPAR delta/genética , Fosfatidilcolinas/metabolismo , Ligantes , Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA