Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochem Biophys Res Commun ; 628: 141-146, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36084552

RESUMO

Aldehyde dehydrogenase 1A1 (ALDH1A1) is an enzyme that catalyzes the NAD+-dependent oxidation of aldehydes to carboxylic acids, participating in various metabolic processes. Currently, only structures from human and Ovis aries have been reported. Here we show a 2.89 Å resolution structure of ALDH1A1 from mice using X-ray crystallography. We performed a detailed analysis of the structure and compared it with ALDH1A1 structures from two other species, highlighting the significance of the differences. Structural superimposition reveals that the tetrameric molecule is asymmetrical, and the NAD+-binding domain exhibits a certain rotation. In addition, the noticeable structural differences were detected, including the unique contact between Ser461 and Asp148, as well as the side chain orientations of three amino acids residues, Asn474, Met471 and Phe466. This study helps to expand the structural diversity of the ALDH family.


Assuntos
Família Aldeído Desidrogenase 1 , Aldeído Desidrogenase , NAD , Retinal Desidrogenase , Aldeído Desidrogenase/química , Aldeído Desidrogenase/metabolismo , Família Aldeído Desidrogenase 1/química , Família Aldeído Desidrogenase 1/metabolismo , Aldeídos/metabolismo , Aminoácidos , Animais , Ácidos Carboxílicos , Cristalografia por Raios X , Camundongos , NAD/metabolismo , Retinal Desidrogenase/química , Retinal Desidrogenase/metabolismo
2.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056791

RESUMO

Aldehyde dehydrogenase-1a1 (ALDH1a1), the enzyme responsible for the oxidation of retinal into retinoic acid, represents a key therapeutic target for the treatment of debilitating disorders such as cancer, obesity, and inflammation. Drugs that can inhibit ALDH1a1 include disulfiram, an FDA-approved drug to treat chronic alcoholism. Disulfiram, by carbamylation of the catalytic cysteines, irreversibly inhibits ALDH1a1 and ALDH2. The latter is the isozyme responsible for important physiological processes such as the second stage of alcohol metabolism. Given the fact that ALDH1a1 has a larger substrate tunnel than that in ALDH2, replacing disulfiram ethyl groups with larger motifs will yield selective ALDH1a1 inhibitors. We report herein the synthesis of new inhibitors of ALDH1a1 where (hetero)aromatic rings were introduced into the structure of disulfiram. Most of the developed compounds retained the anti-ALDH1a1 activity of disulfiram; however, they were completely devoid of inhibitory activity against ALDH2.


Assuntos
Inibidores de Acetaldeído Desidrogenases/química , Inibidores de Acetaldeído Desidrogenases/farmacologia , Família Aldeído Desidrogenase 1/antagonistas & inibidores , Dissulfiram/química , Dissulfiram/farmacologia , Retinal Desidrogenase/antagonistas & inibidores , Inibidores de Acetaldeído Desidrogenases/síntese química , Inibidores de Acetaldeído Desidrogenases/metabolismo , Família Aldeído Desidrogenase 1/química , Família Aldeído Desidrogenase 1/metabolismo , Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeído-Desidrogenase Mitocondrial/química , Aldeído-Desidrogenase Mitocondrial/metabolismo , Dissulfiram/análogos & derivados , Dissulfiram/síntese química , Humanos , Simulação de Acoplamento Molecular , Proteínas Recombinantes/metabolismo , Retinal Desidrogenase/química , Retinal Desidrogenase/metabolismo
3.
Bioorg Med Chem Lett ; 40: 127958, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33744437

RESUMO

Disulfiram is an FDA-approved drug used to treat chronic alcoholism. This drug works by blocking the second step of ethanol metabolism by inhibiting aldehyde dehydrogenase-2 (ALDH2), the enzyme responsible for acetaldehyde oxidation into acetic acid. This leads to the accumulation of acetaldehyde in the blood following alcohol ingestion and to highly unpleasant symptoms known as acetaldehyde syndrome. Disulfiram also inhibits ALDH1a1, another member of the aldehyde dehydrogenases that catalyzes the oxidation of retinal into retinoic acid. ALDH1a1 represents a key therapeutic target for the treatment of important diseases such as cancer and obesity. The substrate tunnel is larger in ALDH1a1 than in ALDH2; therefore. Thus, replacing disulfiram ethyl groups with larger groups will yield selective ALDH1a1 inhibitors. In this work, we successfully synthesized derivative 2b, in which two ethyl groups were replaced by two para fluorobenzyl groups. The 2b derivative showed a comparable activity to disulfiram against ALDH1a1; however, it was completely devoid of inhibitory activity against ALDH2.


Assuntos
Inibidores de Acetaldeído Desidrogenases/química , Dissuasores de Álcool/química , Família Aldeído Desidrogenase 1/antagonistas & inibidores , Dissulfiram/análogos & derivados , Retinal Desidrogenase/antagonistas & inibidores , Inibidores de Acetaldeído Desidrogenases/síntese química , Dissuasores de Álcool/síntese química , Família Aldeído Desidrogenase 1/química , Aldeído-Desidrogenase Mitocondrial/antagonistas & inibidores , Aldeído-Desidrogenase Mitocondrial/química , Dissulfiram/síntese química , Ensaios Enzimáticos , Humanos , Retinal Desidrogenase/química , Especificidade por Substrato
4.
J Nat Prod ; 82(1): 16-26, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30620194

RESUMO

Bifunctional duocarmycin analogues are highly cytotoxic compounds that have been shown to be irreversible aldehyde dehydrogenase 1 inhibitors. Interestingly, cells with low aldehyde dehydrogenase 1 expression are also sensitive to bifunctional duocarmycin analogues, suggesting the existence of another target. Through in silico approaches, including principal component analysis, structure-similarity search, and docking calculations, protein tyrosine kinases, and especially the vascular endothelial growth factor receptor 2 (VEGFR-2), were predicted as targets of bifunctional duocarmycin analogues. Biochemical validation was performed in vitro, confirming the in silico results. Structural optimization was performed to mainly target VEGFR-2, but not aldehyde dehydrogenase 1. The optimized bifunctional duocarmycin analogue was synthesized. In vitro assays revealed this bifunctional duocarmycin analogue as a strong inhibitor of VEGFR-2, with low residual aldehyde dehydrogenase 1 activity. Altogether, studies revealed bifunctional duocarmycin analogues as a new class of naturally derived compounds that express a very high cytotoxicity to cancer cells overexpressing aldehyde dehydrogenase 1 as well as VEGFR-2.


Assuntos
Duocarmicinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Família Aldeído Desidrogenase 1/antagonistas & inibidores , Família Aldeído Desidrogenase 1/química , Humanos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
5.
Proteins ; 87(1): 81-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367523

RESUMO

The translocase of the outer membrane (TOM) mediates the membrane permeation of mitochondrial matrix proteins. Tom20 is a subunit of the TOM complex and binds to the N-terminal region (ie, presequence) in mitochondrial matrix precursor proteins. Previous experimental studies indicated that the presequence recognition by Tom20 was achieved in a dynamic-equilibrium among multiple bound states of the α-helical presequence. Accordingly, the co-crystallization of Tom20 and a presequence peptide required a disulfide-bond cross-linking. A 3-residue spacer sequence (XAG) was inserted between the presequence and the anchoring Cys residue at the C-terminus to not disturb the movement of the presequence peptide in the binding site of Tom20. Two crystalline forms were obtained according to Ala or Tyr at the X position of the spacer sequence, which may reflect the dynamic-equilibrium of the presequence. Here, we have performed replica-exchange molecular dynamics (REMD) simulations to study the effect of disulfide-bond linker and single amino acid difference in the spacer region of the linker on the conformational dynamics of Tom20-presequence complex. Free energy and network analyses of the REMD simulations were compared against previous simulations of non-tethered system. We concluded that the disulfide-bond tethering did not strongly affect the conformational ensemble of the presequence peptide in the complex. Further investigation showed that the choice of Ala or Tyr at the X position did not affect the most distributions of the conformational ensemble of the presequence. The present study provides a rational basis for the disulfide-bond tethering to study the dynamics of weakly binding complexes.


Assuntos
Família Aldeído Desidrogenase 1/química , Biologia Computacional/métodos , Proteínas de Membrana Transportadoras/química , Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Receptores de Superfície Celular/química , Família Aldeído Desidrogenase 1/metabolismo , Animais , Cristalização , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Precursores de Proteínas/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores de Superfície Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA