RESUMO
Introduction: Reducing Optic Atrophy 1 (OPA1) expression in skeletal muscle in male mice induces Activation Transcription Factor 4 (ATF4) and the integrated stress response (ISR). Additionally, skeletal muscle secretion of Fibroblast Growth Factor 21 (FGF21) is increased, which mediates metabolic adaptations including resistance to diet-induced obesity (DIO) and glucose intolerance in these mice. Although FGF21 induction in this model can be reversed with pharmacological attenuation of ER stress, it remains to be determined if ATF4 is responsible for FGF21 induction and its metabolic benefits in this model. Methods: We generated mice with homozygous floxed Opa1 and Atf4 alleles and a tamoxifen-inducible Cre transgene controlled by the human skeletal actin promoter to enable simultaneous depletion of OPA1 and ATF4 in skeletal muscle (mAO DKO). Mice were fed high fat (HFD) or control diet and evaluated for ISR activation, body mass, fat mass, glucose tolerance, insulin tolerance and circulating concentrations of FGF21 and growth differentiation factor 15 (GDF15). Results: In mAO DKO mice, ATF4 induction is absent. Other indices of ISR activation, including XBP1s, ATF6, and CHOP were induced in mAO DKO males, but not in mOPA1 or mAO DKO females. Resistance to diet-induced obesity was not reversed in mAO DKO mice of both sexes. Circulating FGF21 and GDF15 illustrated sexually dimorphic patterns. Loss of OPA1 in skeletal muscle increases circulating FGF21 in mOPA1 males, but not in mOPA1 females. Additional loss of ATF4 decreased circulating FGF21 in mAO DKO male mice, but increased circulating FGF21 in female mAO DKO mice. Conversely, circulating GDF15 was increased in mAO DKO males and mOPA1 females, but not in mAO DKO females. Conclusion: Sex differences exist in the transcriptional outputs of the ISR following OPA deletion in skeletal muscle. Deletion of ATF4 in male and female OPA1 KO mice does not reverse the resistance to DIO. Induction of circulating FGF21 is ATF4 dependent in males, whereas induction of circulating GDF15 is ATF4 dependent in females. Elevated GDF15 in males and FGF21 in females could reflect activation by other transcriptional outputs of the ISR, that maintain mitokine-dependent metabolic protection in an ATF4-independent manner.
Assuntos
Fator 4 Ativador da Transcrição , Fatores de Crescimento de Fibroblastos , GTP Fosfo-Hidrolases , Camundongos Knockout , Músculo Esquelético , Caracteres Sexuais , Animais , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos , Masculino , Músculo Esquelético/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Feminino , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Obesidade/metabolismo , Obesidade/genética , Dieta Hiperlipídica , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: Cachexia a multifactorial syndrome is a common sequala in patients with cancer. It varies from 42 to 80% depending upon the oncological stage and is directly responsible for 30% of deaths in these patients. Previous research from our laboratory demonstrated that peritoneal ovarian cancer generated in NSG mice resulted in skeletal and cardiac muscle atrophy - leading to loss of skeletal muscle mass and strength, and cardiac dysfunction (cachexia). Treatment of mice bearing i.p. tumors with withaferin A (WFA) showed reversal of skeletal muscle and cardiac cachexia. The present study is focused on determining effects of peritoneal ovarian tumors on kidney damage and effects of WFA treatment on ameliorating kidney damage. METHODS: We generated intraperitoneal ovarian cancer by injecting female NSG mice with ovarian cancer cell line (A2780). After one week of injecting cancer cells, mice were treated with WFA (4 mg/kg) every third day, for three weeks. After 4 weeks of injection of cancer cells, the mice were sacrificed and various tissues including kidney and blood were collected, snap-frozen in liquid nitrogen, and stored at -800C. The presence of kidney biomarker creatinine, was measured in the plasma by an ELISA. The mRNA was isolated from mouse kidneys and was used to examine the expression levels of signaling proteins, inflammatory cytokines, and genes responsible for inducing cachexia (IL-1ß, IL-6, TNF-α, TGF-ß, GDF-15, and MYD88). RESULTS: Our results showed a significant increase in levels of expression of inflammatory cytokine IL-1 ß (p < 0.01), IL-6 (p < 0.001), TNF-α (p < 0.001), and other related genes including TRAF6 (p < 0.01), MYD88 (p < 0.01), and GDF-15 (p = 0.005) in tumor-bearing mice compared to controls. Treatment of mice bearing tumors with WFA attenuated the increase in expression of each gene. In addition, our results showed a significant increase in creatinine levels in circulation in tumor-bearing mice compared to control mice. Treatment of tumor-bearing mice with WFA resulted in a significant decrease in plasma creatinine levels compared to tumor-bearing mice. CONCLUSIONS: Our results conclude that ovarian tumors in NSG mice caused kidney damage and renal dysfunction, which was effectively ameliorated by WFA treatment, suggesting a protective effect of WFA on kidney injury induced by ovarian cancer.
Assuntos
Citocinas , Neoplasias Ovarianas , Vitanolídeos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Animais , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/complicações , Camundongos , Citocinas/metabolismo , Linhagem Celular Tumoral , Humanos , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Modelos Animais de Doenças , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismoRESUMO
GDF15 and FGF21, stress-responsive cytokines primarily secreted from the liver, are promising therapeutic targets for metabolic dysfunction-associated steatotic liver disease (MASLD). However, the interaction between GDF15 and FGF21 remains unclear. We examined the effects of hepatocyte-specific GDF15 or FGF21 overexpression in high-fat diet (HFD)-fed mice for 8 weeks. Hydrodynamic injection of GDF15 or FGF21 sustained high circulating levels of GDF15 or FGF21, respectively, resulting in marked reductions in body weight, epididymal fat mass, insulin resistance, and hepatic steatosis. In addition, GDF15 treatment led to early reduction in body weight despite no change in food intake, indicating the role of GDF15 other than appetite loss. GDF15 treatment increased liver-derived serum FGF21 levels, whereas FGF21 treatment did not affect GDF15 expression. GDF15 promoted eIF2α phosphorylation and XBP1 splicing, leading to FGF21 induction. In murine AML12 hepatocytes treated with free fatty acids (FFAs), GDF15 overexpression upregulated Fgf21 mRNA levels and promoted eIF2α phosphorylation and XBP1 splicing. Overall, continuous exposure to excess FFAs resulted in a gradual increase of ß-oxidation-derived reactive oxygen species and endoplasmic reticulum stress, suggesting that GDF15 enhanced this pathway and induced FGF21 expression. GDF15- and FGF21-related crosstalk is an important pathway for the treatment of MASLD.
Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Fatores de Crescimento de Fibroblastos , Fator 15 de Diferenciação de Crescimento , Hepatócitos , Obesidade , Proteína 1 de Ligação a X-Box , Animais , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Dieta Hiperlipídica/efeitos adversos , Hepatócitos/metabolismo , Obesidade/metabolismo , Obesidade/genética , Camundongos , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Masculino , Fígado/metabolismo , Fígado/patologia , Resistência à Insulina , Camundongos Endogâmicos C57BL , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , FosforilaçãoRESUMO
There is no literature available about the growth differentiation factor-15 (GDF-15) biomarker in combination with mitochondrial DNA (mtDNA) deletions in insulin resistance (IR), and polycystic ovary syndrome (PCOS); however, it would be useful to achieve optimal metabolic status and improve pregnancy success. In this study, the role of GDF-15 and mtDNA deletions as biomarkers in the pathogenesis of IR and PCOS was investigated. In our study, 81 female patients who were treated for IR and/or PCOS and 41 healthy controls were included. GDF-15 levels in patients showed a marked increase compared to controls. Elevated GDF-15 levels were found in 12 patients; all of them had a BMI > 25 kg/m2, which is associated with reactive hyperinsulinemia. The presence of mitochondrial dysfunction was mainly observed in the IR-only subgroup. The increase in plasma levels of GDF-15 and the prevalence of mtDNA deletions is directly proportional to body mass index. The more marked metabolic abnormalities required more intensive drug therapy with a parallel increase in plasma GDF-15 levels. Elevated levels of GDF-15 and the presence of mitochondrial DNA deletions may be a consequence of carbohydrate metabolism disorders in patients and thus a predictor of the process of accelerated aging.
Assuntos
Biomarcadores , DNA Mitocondrial , Fator 15 de Diferenciação de Crescimento , Resistência à Insulina , Mitocôndrias , Síndrome do Ovário Policístico , Humanos , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/sangue , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Resistência à Insulina/genética , DNA Mitocondrial/genética , Biomarcadores/sangue , Adulto , Mitocôndrias/metabolismo , Mitocôndrias/genética , Deleção de Sequência , Estudos de Casos e Controles , Índice de Massa CorporalRESUMO
Uveitis is a vision-threatening disease primarily driven by a dysregulated immune response, with retinal microglia playing a pivotal role in its progression. Although the transcription factor EGR2 is known to be closely associated with uveitis, including Vogt-Koyanagi-Harada disease and Behcet's disease, and is essential for maintaining the dynamic homeostasis of autoimmunity, its exact role in uveitis remains unclear. In this study, diminished EGR2 expression was observed in both retinal microglia from experimental autoimmune uveitis (EAU) mice and inflammation-induced human microglia cell line (HMC3). We constructed a mice model with conditional knockout of EGR2 in microglia and found that EGR2 deficiency resulted in increased intraocular inflammation. Meanwhile, EGR2 overexpression downregulated the expression of inflammatory cytokines as well as cell migration and proliferation in HMC3 cells. Next, RNA sequencing and ChIP-PCR results indicated that EGR2 directly bound to its downstream target growth differentiation factor 15 (GDF15) and further regulated GDF15 transcription. Furthermore, intravitreal injection of GDF15 recombinant protein was shown to ameliorate EAU progression in vivo. Meanwhile, knockdown of GDF15 reversed the phenotype of EGR2 overexpression-induced microglial inflammation in vitro. In summary, this study highlighted the protective role of the transcription factor EGR2 in AU by modulating the microglial phenotype. GFD15 was identified as a downstream target of EGR2, providing a unique target for uveitis treatment.
Assuntos
Doenças Autoimunes , Proteína 2 de Resposta de Crescimento Precoce , Fator 15 de Diferenciação de Crescimento , Microglia , Uveíte , Animais , Humanos , Camundongos , Doenças Autoimunes/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Doenças Autoimunes/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Proteína 2 de Resposta de Crescimento Precoce/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Fenótipo , Retina/metabolismo , Retina/patologia , Uveíte/imunologia , Uveíte/metabolismo , Uveíte/patologia , Uveíte/genéticaRESUMO
Noise-induced hidden hearing loss (HHL) is a newly uncovered form of hearing impairment that causes hidden damage to the cochlea. Patients with HHL do not have significant abnormalities in their hearing thresholds, but they experience impaired speech recognition in noisy environments. However, the mechanisms underlying HHL remain unclear. In this study, we developed single-cell transcriptome profiles of the cochlea of mice with HHL, detailing changes in individual cell types. Our study revealed a transient threshold shift, reduced auditory brainstem response wave I amplitude, and decreased number of ribbon synapses in HHL mice. Our findings suggest elevated oxidative stress and GDF15 expression in cochlear hair cells of HHL mice. Notably, the upregulation of GDF15 attenuated oxidative stress and auditory impairment in the cochlea of HHL mice. This suggests that a therapeutic strategy targeting GDF15 may be efficacious against HHL.
Assuntos
Fator 15 de Diferenciação de Crescimento , Perda Auditiva Provocada por Ruído , Estresse Oxidativo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos , Cóclea/metabolismo , Cóclea/patologia , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Masculino , Camundongos Endogâmicos C57BL , Potenciais Evocados Auditivos do Tronco Encefálico , Ruído/efeitos adversos , Transcriptoma/genética , Modelos Animais de Doenças , Perda Auditiva OcultaRESUMO
BACKGROUND: Plasma growth differentiation factor 15 (GDF15) and N-terminal proB-type natriuretic peptide (NT-proBNP) are cardiovascular biomarkers that associate with a range of diseases. Epigenetic scores (EpiScores) for GDF15 and NT-proBNP may provide new routes for risk stratification. RESULTS: In the Generation Scotland cohort (N ≥ 16,963), GDF15 levels were associated with incident dementia, ischaemic stroke and type 2 diabetes, whereas NT-proBNP levels were associated with incident ischaemic heart disease, ischaemic stroke and type 2 diabetes (all PFDR < 0.05). Bayesian epigenome-wide association studies (EWAS) identified 12 and 4 DNA methylation (DNAm) CpG sites associated (Posterior Inclusion Probability [PIP] > 95%) with levels of GDF15 and NT-proBNP, respectively. EpiScores for GDF15 and NT-proBNP were trained in a subset of the population. The GDF15 EpiScore replicated protein associations with incident dementia, type 2 diabetes and ischaemic stroke in the Generation Scotland test set (hazard ratios (HR) range 1.36-1.41, PFDR < 0.05). The EpiScore for NT-proBNP replicated the protein association with type 2 diabetes, but failed to replicate an association with ischaemic stroke. EpiScores explained comparable variance in protein levels across both the Generation Scotland test set and the external LBC1936 test cohort (R2 range of 5.7-12.2%). In LBC1936, both EpiScores were associated with indicators of poorer brain health. Neither EpiScore was associated with incident dementia in the LBC1936 population. CONCLUSIONS: EpiScores for serum levels of GDF15 and Nt-proBNP associate with body and brain health traits. These EpiScores are provided as potential tools for disease risk stratification.
Assuntos
Biomarcadores , Metilação de DNA , Diabetes Mellitus Tipo 2 , Fator 15 de Diferenciação de Crescimento , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/genética , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Metilação de DNA/genética , Biomarcadores/sangue , Escócia , Demência/sangue , Demência/genética , Epigênese Genética , AVC Isquêmico/sangue , AVC Isquêmico/genética , Teorema de Bayes , Estudos de CoortesRESUMO
Nasopharyngeal carcinoma (NPC) originates from the nasopharynx epithelium, and luteolin is recognized as an important anti-cancer agent. This study investigated the effects of luteolin on ferroptosis in NPC cells. NPC cells were cultured and exposed to varying concentrations of luteolin. Cell viability, malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, glutathione (GSH) levels, Fe2+ concentration, and glutathione peroxidase 4 (GPX4) protein level were assessed. Additionally, SRY-related high-mobility-group box 4 (SOX4) expression was measured. Subsequently, the binding of SOX4 to the growth differentiation factor-15 (GDF15) promoter and GDF15 mRNA levels were evaluated. The impact of the SOX4/GDF15 axis on luteolin-induced ferroptosis in NPC cells was assayed. Luteolin treatment induced cell ferroptosis, evidenced by decreased cell viability, increased MDA and Fe2+ levels, and reduced SOD, GSH, and GPX4 levels. Furthermore, luteolin downregulated SOX4 expression, while overexpression of SOX4 reversed luteolin's pro-ferroptotic effects in NPC cells. SOX4 was found to up-regulate GDF15 transcription by directly binding to its promoter. Conversely, overexpression of GDF15 mitigated the ferroptotic effects induced by luteolin in NPC cells. Therefore, luteolin induces ferroptosis in NPC cells via modulation of the SOX4/GDF15 axis. In conclusion, luteolin reduces the binding of SOX4 to the GDF15 promoter by suppressing SOX4 expression, thereby down-regulating GDF15 transcription levels and inducing ferroptosis in NPC cells.
Assuntos
Sobrevivência Celular , Ferroptose , Fator 15 de Diferenciação de Crescimento , Luteolina , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Luteolina/farmacologia , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , Antineoplásicos/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Regiões Promotoras Genéticas/genéticaRESUMO
Growth differentiation factor 15 (GDF15) is a secreted protein that regulates food intake, body weight and stress responses in pre-clinical models1. The physiological function of GDF15 in humans remains unclear. Pharmacologically, GDF15 agonism in humans causes nausea without accompanying weight loss2, and GDF15 antagonism is being tested in clinical trials to treat cachexia and anorexia. Human genetics point to a role for GDF15 in hyperemesis gravidarum, but the safety or impact of complete GDF15 loss, particularly during pregnancy, is unknown3-7. Here we show the absence of an overt phenotype in human GDF15 loss-of-function carriers, including stop gains, frameshifts and the fully inactivating missense variant C211G3. These individuals were identified from 75,018 whole-exome/genome-sequenced participants in the Pakistan Genomic Resource8,9 and recall-by-genotype studies with family-based recruitment of variant carrier probands. We describe 8 homozygous ('knockouts') and 227 heterozygous carriers of loss-of-function alleles, including C211G. GDF15 knockouts range in age from 31 to 75 years, are fertile, have multiple children and show no consistent overt phenotypes, including metabolic dysfunction. Our data support the hypothesis that GDF15 is not required for fertility, healthy pregnancy, foetal development or survival into adulthood. These observations support the safety of therapeutics that block GDF15.
Assuntos
Fator 15 de Diferenciação de Crescimento , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Fenótipo , Idoso , Gravidez , Homozigoto , Mutação com Perda de FunçãoRESUMO
Growth and differentiation factor 15 (GDF15) has recently emerged as a weight loss and insulin-sensitizing factor. Growing evidence also supports a role for GDF15 as a physiological, exercise-induced stress signal. Here, we tested whether GDF15 is required for the insulin-sensitizing effects of exercise in mice and humans. At baseline, both under a standard nutritional state and high-fat feeding, GDF15 knockout (KO) mice display normal glucose tolerance, systemic insulin sensitivity, maximal speed, and endurance running capacity when compared to wild-type littermates independent of sex. When submitted to a 4-week exercise training program, both lean and obese wild-type and GDF15 KO mice similarly improve their endurance running capacity, glucose tolerance, systemic insulin sensitivity, and peripheral glucose uptake. Insulin-sensitizing effects of exercise training were also unrelated to changes in plasma GDF15 in humans. In summary, we here show that GDF15 is dispensable for the insulin-sensitizing effects of chronic exercise.
Assuntos
Fator 15 de Diferenciação de Crescimento , Resistência à Insulina , Insulina , Camundongos Knockout , Condicionamento Físico Animal , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Humanos , Masculino , Insulina/metabolismo , Insulina/sangue , Feminino , Camundongos , Camundongos Endogâmicos C57BL , AdultoRESUMO
Chemotherapy, the standard of care treatment for cancer patients with advanced disease, has been increasingly recognized to activate host immune responses to produce durable outcomes. Here, in colorectal adenocarcinoma (CRC) we identify oxaliplatin-induced Thioredoxin-Interacting Protein (TXNIP), a MondoA-dependent tumor suppressor gene, as a negative regulator of Growth/Differentiation Factor 15 (GDF15). GDF15 is a negative prognostic factor in CRC and promotes the differentiation of regulatory T cells (Tregs), which inhibit CD8 T-cell activation. Intriguingly, multiple models including patient-derived tumor organoids demonstrate that the loss of TXNIP and GDF15 responsiveness to oxaliplatin is associated with advanced disease or chemotherapeutic resistance, with transcriptomic or proteomic GDF15/TXNIP ratios showing potential as a prognostic biomarker. These findings illustrate a potentially common pathway where chemotherapy-induced epithelial oxidative stress drives local immune remodeling for patient benefit, with disruption of this pathway seen in refractory or advanced cases.
Assuntos
Adenocarcinoma , Proteínas de Transporte , Neoplasias Colorretais , Fator 15 de Diferenciação de Crescimento , Oxaliplatina , Humanos , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Proteínas de Transporte/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
OBJECTIVE: Growth differentiation factor 15 (GDF15), a stress related cytokine, was recently identified as a novel satiety signal acting via the GFRAL receptor located in the hindbrain. Bitter compounds are known to induce satiety via the release of glucagon-like peptide 1 (GLP-1) through activation of bitter taste receptors (TAS2Rs, 25 subtypes) on enteroendocrine cells in the gut. This study aimed to investigate whether and how bitter compounds induce a stress response in intestinal epithelial cells to affect GDF15 expression in patients with obesity, thereby facilitating satiety signaling from the gut. METHODS: The acute effect of oral intake of the bitter-containing medication Plaquenil (hydroxychloroquine sulfate) on plasma GDF15 levels was evaluated in a placebo-controlled, double-blind, randomized, two-visit crossover study in healthy volunteers. Primary crypts isolated from the jejunal mucosa from patients with obesity were stimulated with vehicle or bitter compounds, and the effect on GDF15 expression was evaluated using RT-qPCR or ELISA. Immunofluorescence colocalization studies were performed between GDF15, epithelial cell type markers and TAS2Rs. The role of TAS2Rs was tested by 1) pretreatment with a TAS2R antagonist, GIV3727; 2) determining TAS2R4/43 polymorphisms that affect taste sensitivity to TAS2R4/43 agonists. RESULTS: Acute intake of hydroxychloroquine sulfate increased GDF15 plasma levels, which correlated with reduced hunger scores and plasma ghrelin levels in healthy volunteers. This effect was mimicked in primary jejunal cultures from patients with obesity. GDF15 was expressed in enteroendocrine and goblet cells with higher expression levels in patients with obesity. Various bitter-tasting compounds (medicinal, plant extracts, bacterial) either increased or decreased GDF15 expression, with some also affecting GLP-1. The effect was mediated by specific intestinal TAS2R subtypes and the unfolded protein response pathway. The bitter-induced effect on GDF15/GLP-1 expression was influenced by the existence of TAS2R4 amino acid polymorphisms and TAS2R43 deletion polymorphisms that may predict patient's therapeutic responsiveness. However, the effect of the bitter-tasting antibiotic azithromycin on GDF15 release was mediated via the motilin receptor, possibly explaining some of its aversive side effects. CONCLUSIONS: Bitter chemosensory and pharmacological receptors regulate the release of GDF15 from human gut epithelial cells and represent potential targets for modulating metabolic disorders or cachexia.
Assuntos
Peptídeo 1 Semelhante ao Glucagon , Fator 15 de Diferenciação de Crescimento , Obesidade , Receptores dos Hormônios Gastrointestinais , Humanos , Obesidade/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Masculino , Adulto , Feminino , Método Duplo-Cego , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/sangue , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Paladar , Pessoa de Meia-Idade , Mucosa Intestinal/metabolismo , Estudos Cross-Over , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Adulto JovemRESUMO
Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-ß superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.
Assuntos
Ferroptose , Fator 15 de Diferenciação de Crescimento , Miócitos Cardíacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sepse , Transdução de Sinais , Proteína 1 Supressora da Sinalização de Citocina , Animais , Masculino , Camundongos , Cardiomiopatias/metabolismo , Cardiomiopatias/etiologia , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Sepse/complicações , Sepse/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genéticaRESUMO
Plasma growth differentiation factor-15 (GDF-15) levels increase with obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) but the underlying mechanism remains poorly defined. Using male mouse models of obesity and MASLD, and biopsies from carefully-characterized patients regarding obesity, type 2 diabetes (T2D) and MASLD status, we identify adipose tissue (AT) as the key source of GDF-15 at onset of obesity and T2D, followed by liver during the progression towards metabolic dysfunction-associated steatohepatitis (MASH). Obesity and T2D increase GDF15 expression in AT through the accumulation of macrophages, which are the main immune cells expressing GDF15. Inactivation of Gdf15 in macrophages reduces plasma GDF-15 concentrations and exacerbates obesity in mice. During MASH development, Gdf15 expression additionally increases in hepatocytes through stress-induced TFEB and DDIT3 signaling. Together, these results demonstrate a dual contribution of AT and liver to GDF-15 production in metabolic diseases and identify potential therapeutic targets to raise endogenous GDF-15 levels.
Assuntos
Tecido Adiposo , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Fator 15 de Diferenciação de Crescimento , Hepatócitos , Macrófagos , Obesidade , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Obesidade/metabolismo , Obesidade/patologia , Hepatócitos/metabolismo , Masculino , Macrófagos/metabolismo , Camundongos , Humanos , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Transdução de SinaisRESUMO
Type 1 diabetes (T1D) is a chronic metabolic disease resulting from an autoimmune destruction of pancreatic beta cells. Beta cells activate various stress responses during the development of T1D, including senescence, which involves cell cycle arrest, prosurvival signaling, and a proinflammatory secretome termed the senescence-associated secretory phenotype (SASP). We previously identified growth and differentiation factor 15 (GDF15) as a major SASP factor in human islets and human EndoC-ßH5 beta cells in a model of DNA damage-mediated senescence that recapitulates features of senescent beta cells in T1D. Soluble GDF15 has been shown to exert protective effects on human and mouse beta cells during various forms of stress relevant to T1D; therefore, we hypothesized that secreted GDF15 may play a prosurvival role during DNA damage-mediated senescence in human beta cells. We found that elevated GDF15 secretion was associated with endogenous senescent beta cells in an islet preparation from a T1D donor, supporting the validity of our DNA damage model. Using antibody-based neutralization, we found that secreted endogenous GDF15 was not required for senescent human islet or EndoC cell viability. Rather, neutralization of GDF15 led to reduced expression of specific senescence-associated genes, including GDF15 itself and the prosurvival gene BCL2-like protein 1 (BCL2L1). Taken together, these data suggest that SASP factor GDF15 is not required to sustain senescent human islet viability, but it is required to maintain senescence-associated transcriptional responses.NEW & NOTEWORTHY Beta cell senescence is an emerging contributor to the pathogenesis of type 1 diabetes, but candidate therapeutic targets have not been identified in human beta cells. In this study, we examined the role of a secreted factor, GDF15, and found that although it is not required to maintain viability during senescence, it is required to fine-tune gene expression programs involved in the senescence response during DNA damage in human beta cells.
Assuntos
Senescência Celular , Diabetes Mellitus Tipo 1 , Fator 15 de Diferenciação de Crescimento , Células Secretoras de Insulina , Humanos , Sobrevivência Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Dano ao DNA , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Células Secretoras de Insulina/metabolismo , Fenótipo Secretor Associado à Senescência , Transcrição GênicaRESUMO
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease that remains a serious global health issue. Ferroptosis has been recognized as a vital driver of pathological progression of AD. However, the detailed regulatory mechanisms of ferroptosis during AD progression remain unclear. This study aimed to explore the regulatory role and mechanism of methyltransferase like 14 (METTL14) in ferroptosis in AD models. METHODS: Serum samples were collected from 18 AD patients and 18 healthy volunteers to evaluate clinical correlation. Scopolamine-treated mice and Aß1-42-stimulated SH-SY5Y cells were served as the in vivo and in vitro models of AD. Ferroptosis was detected by reactive oxygen species (ROS), Fe2+, total iron levels, and ferroptosis-related proteins glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. The N6-methyladenosine (m6A) modification was detected by RNA methylation quantification kit and methylated RNA immunoprecipitation sequencing-quantitative real-time polymerase chain reaction (MeRIP-qPCR). Molecular mechanisms were investigated by RNA pull-down, RNA immunoprecipitation (RIP), and co-immunoprecipitation (Co-IP) assays. Cognitive disorder of AD mice was measured by Morris water maze test. RESULTS: METTL14 was down-regulated, while lncRNA taurine upregulated gene 1 (TUG1) was up-regulated in clinical patients and experimental models of AD. Functional experiments demonstrated that METTL14 overexpression or TUG1 silencing effectively attenuated Aß1-42-induced ferroptosis and neurotoxicity in SH-SY5Y cells. Mechanistically, METTL14-mediated m6A modification reduced the stability of TUG1. Moreover, TUG1 promoted the ubiquitination and degradation of growth differentiation factor 15 (GDF15) by directly interacted with Smad ubiquitin regulatory factor 1 (SMURF1), which consequently inactivated nuclear factor erythroid 2-related factor 2 (NRF2). Rescue experiments indicated that GDF15 depletion reversed sh-TUG1-mediated protection against ferroptosis and neurotoxicity. Finally, Mettl14 overexpression repressed ferroptosis to ameliorate the cognitive disorder via modulating Tug1/Gdf15/Nrf2 pathway in vivo. CONCLUSION: METTL14 inhibited ferroptosis to ameliorate AD pathological development by m6A modification of TUG1 to activate GDF15/NRF2 axis, providing a novel therapeutic target for AD.
Assuntos
Doença de Alzheimer , Ferroptose , Fator 15 de Diferenciação de Crescimento , Metiltransferases , RNA Longo não Codificante , Ubiquitinação , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Masculino , Camundongos , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Feminino , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Idoso , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND AND PURPOSE: Growth differentiation factor 15 (GDF15) has emerged as a promising biomarker in cerebro-cardiovascular disease, particularly in acute and chronic inflammatory stress situations. However, understanding the origins, targets and functions of GDF15 in clinical situations, such as ischemic stroke, remains a complex challenge. This study aims to assess the sources of GDF15 production following an experimental ischemic stroke. METHODS: Adult male Wistar rats underwent cerebral embolization through microspheres injection into the left or right internal carotid artery. Two hours post-surgery, GDF15 expression was analyzed in the brain, blood, lungs, liver and heart using quantitative RT-PCR and Western blotting. RESULTS: Stroke model induced large cerebral infarcts accompanied by severe neurological deficits. GDF15 gene expression exhibited a substantial increase in the ipsilateral cortex and cerebellum, with a lesser extent in the contralateral cortex. Regarding GDF15 protein expression, proGDF15 levels were elevated in the 3 aforementioned organs mentioned and the heart. However, the mature form of GDF15 was exclusively present and increased in the heart. Finally, the expression of GDF15 expression was correlated with the neurological deficit score. CONCLUSIONS: Our findings suggest that both the GDF15 gene and pro-protein are expressed in the ischemic brain after a stroke, while only its mature form is expressed remotely in in the heart. The impact of increased GDF15 in the heart following a stroke remains to be established. This is particularly relevant in understanding its relationships with poor neurological outcomes, determining whether it may contribute to stroke-induced cardiac dysfunction.
Assuntos
Fator 15 de Diferenciação de Crescimento , Ratos Wistar , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Animais , Masculino , Ratos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/complicações , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/genéticaRESUMO
Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.
Assuntos
Catarata , Transição Epitelial-Mesenquimal , Fator 15 de Diferenciação de Crescimento , Cristalino , Fator de Crescimento Transformador beta2 , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Catarata/patologia , Catarata/metabolismo , Catarata/prevenção & controle , Camundongos , Cristalino/metabolismo , Cristalino/patologia , Cristalino/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Western Blotting , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismoRESUMO
This study aimed to construct an eukaryotic expression vector, pEGFP-N1-MIC-1, for overexpressing the mouse macrophage inhibitory cytokine-1 (MIC-1) gene. Additionally, we transfected the MFC cell line to observe the upregulation of MIC-1 gene expression and assess its impact on macrophage phenotype conversion. Enzyme digestion and DNA sequencing confirmed the successful construction of the pEGFP-N1-MIC-1 vector. The transfected MFC cells exhibited a significant increase in MIC-1 protein expression levels. Furthermore, transfection with pEGFP-N1-MIC-1 increased the migration and colony formation capabilities of MFC cells. These results may contribute to future research and the development of therapeutic interventions targeting MIC-1 in macrophages, particularly in the context of gastric cancer.
Assuntos
Vetores Genéticos , Fator 15 de Diferenciação de Crescimento , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Vetores Genéticos/genética , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Movimento Celular/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Transfecção , Macrófagos/metabolismo , HumanosRESUMO
Abnormal functions of trophoblast cells are associated with the pathogenesis of preeclampsia (PE). Nuclear receptor subfamily 2 group F member 1 (NR2F1) acts as a transcriptionally regulator in many diseases, but its role in PE remains unknown. Hypoxia/reoxygenation (H/R)-stimulated HTR-8/SVneo cells were used to mimic PE injury in vitro. NR2F1 overexpression alleviated trophoblast apoptosis, as evidenced by the decreased number of TUNEL-positive cells and the downregulation of caspase 3 and caspase 9 expression in cells. NR2F1 overexpression increased the invasion and migration ability of HTR-8/SVneo cells, accompanied by increased protein levels of matrix metalloproteinase (MMP)-2 and MMP-9. mRNA-seq was applied to explore the underlying mechanism of NR2F1, identifying growth differentiation factor 15 (GDF15) as the possible downstream effector. Dual-luciferase reporter, ChIP-qPCR, and DNA pull-down assays confirmed that NR2F1 bound to the promoter of GDF15 and transcriptionally inhibited its expression. GDF15 overexpression increased apoptosis and decreased the ability of invasion and migration in HTR-8/SVneo cells expressing NR2F1. MAPK pathway was involved in the regulation of PE. Administration of p38 inhibitor, ERK inhibitor, and JNK inhibitor reversed the effect of simultaneous overexpression NR2F1 and GDF15 on trophoblast apoptosis, invasion, and migration. Our findings demonstrated that NR2F1 overexpression inhibited trophoblast apoptosis and promoted trophoblast invasion and migration. NR2F1 might negatively regulate GDF15 expression by binding to its promoter region, which further inhibited MAPK signaling pathway in PE. Our study highlights that NR2F1 might sever as a potential target in PE.