Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Anal Chem ; 96(16): 6209-6217, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607319

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but dangerous side effect of adenoviral-vectored COVID-19 vaccines. VITT had been linked to production of autoantibodies recognizing platelet factor 4 (PF4). Here, we characterize anti-PF4 antibodies obtained from a VITT patient's blood. Intact mass measurements indicate that a significant fraction of these antibodies represent a limited number of clones. MS analysis of large antibody fragments (the light chain and the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire and reveals the presence of a mature complex biantennary N-glycan within the Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS was used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to the IgG2 subclass and verifies that the light chain belongs to the λ-type. Incorporation of enzymatic de-N-glycosylation into the peptide mapping routine allows the N-glycan in the Fab region of the antibody to be localized to the framework 3 region of the VH domain. This novel N-glycosylation site is the result of a single mutation within the germline sequence. Peptide mapping also provides information on lower-abundance (polyclonal) components of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1-IgG4) and both types of the light chain (λ and κ). This case study demonstrates the power of combining the intact, middle-down, and bottom-up MS approaches for meaningful characterization of ultralow quantities of pathogenic antibodies extracted directly from patients' blood.


Assuntos
Fator Plaquetário 4 , Humanos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/química , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Autoanticorpos/imunologia , Autoanticorpos/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Púrpura Trombocitopênica Trombótica/induzido quimicamente , Púrpura Trombocitopênica Trombótica/imunologia
2.
Biomolecules ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540666

RESUMO

Pathogenic platelet factor 4 (PF4) antibodies contributed to the abnormal coagulation profiles in COVID-19 and vaccinated patients. However, the mechanism of what triggers the body to produce these antibodies has not yet been clarified. Similar patterns and many comparable features between the COVID-19 virus and heparin-induced thrombocytopenia (HIT) have been reported. Previously, we identified a new mechanism of autoimmunity in HIT in which PF4-antibodies self-clustered PF4 and exposed binding epitopes for other pathogenic PF4/eparin antibodies. Here, we first proved that the SARS-CoV-2 spike protein (SP) also binds to PF4. The binding was evidenced by the increase in mass and optical intensity as observed through quartz crystal microbalance and immunosorbent assay, while the switching of the surface zeta potential caused by protein interactions and binding affinity of PF4-SP were evaluated by dynamic light scattering and isothermal spectral shift analysis. Based on our results, we proposed a mechanism for the generation of PF4 antibodies in COVID-19 patients. We further validated the changes in zeta potential and interaction affinity between PF4 and SP and found that their binding mechanism differs from ACE2-SP binding. Importantly, the PF4/SP complexes facilitate the binding of anti-PF4/Heparin antibodies. Our findings offer a fresh perspective on PF4 engagement with the SARS-CoV-2 SP, illuminating the role of PF4/SP complexes in severe thrombotic events.


Assuntos
COVID-19 , Trombocitopenia , Humanos , Anticorpos Monoclonais Humanizados , Fatores Imunológicos , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus
3.
Artigo em Inglês | MEDLINE | ID: mdl-38199058

RESUMO

Heparin-induced thrombocytopenia (HIT) is an immune complication of heparin therapy. Antibodies binding to complexes of platelet factor 4 (PF4) and heparin is the trigger of HIT. A method using size exclusion chromatography with multi-angle laser light scattering detector (SEC-MALS) was developed in this work. The soluble ultra-large complex (ULC) was separated from the small complex (SC) and their molecular weights (MWs) were firstly measured. The complexes of PF4 and three heparins with different MW, including unfractionated heparin (UFH), dalteparin (Daltep) and enoxaparin (Eno) were characterized using this method. The contents and the sizes of ULC increased gradually when heparins were added to PF4 to certain amounts. While, they reduced after more heparins were added. It is the first time to measure the MWs of the biggest ULC of PF4-heparins as millions of Dalton. at the proper ratios of PF4 to heparin (PHR). Meanwhile, those mixtures at those certain PHRs induced the higher expression of CD83 and CD14 markers on dendritic cells (DCs) suggesting that they had stronger immunogenicity and is critical for HIT.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/farmacologia , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Anticoagulantes/química , Trombocitopenia/induzido quimicamente , Fatores Imunológicos , Cromatografia em Gel
4.
Front Cell Infect Microbiol ; 13: 1217103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868353

RESUMO

The complement receptor CR3, also known as integrin Mac-1 (CD11b/CD18), is one of the major phagocytic receptors on the surface of neutrophils and macrophages. We previously demonstrated that in its protein ligands, Mac-1 binds sequences enriched in basic and hydrophobic residues and strongly disfavors negatively charged sequences. The avoidance by Mac-1 of negatively charged surfaces suggests that the bacterial wall and bacterial capsule possessing net negative electrostatic charge may repel Mac-1 and that the cationic Mac-1 ligands can overcome this evasion by acting as opsonins. Indeed, we previously showed that opsonization of Gram-negative Escherichia coli with several cationic peptides, including PF4 (Platelet Factor 4), strongly augmented phagocytosis by macrophages. Here, we investigated the effect of recombinant PF4 (rPF4) on phagocytosis of Gram-positive Staphylococcus aureus in vitro and examined its impact in a mouse model of S. aureus peritonitis. Characterization of the interaction of rPF4 with nonencapsulated and encapsulated S. aureus showed that rPF4 localizes on the bacterial surface, thus making it available for Mac-1. Furthermore, rPF4 did not have direct bactericidal and bacteriostatic activity and was not toxic to host cells. rPF4 enhanced phagocytosis of S. aureus bioparticles by various primary and cultured Mac-1-expressing leukocytes by several folds. It also increased phagocytosis of live nonencapsulated and encapsulated bacteria. Notably, the augmentation of phagocytosis by rPF4 did not compromise the intracellular killing of S. aureus by macrophages. Using a murine S. aureus peritonitis model, we showed that treatment of infected mice with rPF4 caused a significant increase in the clearance of antibiotic-susceptible S. aureus and its methicillin-resistant (MRSA) variant and markedly improved survival. These findings indicate that rPF4 binding to the bacterial surface circumvents its antiphagocytic properties, improving host defense against antibiotic-susceptible and antibiotic-resistant bacteria.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Peritonite , Animais , Camundongos , Antibacterianos/farmacologia , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Staphylococcus aureus/metabolismo , Modelos Animais de Doenças , Fagocitose , Antígeno de Macrófago 1/metabolismo , Fatores Imunológicos , Peritonite/tratamento farmacológico
5.
Curr Opin Hematol ; 30(6): 219-229, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603711

RESUMO

PURPOSE OF REVIEW: Platelet factor 4 (PF4, CXCL4), the most abundant α-granule platelet-specific chemokine, forms tetramers with an equatorial ring of high positive charge that bind to a wide range of polyanions, after which it changes conformation to expose antigenic epitopes. Antibodies directed against PF4 not only help to clear infection but can also lead to the development of thrombotic disorders such as heparin-induced thrombocytopenia (HIT) and vaccine-induced thrombocytopenia and thrombosis (VITT). This review will outline the different mechanisms through which PF4 engagement with polyanions combats infection but also contributes to the pathogenesis of inflammatory and thrombotic disease states. RECENT FINDINGS: Recent work has shown that PF4 binding to microbial polyanions may improve outcomes in infection by enhancing leukocyte-bacterial binding, tethering pathogens to neutrophil extracellular traps (NETs), decreasing the thrombotic potential of NET DNA, and modulating viral infectivity. However, PF4 binding to nucleic acids may enhance their recognition by innate immune receptors, leading to autoinflammation. Lastly, while HIT is induced by platelet activating antibodies that bind to PF4/polyanion complexes, VITT, which occurs in a small subset of patients treated with COVID-19 adenovirus vector vaccines, is characterized by prothrombotic antibodies that bind to PF4 alone. SUMMARY: Investigating the complex interplay of PF4 and polyanions may provide insights relevant to the treatment of infectious disease while also improving our understanding of the pathogenesis of thrombotic disorders driven by anti-PF4/polyanion and anti-PF4 antibodies.


Assuntos
COVID-19 , Trombocitopenia , Humanos , Heparina/efeitos adversos , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Trombocitopenia/patologia , Anticorpos/efeitos adversos
6.
Biochemistry ; 62(3): 722-734, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36626574

RESUMO

Chemokine CXCL4L1, a homologue of CXCL4, is a more potent antiangiogenic ligand. Its structural property is correlated with the downstream receptor binding. The two chemokines execute their functions by binding the receptors of CXCR3A and CXCR3B. The receptors differ by an extra 51-residue extension in the CXCR3B N-terminus. To understand the binding specificity, a GB1 protein scaffold was used to carry different CXCR3 extracellular elements, and artificial CXCL4 and CXCL4L1 monomers were engineered for the binding assay. We first characterized the molten globule property of CXCL4L1. The structural property causes the CXCL4L1 tetramer to dissociate into monomers in low concentrations, but native CXCL4 adopts a stable tetramer structure in solution. In the titration experiments, the combination of the CXCR3A N-terminus and receptor extracellular loop 2 provided moderate and comparable binding affinities to CXCL4 and CXCL4L1, while sulfation on the CXCR3A N-terminal tyrosine residues provided binding specificity. However, the CXCR3B N-terminal extension did not show significant enhancement in the binding of CXCL4 or CXCL4L1. This result indicates that the tendency to form a chemokine monomer and the binding affinity together contribute the high antiangiogenic activity of CXCL4L1.


Assuntos
Quimiocinas , Fator Plaquetário 4 , Fator Plaquetário 4/química , Fator Plaquetário 4/metabolismo , Receptores CXCR3/química
9.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445266

RESUMO

The rare but dangerous adverse events evidenced after massive vaccination against SARS-CoV-2 are represented by thrombosis and thrombocytopenia. The patients diagnosed with severe COVID-19 may develop a pro-thrombotic state with a much higher frequency, thus we decided to investigate the role of Spike protein (the only common product of the two conditions) or the anti-Spike antibodies in the etiopathogenesis of thrombosis. A pathogenic Platelet Factor 4 (PF4)-dependent syndrome, unrelated to the use of heparin therapy, has been reported after the administration of vaccines in the patients manifesting acute thrombocytopenia and thrombosis. Thus, we aimed at shedding light on the structural similarities of Spike of SARS-CoV-2 and PF4 on their eventual biochemical interactions and on the role of their specific antibodies. The similarities between PF4 and Spike-RBD proteins were evaluated by a comparison of the structures and by testing the cross-reactivity of their specific antibodies by ELISA assays. We found that the anti-Spike antibodies do not recognize PF4, on the contrary, the anti-PF4 antibodies show some cross-reactivity for Spike-RBD. More interestingly, we report for the first time that the PF4 and Spike-RBD proteins can bind each other. These data suggest that the interaction of the two proteins could be involved in the generation of anti-PF4 antibodies, their binding to Spike-RBD, which could lead to platelets aggregation due also to their high expression of ACE2.


Assuntos
Vacinas contra COVID-19/efeitos adversos , COVID-19/imunologia , Fator Plaquetário 4 , Glicoproteína da Espícula de Coronavírus , Reações Cruzadas , Humanos , Fator Plaquetário 4/química , Fator Plaquetário 4/imunologia , Ligação Proteica , Conformação Proteica , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Trombocitopenia/patologia , Trombose/patologia
11.
J Phys Chem B ; 124(8): 1438-1443, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31944769

RESUMO

Heparin-induced thrombocytopenia (HIT), an adverse drug effect, has gained much attention. Affected patients have a high risk of new thrombotic complications. In addition, HIT is also a model to study mechanisms of immune-mediated disorders. Platelet factor 4 (PF4) is the key protein involved. It is the basis for many diagnostic tests for HIT and is used for in vitro studies and in mouse models on the pathogenesis of HIT. Purified PF4 is known to easily form aggregates, which can cause artifacts in experiments. The impact of storage buffer, storage period, lyophilization, and temperature on the size of PF4 and PF4/heparin (H) complexes was assessed by dynamic light scattering (DLS), while enzyme immunoassay (EIA) was used to test the binding of anti-PF4/H antibodies (aPF4/H Abs) to PF4/H complexes. PF4 size was more stable in Hank's balanced salt solution (HBSS) compared to phosphate-buffered saline (PBS), especially during storage. Lyophilization further facilitated the formation of PF4 aggregates, while incubation of reconstituted lyophilized PF4 in PBS at 37 °C reduced PF4 aggregates. Complexes formed between lyophilized PF4 and heparin were larger, and they enhanced the binding of aPF4/H Abs in EIA compared to complexes between nonlyophilized PF4 and heparin, both in HBSS and PBS, possibly influencing in vitro test results. Our results may be helpful for mechanistic studies on the biological function of PF4 and for the improvement of assays for detecting aPF4/H Abs.


Assuntos
Cálcio/metabolismo , Magnésio/metabolismo , Fator Plaquetário 4/metabolismo , Temperatura , Trombocitopenia/metabolismo , Difusão Dinâmica da Luz , Ensaio de Imunoadsorção Enzimática , Heparina/efeitos adversos , Humanos , Fator Plaquetário 4/química , Trombocitopenia/induzido quimicamente
12.
Theriogenology ; 148: 201-207, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31748174

RESUMO

The cytokine platelet factor 4 (PF4) enhances differentiation and cell viability of different stem cells lines in vitro. This study investigated whether PF4 addition to customary pig embryo semi-defined culture media can improve their developmental outcome (Experiment 1) and ultimately replace the need for bovine serum albumin (BSA, Experiment 2). Experiment 1 added PF4 (100-1000 ng/mL, 0 = control) to NCSU-23 with 0.4 mg/mL BSA culturing 3430 presumptive zygotes. Experiment 2 added PF4 (100-1000 ng/mL, 0 = Control-PVA) to a BSA-free medium (NCSU-23 with 0.3 mg/mL PVA) culturing 3820 presumptive zygotes. Zygote culture in NCSU-23 with 0.4 mg/mL BSA was used as overall control. All groups of Experiment 1 displayed similar rates of day 2-cleavage (range: 65.0 ±â€¯10.9 to 70.0 ±â€¯5.8%); of day 7-blastocyst rates (range: 46.6 ±â€¯10.0 to 56.4 ±â€¯8.2%) and of total day 7-blastocyst efficiency (range: 32.3 ±â€¯8.3 to 37.2 ±â€¯7.3%). Addition of PF4 did not affect total cell numbers of day 7 blastocysts (range: 44.1 ±â€¯23.2 to 50.5 ±â€¯26.4). In Experiment 2, PF4 accelerated embryo development, increasing (P < 0.01) blastocyst yield compared to 0-PF4, and blastocyst formation by day 5 adding PF4 100-500 ng/mL (range: 29.9 ±â€¯7.8 to 31.8 ±â€¯5.5%; P < 0.05) compared with BSA-control (17.2 ±â€¯8.2%) and PF4 1000 ng/mL (15.5 ±â€¯7.9%); showing similar blastocyst rates (range: 42.0 ±â€¯11.5 to 49.3 ±â€¯10.0%), total efficiency (28.0 ±â€¯8.2 to 32.3 ±â€¯7.1%) total cell numbers (range: 42.6 ±â€¯19.3 to 45.7 ±â€¯23.9) as BSA-controls. In conclusion, although PF4 did not show additive improvement under usual semi-defined, BSA-supplemented embryo media, it successfully replaced BSA sustaining porcine blastocyst production in chemically defined conditions.


Assuntos
Meios de Cultura/química , Técnicas de Cultura Embrionária/veterinária , Fator Plaquetário 4/química , Albumina Sérica/química , Suínos/embriologia , Animais , Relação Dose-Resposta a Droga , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Fator Plaquetário 4/administração & dosagem , Fator Plaquetário 4/farmacologia , Albumina Sérica/administração & dosagem , Albumina Sérica/farmacologia
13.
J Thromb Haemost ; 17(7): 1113-1119, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009154

RESUMO

Essentials At low pH and low salt concentrations: Maximal conformational change of PF4 upon complexation with heparin occurs. Changing physicochemical conditions may become an approach to better discriminate the signal of platelet-activating- and nonactivating PF4/H Abs in antigen tests. BACKGROUND: Enzyme immunosorbent assays (EIA) are widely used to detect human antiplatelet factor 4/heparin antibodies (aPF4/H Abs) to rule out heparin-induced thrombocytopenia. EIAs cannot differentiate between clinically relevant, platelet-activating, and nonrelevant, nonplatelet-activating Abs and only ~50% of patients' sera testing positive by EIA contain antibodies that activate platelets. Recently, we have shown platelet-activating aPF4/H Abs bind more strongly to PF4/H complexes than nonplatelet-activating antibodies. Antigen-antibody interactions are known to depend on electrostatic interactions governed by pH, heat, and ionic strength. We tested whether changes in pH and ionic strength can improve the specificity of EIAs detecting aPF4/H Abs. METHODS: We investigated first the conformational change of PF4 when binding to heparin under various pH and salt conditions using circular dichroism spectroscopy, and then the binding of aPF4/H Abs to PF4/H complexes by EIA. RESULTS: Maximal conformational change of PF4 on complexation with heparin was identified at low pH and low salt concentrations. EIA tested with a large number of sera at 50 mmol/L NaCl, pH 6.0 shows a potential to increase the specificity for the detection of platelet-activating aPF4/H Abs. CONCLUSION: Changing physicochemical conditions may become an approach to better discriminate the signal of platelet-activating and nonactivating PF4/H Abs in antigen tests.


Assuntos
Anticorpos/sangue , Plaquetas/metabolismo , Ensaio de Imunoadsorção Enzimática , Heparina/imunologia , Ativação Plaquetária , Fator Plaquetário 4/imunologia , Plaquetas/imunologia , Dicroísmo Circular , Heparina/sangue , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Fator Plaquetário 4/sangue , Fator Plaquetário 4/química , Ligação Proteica , Conformação Proteica , Cloreto de Sódio/química
14.
J Formos Med Assoc ; 118(1 Pt 2): 249-259, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29779926

RESUMO

BACKGROUND/PURPOSE: Abnormal folliculogenesis is one of the cardinal presentations of polycystic ovarian syndrome (PCOS) and permeability of follicular wall has been proposed to be involved in the normal follicular growth. However, whether or not there is a change in intrafollicular permeability underlies PCOS is unknown. METHODS: This was a tertiary center-based case-control study. From 2014 to 2015, thirteen patients with PCOS who underwent in vitro fertilization-embryo transfer (IVF-ET) were enrolled. Eleven normo-ovulatory patients who underwent IVF-ET due to male factor and/or tubal factor infertility were enrolled as the control group. The influence of ovarian follicular fluid (FF) on endothelial cell permeability was evaluated using a human umbilical vein endothelial cell monolayer permeability assay. The intrafollicular expression profiles of angiogenesis-related proteins were analyzed using a Human Angiogenesis Protein Array Kit. RESULTS: The FF from PCOS patients caused significantly poorer endothelial cell permeability comparing with the effect of FF from the control group (46% ± 12% vs. 58% ± 9%, P = 0.023). Among the 55 angiogenesis-related proteins tested, there was a significantly higher level of intrafollicular platelet factor 4 (PF4) and PF4/IL-8 complex in the PCOS group (p = 0.004). The anti-permeability effect of PF4 was related to the decrease in the intercellular gaps and antagonistic binding with IL-8. CONCLUSION: Our study provides the first evidence of the pathophysiologic contribution of the well-known angiostatic protein, PF4, on human reproductive biology. The increase of the intrafollicular PF4 and its anti-permeability effect might affect the formation of FF and folliculogenesis in PCOS.


Assuntos
Líquido Folicular/química , Infertilidade Feminina/patologia , Fator Plaquetário 4/química , Síndrome do Ovário Policístico/patologia , Adulto , Estudos de Casos e Controles , Feminino , Fertilização in vitro , Humanos , Permeabilidade , Taiwan , Centros de Atenção Terciária
15.
J Pharm Biomed Anal ; 164: 668-671, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30472585

RESUMO

Heparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. However, heparin-induced thrombocytopenia and thrombosis (HITT) is a serious side effect of heparin therapy, resulting in relatively high risk of amputation and even death. HITT is caused by forming of complexes between heparin and platelet factor 4 (PF4). Enoxaparin, one of the most commonly used low molecular weight heparin (LMWH), were developed in 1980's. The lower molecular weight of enoxaparin reduces the risk of HITT by binding to less PF4. To detect the binding capacity between enoxaparin and PF4 could be an effect way to control this risk before it goes to patients. In this work, a size exclusion chromatography (SEC) method was developed to analyze the patterns of complexes formed between PF4 and enoxaparin. The chromatographic condition was optimized to separate PF4, enoxaparin, ultra-large complexes and small complexes. The linearity and stability of this method were confirmed. The impacts of PF4/enoxaparin mixture ratios and incubation time on the forming complexes were investigated. Four enoxaparin samples were analyzed with this method to verify its practicability. It is a robust, accurate and practicable method, and provides an easy way to monitor the capacity of enoxaparin forming complexes with PF4, suggesting the HITT related quality of enoxaparin.


Assuntos
Anticoagulantes/análise , Cromatografia em Gel/métodos , Enoxaparina/análise , Fator Plaquetário 4/análise , Anticoagulantes/química , Anticoagulantes/farmacologia , Estabilidade de Medicamentos , Enoxaparina/química , Enoxaparina/farmacologia , Fator Plaquetário 4/química , Ligação Proteica , Fatores de Tempo
16.
ACS Nano ; 12(12): 12030-12041, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30540167

RESUMO

The polyanion heparin, which is frequently used in patients, complexes with the platelet-derived cationic chemokine platelet factor (PF4, CXCL4). This results in the formation of anti-PF4/heparin antibodies (anti-PF4/H Abs). Anti-PF4/H Abs are classified into three groups: (i) nonpathogenic Abs (group 1) with no clinical relevance; (ii) pathogenic heparin-dependent Abs (group 2), which activate platelets and can cause the severe adverse drug effect heparin-induced thrombocytopenia (HIT); and (iii) pathogenic autoimmune-HIT Abs (group 3), in which group 3 anti-PF4/H Abs causes a HIT-like autoimmune disease in the absence of heparin. Enzyme immunoassays using PF4/H complexes coated on the solid phase for detection of anti-PF4/H Abs cannot differentiate between pathogenic and nonpathogenic anti-PF4/H Abs. By single-molecule force spectroscopy, we identify a specific feature of pathogenic group 2 and group 3 Abs antibodies that (in contrast to nonpathogenic group 1 Abs) their binding forces to PF4/H complexes coated on platelets were significantly higher compared with those of PF4/H complexes immobilized on a solid phase. Only group 3 Abs showed high binding forces to platelets without the addition of PF4. In the presence of 50 µg/mL PF4, group 2 Abs also showed high binding forces to platelets. In contrast, binding forces of group 1 Abs always remained low (<100 pN). Our findings may have major relevance for the development of clinically applicable solid-phase assays, which allow differentiation of pathogenic platelet-activating from nonpathogenic anti-PF4/H Abs. Membrane-based expression of antigens might also increase the specificity of other assays for the detection of pathogenic (auto)-antibodies in clinical medicine.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Fator Plaquetário 4/imunologia , Polímeros/química , Trombocitopenia/imunologia , Anticorpos/química , Sítios de Ligação , Heparina/efeitos adversos , Humanos , Fator Plaquetário 4/química , Polieletrólitos , Trombocitopenia/induzido quimicamente
17.
Cell Chem Biol ; 25(9): 1140-1150.e5, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30033131

RESUMO

Malaria is a serious threat to human health and additional classes of antimalarial drugs are greatly needed. The human defense protein, platelet factor 4 (PF4), has intrinsic antiplasmodial activity but also undesirable chemokine properties. We engineered a peptide containing the isolated PF4 antiplasmodial domain, which through cyclization, retained the critical structure of the parent protein. The peptide, cPF4PD, killed cultured blood-stage Plasmodium falciparum with low micromolar potency by specific disruption of the parasite digestive vacuole. Its mechanism of action involved selective penetration and accumulation inside the intraerythrocytic parasite without damaging the host cell or parasite membranes; it did not accumulate in uninfected cells. This selective activity was accounted for by observations of the peptide's specific binding and penetration of membranes with exposed negatively charged phospholipid headgroups. Our findings highlight the tremendous potential of the cPF4PD scaffold for developing antimalarial peptide drugs with a distinct and selective mechanism of action.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Fator Plaquetário 4/química , Fator Plaquetário 4/farmacologia , Adulto , Desenho de Fármacos , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares
18.
J Biol Chem ; 293(18): 6869-6882, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540475

RESUMO

Platelet factor 4 (PF4) is one of the most abundant cationic proteins secreted from α-granules of activated platelets. Based on its structure, PF4 was assigned to the CXC family of chemokines and has been shown to have numerous effects on myeloid leukocytes. However, the receptor for PF4 remains unknown. Here, we demonstrate that PF4 induces leukocyte responses through the integrin Mac-1 (αMß2, CD11b/CD18). Human neutrophils, monocytes, U937 monocytic and HEK293 cells expressing Mac-1 strongly adhered to immobilized PF4 in a concentration-dependent manner. The cell adhesion was partially blocked by anti-Mac-1 mAb and inhibition was enhanced when anti-Mac-1 antibodies were combined with glycosaminoglycans, suggesting that cell-surface proteoglycans act cooperatively with Mac-1. PF4 also induced Mac-1-dependent migration of human neutrophils and murine WT, but not Mac-1-deficient macrophages. Coating of Escherichia coli bacteria or latex beads with PF4 enhanced their phagocytosis by macrophages by ∼4-fold, and this process was blocked by different Mac-1 antagonists. Furthermore, PF4 potentiated phagocytosis by WT, but not Mac-1-deficient macrophages. As determined by biolayer interferometry, PF4 directly bound the αMI-domain, the major ligand-binding region of Mac-1, and this interaction was governed by a Kd of 1.3 ± 0.2 µm Using the PF4-derived peptide library, synthetic peptides duplicating the αMI-domain recognition sequences and recombinant mutant PF4 fragments, the binding sites for αMI-domain were identified in the PF4 segments Cys12-Ser26 and Ala57-Ser70 These results identify PF4 as a ligand for the integrin Mac-1 and suggest that many immune-modulating effects previously ascribed to PF4 are mediated through its interaction with Mac-1.


Assuntos
Leucócitos/metabolismo , Antígeno de Macrófago 1/metabolismo , Fator Plaquetário 4/metabolismo , Animais , Sítios de Ligação , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Escherichia coli/imunologia , Células HEK293 , Humanos , Leucócitos/citologia , Leucócitos/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fator Plaquetário 4/química , Fator Plaquetário 4/fisiologia
19.
ACS Chem Biol ; 12(11): 2767-2778, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28945356

RESUMO

CXCL4 chemokines have antiangiogenic properties, mediated by different mechanisms, including CXCR3 receptor activation. Chemokines have distinct oligomerization states that are correlated with their biological functions. CXCL4 exists as a stable tetramer under physiological conditions. It is unclear whether the oligomerization state impacts CXCL4-receptor interaction. We found that the CXCL4 tetramer is sensitive to pH and salt concentration. Residues Glu28 and Lys50 were important for tetramer formation, and the first ß-strand and the C-terminal helix are critical for dimerization. By mutating the critical residues responsible for oligomerization, we generated CXCL4 mutants that behave as dimers or monomers under neutral/physiological conditions. The CXCL4 monomer acts as the minimal active unit for interacting CXCR3A, and sulfation of N-terminal tyrosine residues on the receptor is important for binding. Noticeably, CXCL4L1, a CXCL4 variant that differs by three residues in the C-terminal helix, could activate CXCR3A. CXCL4L1 showed a higher tendency to dissociate into monomers, but native CXCL4 did not. This result indicates that monomeric CXCL4 behaves like CXCL4L1. Thus, in this chemokine family, being in the monomeric state seems critical for interaction with CXCR3A.


Assuntos
Fator Plaquetário 4/metabolismo , Receptores CXCR3/metabolismo , Linhagem Celular , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Fator Plaquetário 4/química , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Receptores CXCR3/química
20.
Int J Mol Sci ; 18(4)2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368308

RESUMO

Chemokines mediate diverse fundamental biological processes, including combating infection. Multiple chemokines are expressed at the site of infection; thus chemokine synergy by heterodimer formation may play a role in determining function. Chemokine function involves interactions with G-protein-coupled receptors and sulfated glycosaminoglycans (GAG). However, very little is known regarding heterodimer structural features and receptor and GAG interactions. Solution nuclear magnetic resonance (NMR) and molecular dynamics characterization of platelet-derived chemokine CXCL7 heterodimerization with chemokines CXCL1, CXCL4, and CXCL8 indicated that packing interactions promote CXCL7-CXCL1 and CXCL7-CXCL4 heterodimers, and electrostatic repulsive interactions disfavor the CXCL7-CXCL8 heterodimer. As characterizing the native heterodimer is challenging due to interference from monomers and homodimers, we engineered a "trapped" disulfide-linked CXCL7-CXCL1 heterodimer. NMR and modeling studies indicated that GAG heparin binding to the heterodimer is distinctly different from the CXCL7 monomer and that the GAG-bound heterodimer is unlikely to bind the receptor. Interestingly, the trapped heterodimer was highly active in a Ca2+ release assay. These data collectively suggest that GAG interactions play a prominent role in determining heterodimer function in vivo. Further, this study provides proof-of-concept that the disulfide trapping strategy can serve as a valuable tool for characterizing the structural and functional features of a chemokine heterodimer.


Assuntos
Glicosaminoglicanos/química , Simulação de Dinâmica Molecular , Domínios Proteicos , Multimerização Proteica , beta-Tromboglobulina/química , Sequência de Aminoácidos , Sítios de Ligação/genética , Cálcio/metabolismo , Quimiocina CXCL1/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Glicosaminoglicanos/metabolismo , Células HL-60 , Heparina/química , Heparina/metabolismo , Humanos , Interleucina-8/química , Interleucina-8/genética , Interleucina-8/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Fator Plaquetário 4/química , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Ligação Proteica , Homologia de Sequência de Aminoácidos , beta-Tromboglobulina/genética , beta-Tromboglobulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA