Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(10)2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680900

RESUMO

Trefoil Factor Family Member 2 (TFF2) belongs to TFF family peptides that includes TFF1, TFF2, TFF3. TFF2 is mainly known for its roles in the mucosal protection. In the context of obesity and high fat diet (HFD), Tff2 has been characterized as a HFD-induced gene. The knock-out of Tff2 in mice lead to the protection from HFD-induced obesity with a metabolic profile towards a negative energy balance. Such HFD-specific expression gives Tff2 a pattern worth exploring in biomedical research. Indeed, measuring TFF2/TFF2/Tff2 expression in biological samples following the ingestion of high-fat diet reflects the biological "responsiveness" to the lipids ingestion and would reflect the severity of obesity establishment afterwards. Such property could be explored for instance to screen animal models, evaluate the predisposition to HFD-induced obesity as well as in biomedical and clinical applications. Results might advance obesity research especially in terms of understanding lipid-induced signals, appetite control and adiposity storage.


Assuntos
Obesidade/metabolismo , Fator Trefoil-2/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Obesidade/etiologia , Obesidade/genética , Obesidade/patologia , Fator Trefoil-2/metabolismo
2.
Carcinogenesis ; 42(12): 1496-1505, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34644378

RESUMO

Trefoil factor family 2 (TFF2) is one of three trefoil factor family proteins and is expressed abundantly in the gastrointestinal epithelium. Recent studies have shown that TFF2 acts as a tumor suppressor in gastric and pancreatic carcinogenesis; however, little is known about its function in cholangiocarcinogenesis. To investigate the function of TFF2 in cholangiocellular carcinoma (CCC), immunohistochemistry of surgically resected human CCC samples was performed. TFF2 expression was upregulated in the early stage and lost in the late stage of cholangiocarcinogenesis, suggesting the association of TFF2 and CCC. A TFF2 expression vector was then transfected into a CCC cell line (HuCCT1) in vitro, revealing that TFF2 functions as a tumor suppressor not only by inhibiting proliferation and invasion but also by promoting the apoptosis of cancer cells. In addition, PTEN signaling activity was downregulated by TFF2, suggesting an association between TFF2 and PTEN. Next, hepatic carcinogenesis model mice (KC; albumin-Cre/Lox-Stop-Lox KRASG12D) were bred with TFF2-knockout mice to generate a TFF2-deficient mouse model (KC/TFF2-/-). Although the incidence of hepatocellular carcinoma was not different between KC/TFF2-/- mice and control mice, biliary intraepithelial neoplasm (BilIN), the precursor of CCC, was frequently found in the biliary epithelium of KC/TFF2-/- mice. Immunohistochemistry revealed that BilIN samples from these mice did not express PTEN. In addition, two KC/TFF2-/- mice developed CCC adjacent to BilIN, suggesting that TFF2 functions to inhibit the development of CCC in vivo. These results indicate that TFF2 acts as a tumor suppressor to inhibit the development of CCC by regulating PTEN activity.


Assuntos
Transformação Celular Neoplásica/metabolismo , Colangiocarcinoma/etiologia , Colangiocarcinoma/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Fator Trefoil-2/metabolismo , Animais , Apoptose , Neoplasias dos Ductos Biliares/etiologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Colangiocarcinoma/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator Trefoil-2/genética
3.
J Biol Chem ; 297(1): 100887, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146542

RESUMO

Liver fibrosis is a common characteristic of chronic liver diseases. The activation of hepatic stellate cells (HSCs) plays a key role in fibrogenesis in response to liver injury, yet the mechanism by which damaged hepatocytes modulate the activation of HSCs is poorly understood. Our previous studies have established that liver-specific deletion of O-GlcNAc transferase (OGT)leads to hepatocyte necroptosis and spontaneous fibrosis. Here, we report that OGT-deficient hepatocytes secrete trefoil factor 2 (TFF2) that activates HSCs and contributes to the fibrogenic process. The expression and secretion of TFF2 are induced in OGT-deficient hepatocytes but not in WT hepatocytes. TFF2 activates the platelet-derived growth factor receptor beta signaling pathway that promotes the proliferation and migration of primary HSCs. TFF2 protein expression is elevated in mice with carbon tetrachloride-induced liver injury. These findings identify TFF2 as a novel factor that mediates intercellular signaling between hepatocytes and HSCs and suggest a role of the hepatic OGT-TFF2 axis in the process of fibrogenesis.


Assuntos
Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Fator Trefoil-2/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Linhagem Celular , Células Cultivadas , Exocitose , Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Humanos , Cirrose Hepática/etiologia , Camundongos , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Necroptose , Transdução de Sinais , Fator Trefoil-2/genética
4.
Int J Gynecol Pathol ; 40(1): 65-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32897966

RESUMO

Gastric-type carcinoma (GAS) is the most common human papilloma virus-independent endocervical adenocarcinoma (ECA), characterized by an aggressive behavior. Trefoil factor 2 (TFF2) is a mucin-associated peptide expressed in normal gastric but not endocervical glands. This study was carried out to investigate whether TFF2 could be a surrogate marker to separate GAS from other types of ECA. ECAs from 9 international institutions were reviewed for consensus histotype. Of them, expression of TFF2 was immunohistochemically examined compared with that of HIK1083, using whole sections of 50 ECAs (10 GASs and 40 non-GASs) and 179 ECAs (24 GASs and 155 non-GASs) with tissue microarrays (TMAs). TMAs were assessed to simulate assessment of immunohistochemical stains in small biopsies. Both markers were similarly scored, and any cytoplasmic/membranous staining of >5% of tumor cells was considered positive. Of 50 ECAs with whole sections, TFF2 was significantly more frequently expressed in GASs (8/10) compared with non-GASs (5/40) (P<0.01). In 179 ECAs with TMAs, TFF2 was also significantly more frequently expressed in GASs (7/24) compared with non-GASs (4/155) (P<0.01). There was no significant difference in specificity among the 2 markers. Double positivity for TFF2 and HIK1083 in ECAs was highly specific in separating GASs from non-GAS (P<0.01). A significantly smaller percentage of GASs were TFF2 positive in TMAs than in whole sections (P<0.01). Our results suggest that TFF2 is a promising marker, along with HIK1083, to confirm a diagnosis of GAS. This marker may be negative in small biopsies, indicating the necessity of using other exclusionary markers in combination with rigorous morphologic review and extensive sampling in resection specimens.


Assuntos
Adenocarcinoma/diagnóstico , Carcinoma/diagnóstico , Neoplasias Gástricas/diagnóstico , Fator Trefoil-2/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Adenocarcinoma/patologia , Biomarcadores/metabolismo , Carcinoma/patologia , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Gástricas/patologia , Análise Serial de Tecidos , Fator Trefoil-2/genética , Neoplasias do Colo do Útero/patologia
5.
Clin Epigenetics ; 12(1): 37, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122390

RESUMO

BACKGROUND: Emerging evidence has shown that MUC1 and TFF2 play crucial roles in the H. pylori-infected pathogenesis of gastric cancer (GC). A recent study revealed that H. pylori infection induced obviously increased Tff2 methylation levels in Muc1-/- mice compared with controls. However, little is known of the molecular mechanism on MUC1 regulating the expression of TFF2. METHODS: We conducted a correlation analysis of MUC1 and TFF2 in public databases and our adjacent GC tissues. Besides, MUC1 overexpression vector or small interfering RNA (siRNA) was transfected into GC cells to assess the change in TFF2 expression. Furthermore, the methylation status of TFF2 was measured by bisulfite sequencing PCR (BSP). RESULTS: The expression of MUC1 was significantly lower in non-cardia and cardia tumor tissues than that in normal tissues. Downregulation of TFF2 expression was also observed in GC tissues. In addition, we found that MUC1 expression was positively associated with TFF2 expression in GC tissues, especially among GC patients with H. pylori infection. Overexpression of MUC1 in BGC-823 and SGC-7901 cell lines substantially increased the TFF2 expression, whereas knockdown of MUC1 reverted this effect. Moreover, MUC1 was negatively related to the methylation of TFF2 in the co-expression analysis. The results of BSP experiments showed that compared with negative vector group, the methylation level of TFF2 was decreased in GC cells transfected with MUC1 overexpression vector. Additionally, survival analysis indicated that GC patients with lower level of MUC1 or TFF2 had a worse outcome. CONCLUSION: Our results indicated that MUC1 was associated with the methylation of TFF2, which may have implications for TFF2 expression in GC. These findings warrant further research toward the underlying mechanism of MUC1 influenced the TFF2 methylation.


Assuntos
Metilação de DNA , Infecções por Helicobacter/genética , Mucina-1/genética , Análise de Sequência de DNA/métodos , Neoplasias Gástricas/genética , Fator Trefoil-2/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Regulação para Baixo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Infecções por Helicobacter/complicações , Humanos , Masculino , Prognóstico , Neoplasias Gástricas/microbiologia , Análise de Sobrevida
6.
J Med Genet ; 57(6): 385-388, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30877236

RESUMO

BACKGROUND: Spasmolytic polypeptide-expressing metaplasia (SPEM) is present in more than 90% of resected gastric cancer tissues. However, although widely regarded as a pre-cancerous tissue, its genetic characteristics have not been well studied. METHODS: Immunohistochemistry using Trefoil factor 2 (TFF2) antibodies was used to identify TFF2-positive SPEM cells within SPEM glands in the stomach of Helicobacter felis (H. felis) -infected mice and human clinical samples. Laser microdissection was used to isolate specific cells from both the infected mice and the human samples. The genetic instability in these cells was examined by measuring the lengths of microsatellite (MS) markers using capillary electrophoresis. Also, genome-wide genetic variations in the SPEM cells from the clinical sample was examined using deep whole-exome sequencing. RESULTS: SPEM cells indeed exhibit not only heightened MS instability (MSI), but also genetic instabilities that extend genome-wide. Furthermore, surprisingly, we found that morphologically normal, TFF2-negative cells also contain a comparable degree of genomic instabilities as the co-resident SPEM cells within the SPEM glands. CONCLUSION: These results, for the first time, clearly establish elevated genetic instability as a critical property of SPEM glands, which may provide a greater possibility for malignant clone selection. More importantly, these results indicate that SPEM cells may not be the sole origin of carcinogenesis in the stomach and strongly suggest the common progenitor of these cells, the stem cells, as the source of these genetic instabilities, and thus, potential key players in carcinogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Metaplasia/genética , Neoplasias Gástricas/genética , Fator Trefoil-2/genética , Animais , Feminino , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica/genética , Instabilidade Genômica/genética , Xenoenxertos , Humanos , Masculino , Metaplasia/patologia , Camundongos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/patologia
7.
Dig Dis Sci ; 65(1): 119-131, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31515722

RESUMO

BACKGROUND: Peptic ulcers recur, suggesting that ulcer healing may leave tissue predisposed to subsequent damage. In mice, we have identified that the regenerated epithelium found after ulcer healing will remain abnormal for months after healing. AIM: To determine whether healed gastric mucosa has altered epithelial function, as measured by electrophysiologic parameters. METHOD: Ulcers were induced in mouse gastric corpus by serosal local application of acetic acid. Thirty days or 8 months after ulcer induction, tissue was mounted in an Ussing chamber. Transepithelial electrophysiologic parameters (short-circuit current, Isc. resistance, R) were compared between the regenerated healed ulcer region and the non-ulcerated contralateral region, in response to luminal hyperosmolar NaCl challenge (0.5 M). RESULTS: In unperturbed stomach, luminal application of hyperosmolar NaCl transiently dropped Isc followed by gradual recovery over 2 h. Compared to the starting baseline Isc, percent Isc recovery was reduced in 30-day healing mucosa, but not at 8 months. Prior to NaCl challenge, a lower baseline Isc was observed in trefoil factor 2 (TFF2) knockout (KO) versus wild type (WT), with no Isc recovery in either non-ulcerated or healing mucosa of KO. Inhibiting Na/H exchanger (NHE) transport in WT mucosa inhibited Isc recovery in response to luminal challenge. NHE2-KO baseline Isc was reduced versus NHE2-WT. In murine gastric organoids, NHE inhibition slowed recovery of intracellular pH and delayed the repair of photic induced damage. CONCLUSION: Healing gastric mucosa has deficient electrophysiological recovery in response to hypertonic NaCl. TFF2 and NHE2 contribute to Isc regulation, and the recovery and healing of transepithelial function.


Assuntos
Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Cloreto de Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/deficiência , Úlcera Gástrica/metabolismo , Cicatrização , Ácido Acético , Animais , Modelos Animais de Doenças , Impedância Elétrica , Células Epiteliais/patologia , Feminino , Mucosa Gástrica/patologia , Concentração de Íons de Hidrogênio , Soluções Hipertônicas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reepitelização , Trocadores de Sódio-Hidrogênio/genética , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/genética , Úlcera Gástrica/patologia , Fatores de Tempo , Fator Trefoil-2/deficiência , Fator Trefoil-2/genética
8.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31817054

RESUMO

OBJECTIVE: Trefoil factor family peptide 3 (TFF3) has been shown to support catabolic functions in cases of osteoarthritis (OA). As in joint physiology and diseases such as OA, the synovial membrane (SM) of the joint capsule also plays a central role. We analyze the ability of SM to produce TFF compare healthy SM and its secretion product synovial fluid (SF) with SM and SF from patients suffering from OA or rheumatoid arthritis (RA). METHODS: Real-time PCR and ELISA were used to measure the expression of TFFs in healthy SM and SM from patients suffering from OA or RA. For tissue localization, we investigated TFF1-3 in differently aged human SM of healthy donors by means of immunohistochemistry, real-time PCR and Western blot. RESULTS: Only TFF3 but not TFF1 and -2 was expressed in SM from healthy donors as well as cases of OA or RA on protein and mRNA level. In contrast, all three TFFs were detected in all samples of SF on the protein level. No significant changes were observed for TFF1 at all. TFF2 was significantly upregulated in RA samples in comparison to OA samples. TFF3 protein was significantly downregulated in OA samples in comparison to healthy samples and cases of RA significantly upregulated compared to OA. In contrast, in SM TFF3 protein was not significantly regulated. CONCLUSION: The data demonstrate the production of TFF3 in SM. Unexpectedly, SF contains all three known TFF peptides. As neither articular cartilage nor SM produce TFF1 and TFF2, we speculate that these originate with high probability from blood serum.


Assuntos
Artrite Reumatoide/metabolismo , Osteoartrite/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Fator Trefoil-1/metabolismo , Fator Trefoil-2/metabolismo , Fator Trefoil-3/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doadores de Tecidos , Fator Trefoil-1/genética , Fator Trefoil-2/genética , Fator Trefoil-3/genética
9.
J Physiol ; 597(10): 2673-2690, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30912855

RESUMO

KEY POINTS: Determining the signalling cascade of epithelial repair, using murine gastric organoids, allows definition of regulatory processes intrinsic to epithelial cells, at the same time as validating and dissecting the signalling cascade with more precision than is possible in vivo Following single cell damage, intracellular calcium selectively increases within cells adjacent to the damage site and is essential for promoting repair. Trefoil factor 2 (TFF2) acts via chemokine C-X-C receptor 4 and epidermal growth factor receptor signalling, including extracellular signal-regulated kinase activation, to drive calcium mobilization and promote gastric repair. Sodium hydrogen exchanger 2, although essential for repair, acts downstream of TFF2 and calcium mobilization. ABSTRACT: The gastric mucosa of the stomach is continually exposed to environmental and physiological stress factors that can cause local epithelial damage. Although much is known about the complex nature of gastric wound repair, the stepwise process that characterizes epithelial restitution remains poorly defined. The present study aimed to determine the effectors that drive gastric epithelial repair using a reductionist culture model. To determine the role of trefoil factor 2 (TFF2) and intracellular calcium (Ca2+ ) mobilization in gastric restitution, gastric organoids were derived from TFF2 knockout (KO) mice and yellow Cameleon-Nano15 (fluorescent calcium reporter) transgenic mice, respectively. Inhibitors and recombinant protein were used to determine the upstream and downstream effectors of gastric restitution following photodamage (PD) to single cells within the gastric organoids. Single cell PD resulted in parallel events of dead cell exfoliation and migration of intact neighbouring cells to restore a continuous epithelium in the damage site. Under normal conditions following PD, Ca2+ levels increased within neighbour migrating cells, peaking at ∼1 min, suggesting localized Ca2+ mobilization at the site of cell protrusion/migration. TFF2 KO organoids exhibit delayed repair; however, this delay can be rescued by the addition of exogenous TFF2. Inhibition of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK)1/2 or a TFF2 receptor, chemokine C-X-C receptor 4 (CXCR4), resulted in significant delay and dampened Ca2+ mobilization. Inhibition of sodium hydrogen exchanger 2 (NHE2) caused significant delay but did not affect Ca2+ mobilization. A similar delay was observed in NHE2 KO organoids. In TFF2 KO gastric organoids, the addition of exogenous TFF2 in the presence of EGFR or CXCR4 inhibition was unable to rescue repair. The present study demonstrates that intracellular Ca2+ mobilization occurs within gastric epithelial cells adjacent to the damage site to promote repair by mechanisms that involve TFF2 signalling via CXCR4, as well as activation of EGFR and ERK1/2. Furthermore NHE2 is shown to be important for efficient repair and to operate via a mechanism either downstream or independent of calcium mobilization.


Assuntos
Cálcio/metabolismo , Organoides/metabolismo , Receptores CXCR4/metabolismo , Fator Trefoil-2/metabolismo , Animais , Cálcio/farmacologia , Epitélio , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CXCR4/genética , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Estômago , Fator Trefoil-2/administração & dosagem , Fator Trefoil-2/genética , Fator Trefoil-2/farmacologia
10.
Sci Rep ; 9(1): 1636, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733468

RESUMO

During embryogenesis, exocrine and endocrine pancreatic tissues are formed in distinct regions within the branched ductal structure in mice. We previously reported that exocrine-specific inactivation of Pdx1 by Elastase-Cre caused not only hypoplastic exocrine formation but also substantial endocrine defects resulting in diabetic phenotype, indicating the existence of an exocrine-driven factor(s) that regulates proper endocrine development. In this study, we identified Trefoil Factor 2 (TFF2) as an exocrine gene expressed from embryonic day 16.5 to adulthood in normal mice but significantly less in our Pdx1 mutants. Using in vitro explant culture of embryonic pancreatic tissue, we demonstrated that TFF2 prevented the apoptosis of insulin-producing cells but that antagonizing CXCR4, a known TFF2 receptor, suppressed this anti-apoptotic effect in the mutants. Furthermore, the antagonist in normal pancreatic tissue accelerated the apoptosis of insulin-producing cells, indicating that the TFF2/CXCR4 axis maintains embryonic insulin-producing cells in normal development. TFF2 also suppressed the apoptosis of Nkx6.1+ endocrine precursors in mutant pancreata, but this effect was unperturbed by the CXCR4 antagonist, suggesting the existence of an unknown receptor for TFF2. These findings suggest TFF2 is a novel exocrine factor that supports the survival of endocrine cells in the multiple stages of organogenesis through distinct receptors.


Assuntos
Pâncreas/citologia , Pâncreas/embriologia , Fator Trefoil-2/genética , Animais , Apoptose/fisiologia , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Camundongos Knockout , Organogênese , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transativadores/genética , Fator Trefoil-2/metabolismo
11.
Cancer Gene Ther ; 26(1-2): 48-57, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30042499

RESUMO

TFF2 is a small, secreted protein with anti-inflammatory properties. We previously have shown that TFF2 gene delivery via adenovirus (Ad-Tff2) suppresses colon tumor growth in colitis associated cancer. Therefore, systemic administration of TFF2 peptide could potentially provide a similar benefit. Because TFF2 shows a poor pharmacokinetic, we sought to modify the TFF2 peptide in a manner that would lower its clearance rate but retain bioactivity. Given the absence of a sequence-based prediction of TFF2 functionality, we chose to genetically fuse the C-terminus of TFF2 with the carboxyl-terminal peptide of human chorionic gonadotropin ß subunit, and inserted into adenoviral vector that expresses Flag. The resulting Ad-Tff2-CTP-Flag construct translates into a TFF2 fused with two CTP and three Flag motifs. Administered Ad-Tff2-CTP-Flag decreased tumorigenesis and suppressed the expansion of myeloid cells in vivo. The fusion peptide TFF2-CTP-Flag delivered by adenovirus Ad-Tff2-CTP-Flag as well purified recombinant fusion TFF2-CTP-Flag was retained in the blood longer compared with wild-type TFF2 delivered by Ad-Tff2 or recombinant TFF2. Consistently, purified recombinant fusion TFF2-CTP-Flag suppressed expansion of myeloid cells by down-regulating cyclin D1 mRNA in vitro. Here, we demonstrate for the very first time the retained bioactivity and possible pharmacokinetic advantages of TFF2 with a modified C-terminus.


Assuntos
Adenoviridae/genética , Neoplasias Colorretais/terapia , Terapia Genética , Vetores Genéticos , Fator Trefoil-2/genética , Animais , Gonadotropina Coriônica/genética , Colite/induzido quimicamente , Colite/complicações , Neoplasias Colorretais/etiologia , Camundongos , Oligopeptídeos/genética , Fragmentos de Peptídeos/genética , Transgenes
12.
Mucosal Immunol ; 12(1): 64-76, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30337651

RESUMO

Coordinated efforts between macrophages and epithelia are considered essential for wound healing, but the macrophage-derived molecules responsible for repair are poorly defined. This work demonstrates that lung macrophages rely upon Trefoil factor 2 to promote epithelial proliferation following damage caused by sterile wounding, Nippostrongylus brasiliensis or Bleomycin sulfate. Unexpectedly, the presence of T, B, or ILC populations was not essential for macrophage-driven repair. Instead, conditional deletion of TFF2 in myeloid-restricted CD11cCre TFF2 flox mice exacerbated lung pathology and reduced the proliferative expansion of CD45- EpCAM+ pro-SPC+ alveolar type 2 cells. TFF2 deficient macrophages had reduced expression of the Wnt genes Wnt4 and Wnt16 and reconstitution of hookworm-infected CD11cCre TFF2flox mice with rWnt4 and rWnt16 restored the proliferative defect in lung epithelia post-injury. These data reveal a previously unrecognized mechanism wherein lung myeloid phagocytes utilize a TFF2/Wnt axis as a mechanism that drives epithelial proliferation following lung injury.


Assuntos
Lesão Pulmonar/imunologia , Pulmão/imunologia , Macrófagos/fisiologia , Nippostrongylus/imunologia , Mucosa Respiratória/fisiologia , Infecções por Strongylida/imunologia , Fator Trefoil-2/metabolismo , Animais , Bleomicina , Antígeno CD11c/metabolismo , Comunicação Celular , Proliferação de Células , Células Cultivadas , Humanos , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator Trefoil-2/genética , Cicatrização
13.
Life Sci ; 215: 190-197, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30414432

RESUMO

AIMS: Trefoil factor family member 2 (TFF2) is a small gut peptide. We have previously shown that Tff2 knock out (KO) mice are protected from high-fat (HF) diet-induced obesity (De Giorgio et al., 2013a). Thus, exploring Tff2 KO-related pathways of mice at the genomic, proteinic and biochemical levels would allow us to elucidate the processes behind this protection from obesity. MAIN METHODS: To explore the metabolic and energetic effects related to Tff2 deficiency, we used sampled blood from the previous study to measure levels of free fatty acids, glucose, glycerol and triglycerides in serum. Expression levels of selected genes and proteins related to energy metabolism in the skeletal muscle, liver and adipose tissue were also studied. KEY FINDINGS: Following the 12-wk challenging of Tff2 KO and WT mice with both HF and low-fat diet, Tff2 KO mice had lower levels of serum glucose, triglycerides and glycerol. Importantly, western blotting and Q_RT-PCR revealed that the expression levels of selected genes and proteins are toward less fat storage and increased energy expenditure by enhancing lipid and glucose utilization via oxidative phosphorylation. SIGNIFICANCE: We mapped a part of the metabolic and biochemical pathways of lipids and glucose involving the adipose tissue, liver, skeletal muscle and sympathetic nervous system that protect Tff2 KO mice from the HF diet-induced obesity. Our data highlight Tff2-related pathways as potential targets for obesity therapies.


Assuntos
Tecido Adiposo/metabolismo , Dieta Hiperlipídica , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Fator Trefoil-2/genética , Animais , Western Blotting , Dieta com Restrição de Gorduras , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sistema Nervoso Simpático/metabolismo
14.
Food Res Int ; 95: 38-45, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28395823

RESUMO

Nano TiO2 has been widely used in food industry as a coloring agent, whether the application has adverse effects on stomach for humans and animals is rarely concerned. This study determined whether intragastric administration with nano TiO2 every day for nine months cause gastric damages and dysfunction, and is associated with changes of stomach damage-related protein expression in mice. Our results suggested that nano TiO2 exposure resulted in significant titanium accumulation in the stomach, reductions in daily food intake and water intake, stomach weight, and stomach indices. Importantly, mice exhibited severe gastric damages such as gastric mucosa atrophy, erosion, inflammatory cell infiltration and cell morphologic damages including apoptosis, and coupled with reductions of serum pepsin activity, stomach total acidity and H+ concentration, and increases of serum gastrin concentration and gastric pH. Furthermore, these are associated with decreased expression of IκB, TFF 1, 2, and increased expression of NF-κB, TNF-α, IL-lß, -6, -8, COX-2, and PGE2 in the stomach. The findings showed that gastric toxicity of mice induced by chronic exposure to nano TiO2 may be associated with alterations of gastritis-related protein expression in mice. It implies that the potential adverse effects to digestive system health should be concerned.


Assuntos
Gastrite/genética , Nanopartículas Metálicas/toxicidade , Estômago/efeitos dos fármacos , Titânio/toxicidade , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/sangue , Gastrinas/sangue , Gastrite/induzido quimicamente , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos de Músculo Liso/ultraestrutura , NF-kappa B/genética , NF-kappa B/metabolismo , Fator Trefoil-1/genética , Fator Trefoil-1/metabolismo , Fator Trefoil-2/genética , Fator Trefoil-2/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Genesis ; 54(12): 626-635, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27731922

RESUMO

Temporal and spatial regulation of genes mediated by tissue-specific promoters and conditional gene expression systems provide a powerful tool to study gene function in health, disease, and during development. Although transgenic mice expressing the Cre recombinase in the gastric epithelium have been reported, there is a lack of models that allow inducible and reversible gene modification in the stomach. Here, we exploited the gastrointestinal epithelium-specific expression pattern of the three trefoil factor (Tff) genes and bacterial artificial chromosome transgenesis to generate a novel mouse strain that expresses the CreERT2 recombinase and the reverse tetracycline transactivator (rtTA). The Tg(Tff1-CreERT2;Tff2-rtTA;Tff3-Luc) strain confers tamoxifen-inducible irreversible somatic recombination and allows simultaneous doxycycline-dependent reversible gene activation in the gastric epithelium of developing and adult mice. This strain also confers luciferase activity to the intestinal epithelium to enable in vivo bioluminescence imaging. Using fluorescent reporters as conditional alleles, we show Tff1-CreERT2 and Tff2-rtTA transgene activity in a partially overlapping subset of long-term regenerating gastric stem/progenitor cells. Therefore, the Tg(Tff1-CreERT2;Tff2-rtTA;Tff3-Luc) strain can confer intermittent transgene expression to gastric epithelial cells that have undergone previous gene modification, and may be suitable to genetically model therapeutic intervention during development, tumorigenesis, and other genetically tractable diseases. Birth Defects Research (Part A) 106:626-635, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mucosa Intestinal/metabolismo , Fator Trefoil-1/biossíntese , Fator Trefoil-2/biossíntese , Fator Trefoil-3/biossíntese , Animais , Regulação da Expressão Gênica no Desenvolvimento , Integrases/biossíntese , Integrases/genética , Mucosa Intestinal/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Recombinases/genética , Transgenes/genética , Fator Trefoil-1/genética , Fator Trefoil-2/genética , Fator Trefoil-3/genética
16.
Int J Mol Med ; 38(5): 1474-1480, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27668303

RESUMO

The trefoil factor family (TFF) is a group of short secretory peptides of gastric mucous neck cells. The loss of TFF2 protein expression enhances gastric inflammation and occurs in gastric cancer. In this study, we examined the effect of TFF2 on gastric cancer cell lines in vitro and characterized the interaction between TFF2 and Sp3, including the mechanisms that mediate this interaction, using genomics and proteomics approaches, as well as genetics techniques, such as RNA interference and gene knockdown. Assays were performed to examine the role of TFF2 and Sp3 in cancer cell proliferation, invasion and migration. We found that TFF2 expression inhibited the proliferation and invasion capacity of gastric cancer cells, and induced apoptosis. TFF2 interacted with the Sp3 protein, as shown by immunofluorescence staining and immunoprecipitation with western blot analysis. Sp3 knockdown in gastric cancer cells antagonized TFF2 antitumor activity. Additionally, TFF2 upregulated the expression of pro-apoptotic proteins, such as Bid, but downregulated the expression of NF-κB and the anti-apoptotic proteins, Bcl-xL and Mcl­1. By contrast, Sp3 knockdown significantly blocked TFF2 activity, affecting the expression of these proteins. The data from our study demonstrate that the antitumor activity of TFF2 is mediated by an interaction with the Sp3 protein in gastric cancer cells. Additional in vivo and ex vivo warrned in order to fully characterize this interaction.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição Sp3/genética , Fator Trefoil-2/genética , Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Células HEK293 , Humanos , Microscopia de Vídeo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Ligação Proteica , Interferência de RNA , Fator de Transcrição Sp3/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fator Trefoil-2/metabolismo , Proteína bcl-X/metabolismo
17.
Int J Mol Sci ; 17(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598141

RESUMO

Aberrant Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling is crucial to the development of gastric cancer. In this study, we examined the role of STAT3 in the expression and methylation of its targets in gastric cancer patients. Results from RNA sequencing identified an inverse correlation between the expression of STAT3 and GATA6 in 23 pairs of gastric cancer patient samples. We discovered that the expression of GATA6 is epigenetically silenced through promoter methylation in gastric cancer cell lines. Interestingly, the inhibition of STAT3 using a novel STAT3 inhibitor restored the expression of GATA6 and its targets, trefoil factors 1 and 2 (TFF1/2). Moreover, disruption of STAT3 binding to GATA6 promoter by small hairpin RNA restored GATA6 expression in AGS cells. A clinically significant correlation was also observed between the expression of GATA6 and TFF1/2 among tissue samples from 60 gastric cancer patients. Finally, bisulfite pyrosequencing revealed GATA6 methylation in 65% (39/60) of the patients, and those with higher GATA6 methylation tended to have shorter overall survival. In conclusion, we demonstrated that aberrant JAK/STAT signaling suppresses TFF1/2 partially through the epigenetic silencing of GATA6. Therapeutic intervention of STAT3 in reversing the epigenetic status of GATA6 could benefit the treatment of gastric cancer and is worthy of further investigation.


Assuntos
Fator de Transcrição GATA6/metabolismo , Inativação Gênica , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Fator Trefoil-1/metabolismo , Fator Trefoil-2/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Fator de Transcrição GATA6/genética , Humanos , Janus Quinases/genética , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/genética , Fator Trefoil-1/genética , Fator Trefoil-2/genética
18.
Gastroenterology ; 151(6): 1232-1244.e10, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27523981

RESUMO

BACKGROUND & AIMS: Little is known about the origin of pancreatic intraductal papillary mucinous neoplasms (IPMN). Pancreatic duct glands (PDGs) are gland-like outpouches budding off the main pancreatic ducts that function as a progenitor niche for the ductal epithelium; they express gastric mucins and have characteristics of side-branch IPMNs. We investigated whether PDGs are a precursor compartment for IPMNs and the role of Trefoil factor family 2 (TFF2)-a protein expressed by PDGs and the gastric mucosa that are involved in epithelial repair and tumor suppression. METHODS: We obtained pancreatectomy specimens from 20 patients with chronic pancreatitis, 13 with low-grade side-branch IPMNs, and 15 patients with PDAC; histologically normal pancreata were used as controls (n = 18). Samples were analyzed by immunohistochemistry to detect TFF1 and TFF2 and cell proliferation. We performed mitochondrial DNA mutational mapping studies to determine the cell lineage and fate of PDG cells. Pdx1-Cre;LSL-KRASG12D (KC) mice were bred with TFF2-knockout mice to generate KC/Tff2-/- and KC/Tff2+/- mice. Pancreata were collected and histologically analyzed for formation of IPMN, pancreatic intraepithelial neoplasias, and PDAC, in addition to proliferation and protein expression. Human pancreatic ductal epithelial cells and PDAC cell lines were transfected with vectors to overexpress or knock down TFF2 or SMAD4. RESULTS: Histologic analysis of human samples revealed gastric-type IPMN to comprise 2 molecularly distinct layers: a basal crypt segment that expressed TFF2 and overlying papillary projections. Proliferation occurred predominantly in the PDG-containing basal segments. Mitochondrial mutation mapping revealed a 97% match between the profiles of proliferating PDG cells and their overlying nonproliferative IPMN cells. In contrast to KC mice, 2-month-old KC/Tff2+/- and KC/Tff2-/- mice developed prominent papillary structures in the duct epithelium with cystic metaplasia of the PDG, which resembled human IPMN; these expressed gastric mucins (MUC5AC and MUC6), but not the intestinal mucin MUC2. KC/TFF2-knockout mice developed a greater number and higher grade of pancreatic intraepithelial neoplasias than KC mice, and 1 mouse developed an invasive adenocarcinoma. Expression of TFF2 reduced proliferation of PDAC cells 3-fold; this effect required up-regulation and activation of SMAD4. We found expression of TFF2 to be down-regulated in human PDAC by hypermethylation of its promoter. CONCLUSIONS: In histologic analyses of human IPMNs, we found PDGs to form the basal segment and possibly serve as a progenitor compartment. TFF2 has tumor-suppressor activity in the mouse pancreas and prevents formation of mucinous neoplasms.


Assuntos
Epitélio/patologia , Neoplasias Císticas, Mucinosas e Serosas/patologia , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Fator Trefoil-2/genética , Fator Trefoil-2/metabolismo , Animais , Carcinoma Ductal Pancreático , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA , Análise Mutacional de DNA , DNA Mitocondrial/análise , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Antígeno Ki-67/análise , Masculino , Metaplasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-5AC/análise , Mucina-6/análise , Mutação , Neoplasias Císticas, Mucinosas e Serosas/química , Neoplasias Císticas, Mucinosas e Serosas/genética , Pâncreas , Ductos Pancreáticos/química , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/genética , Pancreatite Crônica , Regiões Promotoras Genéticas/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator Trefoil-1/análise , Fator Trefoil-2/análise
19.
Gut ; 65(7): 1087-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26079943

RESUMO

OBJECTIVES: The mucin MUC1, best known for providing an epithelial barrier, is an important protective host factor in both humans and mice during Helicobacter pylori pathogenesis. This study aimed to identify the long-term consequences of MUC1 deficiency on H. pylori pathogenesis and the mechanism by which MUC1 protects against H. pylori gastritis. DESIGN: Wildtype and Muc1(-/-) mice were infected for up to 9 months, and the gastric pathology, immunological response and epigenetic changes assessed. The effects of MUC1 on the inflammasome, a potent inflammatory pathway, were examined in macrophages and H. pylori-infected mice deficient in both MUC1 and inflammasome components. RESULTS: Muc1(-/-) mice began to die 6 months after challenge, indicating Muc1 deficiency made H. pylori a lethal infection. Surprisingly, chimaeric mouse infections revealed MUC1 expression by haematopoietic-derived immune cells limits H. pylori-induced gastritis. Gastritis in infected Muc1(-/-) mice was associated with elevated interleukin (IL)-1ß and epigenetic changes in their gastric mucosa similar to those in transgenic mice overexpressing gastric IL-1ß, implicating MUC1 regulation of an inflammasome. In support of this, infected Muc1(-/-)Casp1(-/-) mice did not develop severe gastritis. Further, MUC1 regulated Nlrp3 expression via an nuclear factor (NF)-κB-dependent pathway and reduced NF-κB pathway activation via inhibition of IRAK4 phosphorylation. The importance of this regulation was proven using Muc1(-/-)Nlrp3(-/-) mice, which did not develop severe gastritis. CONCLUSIONS: MUC1 is an important, previously unidentified negative regulator of the NLRP3 inflammasome. H. pylori activation of the NLRP3 inflammasome is normally tightly regulated by MUC1, and loss of this critical regulation results in the development of severe pathology.


Assuntos
Gastrite/microbiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori/patogenicidade , Inflamassomos/metabolismo , Mucina-1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Caspase 1/genética , Metilação de DNA , Feminino , Mucosa Gástrica/imunologia , Mucosa Gástrica/metabolismo , Gastrite/patologia , Expressão Gênica , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Mucina-1/genética , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Transdução de Sinais , Fatores de Tempo , Fator Trefoil-2/genética
20.
Gut ; 65(6): 914-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25800782

RESUMO

OBJECTIVE: Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN: We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS: We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS: The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.


Assuntos
Biomarcadores Tumorais/genética , Fator 4 Nuclear de Hepatócito/genética , MicroRNAs/genética , Regulação para Cima/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Fator II de Transcrição COUP/genética , Mucosa Gástrica/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Metaplasia/genética , Proteínas dos Microfilamentos/genética , Peptídeos/genética , Estômago/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transfecção , Fator Trefoil-2/genética , Fator Trefoil-3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA