Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Biochemistry ; 62(14): 2170-2181, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37410946

RESUMO

Coagulation Factor XIII (FXIII) stabilizes blood clots by cross-linking glutamines and lysines in fibrin and other proteins. FXIII activity in the fibrinogen αC region (Fbg αC 221-610) is critical for clot stability and growth. Fbg αC 389-402 is a binding site for thrombin-activated FXIII, (FXIII-A*), with αC E396 promoting FXIII-A* binding and activity in αC. The current study aimed to discover additional residues within Fbg αC 389-402 that accelerate transglutaminase activity toward αC. Electrostatic αC residues (E395, E396, and D390), hydrophobic αC residues (W391 and F394), and residues αC 328-425 were studied by mutations to recombinant Fbg αC 233-425. FXIII activity was monitored through MS-based glycine ethyl ester (GEE) cross-linking and gel-based fluorescence monodansylcadaverine (MDC) cross-linking assays. Truncation mutations 403 Stop (Fbg αC 233-402), 389 Stop (Fbg αC 233-388), and 328 Stop (Fbg αC 233-327) reduced Q237-GEE and MDC cross-linking compared to wild-type (WT). Comparable cross-linking between 389 Stop and 328 Stop showed that FXIII is mainly affected by the loss of Fbg αC 389-402. Substitution mutations E396A, D390A, W391A, and F394A decreased cross-linking relative to WT, whereas E395A, E395S, E395K, and E396D had no effect. Similar FXIII-A* activities were observed for double mutants (D390A, E396A) and (W391A, E396A), relative to D390A and W391A, respectively. In contrast, cross-linking was reduced in (F394A, E396A), relative to F394A. In conclusion, Fbg αC 389-402 boosts FXIII activity in Fbg αC, with D390, W391, and F394 identified as key contributors in enhancing αC cross-linking.


Assuntos
Fator XIII , Fibrinogênio , Fator XIII/genética , Fator XIII/química , Fator XIII/metabolismo , Eletricidade Estática , Fibrinogênio/química , Fator XIIIa/genética , Fator XIIIa/metabolismo , Interações Hidrofóbicas e Hidrofílicas
2.
Sci Rep ; 13(1): 11683, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468579

RESUMO

The secreted von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus interacts with the coagulation factors prothrombin and fibrinogen (Fbg), leading to the non-proteolytic transglutaminase activation of Factor XIII (FXIII). In this study we found that vWbp-activated FXIII catalyses the incorporation of amino-donor dansylcadaverine into region A of fibronectin-binding protein A (FnBPA). Incubation of Fbg with recombinant region A of S. aureus Fbg-binding proteins FnBPA, FnBPB, ClfA or ClfB in presence of vWbp-activated FXIII resulted in the formation of high molecular heteropolymers with FnBPA only, suggesting a specificity of the cross-linking reaction between fibrin(ogen) and the staphylococcal surface. As previously observed, cross-linking sites were mapped to the α-chain and the N1 subdomain of fibrin(ogen) and region A of FnBPA, respectively. Comparable results were obtained when tissue tranglutaminase-2 (TG2) was tested for cross-linking of FnBPA and Fbg. Of note, FnBPA-mediated covalent cross-linking promoted by vWbp-activated FXIII was also observed when bacteria were allowed to attach to fibrin(ogen). Together these findings suggest a novel pathogenetic mechanism by which the transglutaminase action of FXIII and/or TG2 contributes to entrapment and persistence of S. aureus in blood and host tissues.


Assuntos
Hemostáticos , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Transporte/metabolismo , Fator XIII/metabolismo , Fibrinogênio/metabolismo , Fator de von Willebrand/metabolismo , Fator XIIIa/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Ligação Proteica , Hemostáticos/metabolismo , Transglutaminases/metabolismo , Fibrina/metabolismo
3.
Front Immunol ; 14: 1131292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180121

RESUMO

Background: The local, extravascular, activation of the coagulation system in response to injury is a key factor mediating the resulting inflammatory response. Coagulation Factor XIIIA (FXIIIA) found in alveolar macrophages (AM) and dendritic cells (DC), by influencing fibrin stability, might be an inflammatory modifier in COPD. Aims: To study the expression of FXIIIA in AM and Langerin+DC (DC-1) and their relation to the inflammatory response and disease progression in COPD. Methods: In 47 surgical lungs, 36 from smokers (22 COPD and 14 no-COPD) and 11 from non-smokers we quantified by immunohistochemistry FXIIIA expression in AM and DC-1 along with numbers of CD8+Tcells and CXCR3 expression in lung parenchyma and airways. Lung function was measured prior to surgery. Results: The percentage of AM expressing FXIII (%FXIII+AM) was higher in COPD than no-COPD and non-smokers. DC-1 expressed FXIIIA and their numbers were higher in COPD than no-COPD and non-smokers. DC-1 positively correlated with %FXIII+AM (r=0.43; p<0.018). CD8+Tcells, which were higher in COPD than in no-COPD, were correlated with DC-1 (p<0.01) and %FXIII+AM. CXCR3+ cells were increased in COPD and correlated with %FXIII+AM (p<0.05). Both %FXIII+AM (r=-0.6; p=0.001) and DC-1 (r=-0.7; p=0.001) correlated inversely with FEV1. Conclusion: FXIIIA, an important link between the extravascular coagulation cascade and inflammatory response, is significantly expressed in alveolar macrophages and dendritic cells of smokers with COPD, suggesting that it could play an important role in the adaptive inflammatory reaction characteristic of the disease.


Assuntos
Fator XIII , Fator XIIIa , Humanos , Fator XIII/metabolismo , Fator XIIIa/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibrina/metabolismo
4.
Int J Hematol ; 118(1): 26-35, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37059930

RESUMO

Inherited factor XIII (FXIII) deficiency is an extremely rare and under-diagnosed autosomal recessive inherited coagulopathy, which is caused by genetic defects in the F13A1 or F13B gene. More than 200 genetic mutations have been identified since the first case of inherited FXIII deficiency was reported. This study aimed to identify underlying gene mutations in a patient with inherited FXIII deficiency who presented with recurrent intracerebral hemorrhage. Levels of plasma FXIII-A antigen were measured, F13A1 and F13B genes were sequenced, mutation information was analyzed, and the mutated protein structure was predicted using bioinformatics methods. Molecular genetic analysis identified four mutations of FXIII-related genes in the proband, including three previously reported mutations inherited from his parents (c.631G>A, p.Gly210Arg and c.1687G>A, p.Gly562Arg of F13A1 gene and c.344G>A, p.Arg115His of F13B gene) and a novel spontaneous mutation of F13A1 gene (c.2063C>G, p.Ser687Cys). Molecular structural modeling demonstrated that the novel Ser687Cys mutation may cause changes in the spatial structure of FXIII-A and increase its instability. In conclusion, we identified a novel and likely pathogenic mutation of the F13A1 gene, which enriched the gene mutation spectrum of inherited FXIII deficiency. The findings may provide promising targets for diagnosis and treatment of inherited FXIII deficiency.


Assuntos
Deficiência do Fator XIII , Fator XIIIa , Humanos , Fator XIIIa/química , Fator XIIIa/genética , Fator XIIIa/metabolismo , Deficiência do Fator XIII/genética , Deficiência do Fator XIII/diagnóstico , Fator XIII/genética , Mutação , Hemorragia
5.
Thromb Haemost ; 123(9): 841-854, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36934722

RESUMO

BACKGROUND: Coagulation factor XIII (FXIII) is a proenzyme of plasma transglutaminase. It comprises two catalytic A subunits (FXIII-A) and two carrier B subunits (FXIII-B). We previously reported that alloantibodies against FXIII-B could promote FXIII clearance in a patient with congenital FXIII-B deficiency who had received infusions of plasma-derived human FXIII (A2B2 heterotetramer). OBJECTIVES: We aimed to investigate whether anti-FXIII-B antibodies affect the catalytic function of FXIII. METHODS: FXIII activation and fibrin crosslinking were examined in the presence of patient plasma, isolated patient IgG, or rat anti-FXIII-B monoclonal antibodies. RESULTS: Alloantibody levels were increased by repeated infusions of plasma-derived A2B2 heterotetramer, which enhanced binding to the functionally important FXIII-B sushi domains. The patient plasma strongly inhibited cleavage of the FXIII-A activation peptide, amine incorporation, and fibrin crosslinking in normal plasma. Furthermore, anti-FXIII-B alloantibodies blocked the formation of the complex of FXIII-B with FXIII-A, and fibrinogen. Rat monoclonal antibodies against the 10th sushi domain of FXIII-B inhibited the incorporation of FXIII-B to fibrin, FXIII activation (i.e., cleavage of FXIII-A activation peptide), and ultimately fibrin crosslinking in normal plasma, independent of their effect on heterotetramer assembly with FXIII-A. Alloantibody binding to the A2B2 heterotetramer blocked the access of thrombin to the FXIII-A cleavage site, as indicated by the reaction of the alloantibodies to the A2B2 heterotetramer and FXIII-B, but not to FXIII-A. CONCLUSION: Anti-FXIII-B antibodies binding to the A2B2 heterotetramer and FXIII-B inhibited FXIII activation and its crosslinking function despite being directed against its noncatalytic subunit (FXIII-B).


Assuntos
Deficiência do Fator XIII , Fator XIII , Humanos , Ratos , Animais , Fator XIII/metabolismo , Fibrina/metabolismo , Isoanticorpos , Fator XIIIa/metabolismo , Anticorpos Monoclonais/farmacologia , Peptídeos
6.
Molecules ; 28(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838622

RESUMO

Factor XIIIa (FXIIIa) is a transglutaminase of major therapeutic interest for the development of anticoagulants due to its essential role in the blood coagulation cascade. While numerous FXIIIa inhibitors have been reported, they failed to reach clinical evaluation due to their lack of metabolic stability and low selectivity over transglutaminase 2 (TG2). Furthermore, the chemical tools available for the study of FXIIIa activity and localization are extremely limited. To combat these shortcomings, we designed, synthesised, and evaluated a library of 21 novel FXIIIa inhibitors. Electrophilic warheads, linker lengths, and hydrophobic units were varied on small molecule and peptidic scaffolds to optimize isozyme selectivity and potency. A previously reported FXIIIa inhibitor was then adapted for the design of a probe bearing a rhodamine B moiety, producing the innovative KM93 as the first known fluorescent probe designed to selectively label active FXIIIa with high efficiency (kinact/KI = 127,300 M-1 min-1) and 6.5-fold selectivity over TG2. The probe KM93 facilitated fluorescent microscopy studies within bone marrow macrophages, labelling FXIIIa with high efficiency and selectivity in cell culture. The structure-activity trends with these novel inhibitors and probes will help in the future study of the activity, inhibition, and localization of FXIIIa.


Assuntos
Fator XIIIa , Transglutaminases , Transglutaminases/química , Fator XIIIa/química , Fator XIIIa/metabolismo , Corantes Fluorescentes , Técnicas de Cultura de Células , Macrófagos/metabolismo
7.
Thromb Haemost ; 123(4): 380-392, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36473493

RESUMO

Factor XIII (FXIII) catalyzes formation of γ-glutamyl-ε-lysyl crosslinks between reactive glutamines (Q) and lysines (K). In plasma, FXIII is activated proteolytically (FXIII-A*) by the concerted action of thrombin and Ca2+. Cellular FXIII is activated nonproteolytically (FXIII-A°) by elevation of physiological Ca2+ concentrations. FXIII-A targets plasmatic and cellular substrates, but questions remain on correlating FXIII activation, resultant conformational changes, and crosslinking function to different physiological substrates. To address these issues, the characteristics of FXIII-A* versus FXIII-A° that contribute to transglutaminase activity and substrate specificities were investigated. Crosslinking of lysine mimics into a series of Q-containing substrates were measured using in-gel fluorescence, mass spectrometry, and UV-Vis spectroscopy. Covalent incorporation of fluorescent monodansylcadaverine revealed that FXIII-A* exhibits greater activity than FXIII-A° toward Q residues within Fbg αC (233-425 WT, Q328P Seoul II, and Q328PQ366N) and actin. FXIII-A* and FXIII-A° displayed similar activities toward α2-antiplasmin (α2AP), fibronectin, and Fbg αC (233-388, missing FXIII-binding site αC 389-402). Furthermore, the N-terminal α2AP peptide (1-15) exhibited similar kinetic properties for FXIII-A* and FXIII-A°. MALDI-TOF mass spectrometry assays with glycine ethyl ester and Fbg αC (233-425 WT, αC E396A, and truncated αC (233-388) further documented that FXIII-A* exerts greater benefit from the αC 389-402 binding site than FXIII-A°. Conformational properties of FXIII-A* versus A° are proposed to help promote transglutaminase function toward different substrates. A combination of protein substrate disorder and secondary FXIII-binding site exposure are utilized to control activity and specificity. From these studies, greater understandings of how FXIII-A targets different substrates are achieved.


Assuntos
Coagulantes , Fator XIII , Humanos , Fator XIII/metabolismo , Fator XIIIa/metabolismo , Transglutaminases , Peptídeos
8.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142125

RESUMO

Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the 'supernatant of (hirudin-treated) coagulated plasma' (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbß3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.


Assuntos
Selectina-P , Glicoproteínas da Membrana de Plaquetas , Plaquetas/metabolismo , Fator XIIIa/metabolismo , Fibrina/metabolismo , Hirudinas/metabolismo , Hirudinas/farmacologia , Selectina-P/metabolismo , Fosfatidilserinas/metabolismo , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Proteína C/metabolismo , Receptor PAR-1/metabolismo , Quinase Syk/metabolismo , Trombina/metabolismo , Trombina/farmacologia
9.
J Clin Invest ; 132(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36006736

RESUMO

Invasive bacterial infections remain a major cause of human morbidity. Group B streptococcus (GBS) are Gram-positive bacteria that cause invasive infections in humans. Here, we show that factor XIIIA-deficient (FXIIIA-deficient) female mice exhibited significantly increased susceptibility to GBS infections. Additionally, female WT mice had increased levels of FXIIIA and were more resistant to GBS infection compared with isogenic male mice. We observed that administration of exogenous FXIIIA to male mice increased host resistance to GBS infection. Conversely, administration of a FXIIIA transglutaminase inhibitor to female mice decreased host resistance to GBS infection. Interestingly, male gonadectomized mice exhibited decreased sensitivity to GBS infection, suggesting a role for gonadal androgens in host susceptibility. FXIIIA promoted GBS entrapment within fibrin clots by crosslinking fibronectin with ScpB, a fibronectin-binding GBS surface protein. Thus, ScpB-deficient GBS exhibited decreased entrapment within fibrin clots in vitro and increased dissemination during systemic infections. Finally, using mice in which FXIIIA expression was depleted in mast cells, we observed that mast cell-derived FXIIIA contributes to host defense against GBS infection. Our studies provide insights into the effects of sexual dimorphism and mast cells on FXIIIA expression and its interactions with GBS adhesins that mediate bacterial dissemination and pathogenesis.


Assuntos
Fator XIIIa , Infecções Estreptocócicas , Androgênios/metabolismo , Animais , Fator XIIIa/metabolismo , Feminino , Fibrina/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Masculino , Mastócitos/metabolismo , Camundongos , Infecções Estreptocócicas/genética , Streptococcus agalactiae/metabolismo , Transglutaminases/metabolismo
10.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628664

RESUMO

Plasma factor XIII (pFXIII) is a heterotetramer of FXIII-A and FXIII-B subunits. The cellular form (cFXIII), a dimer of FXIII-A, is present in a number of cell types. Activated FXIII (FXIIIa), a transglutaminase, plays an important role in clot stabilization, wound healing, angiogenesis and maintenance of pregnancy. It has a direct effect on vascular endothelial cells and fibroblasts, which have been implicated in the development of atherosclerotic plaques. Our aim was to explore the effect of FXIIIa on human aortic smooth muscle cells (HAoSMCs), another major cell type in the atherosclerotic plaque. Osteoblastic transformation induced by Pi and Ca2+ failed to elicit the expression of cFXIII in HAoSMCs. EZ4U, CCK-8 and CytoSelect Wound Healing assays were used to investigate cell proliferation and migration. The Sircol Collagen Assay Kit was used to monitor collagen secretion. Thrombospondin-1 (TSP-1) levels were measured by ELISA. Cell-associated TSP-1 was detected by the immunofluorescence technique. The TSP-1 mRNA level was estimated by RT-qPCR. Activated recombinant cFXIII (rFXIIIa) increased cell proliferation and collagen secretion. In parallel, a 67% decrease in TSP-1 concentration in the medium and a 2.5-fold increase in cells were observed. TSP-1 mRNA did not change significantly. These effects of FXIIIa might contribute to the pathogenesis of atherosclerotic plaques.


Assuntos
Fator XIIIa , Placa Aterosclerótica , Transglutaminases , Colágeno , Células Endoteliais/metabolismo , Fator XIIIa/genética , Fator XIIIa/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/metabolismo , Trombospondina 1/genética , Transglutaminases/genética , Transglutaminases/metabolismo
11.
Am J Dermatopathol ; 44(7): 493-498, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315372

RESUMO

ABSTRACT: Juvenile xanthogranuloma is a group C and L non-Langerhans cell histiocytosis, and its cell of origin is still debatable. The expression of CD11c, a more recently described macrophage marker, and CD4 have not been studied comprehensively. This study aimed to expand immunophenotypic profile and hence our understanding of the origin of these lesions. The surgical pathology archive was searched for the cases with the pathologic diagnosis of "xanthogranuloma" from 1995 to 2019. Immunohistochemical (IHC) stains were performed for factor XIIIa, CD11c, and CD4. Morphologically, each lesion was classified into early classic, classic, or transitional subtypes. Seventy-seven cases were included with the median age of 7.8 years (male:female 1.3:1). Uniform positivity was noticed for CD4 (n = 77), CD68 (n = 37), CD163 (n = 5), and vimentin (n = 4) stains. Other stains included CD11c 75/77 (97.4%), factor XIIIa 71/76 (93.4%), S-100 protein 4/23 (17.4%), and CD1a 0/18 (0%). Despite insignificant association between morphologic subtype and main studied IHC stains, factor XIIIa reactivity was highest in transitional lesions and CD11c showed higher reactivity in early classic lesions. CD11c and CD4 are sensitive markers and showed promising results in the diagnosis of juvenile xanthogranuloma compared with factor XIIIa. Despite different reactivity of factor XIIIa and CD11c in various morphologic subtypes, such association was statistically insignificant.


Assuntos
Histiocitose de Células não Langerhans , Xantogranuloma Juvenil , Biomarcadores , Criança , Fator XIIIa/metabolismo , Feminino , Humanos , Masculino , Proteínas S100 , Xantogranuloma Juvenil/patologia
12.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203139

RESUMO

Fibrinogen is one of the key molecular players in haemostasis. Thrombin-mediated release of fibrinopeptides from fibrinogen converts this soluble protein into a network of fibrin fibres that form a building block for blood clots. Thrombin-activated factor XIII further crosslinks the fibrin fibres and incorporates antifibrinolytic proteins into the network, thus stabilising the clot. The conversion of fibrinogen to fibrin also exposes binding sites for fibrinolytic proteins to limit clot formation and avoid unwanted extension of the fibrin fibres. Altered clot structure and/or incorporation of antifibrinolytic proteins into fibrin networks disturbs the delicate equilibrium between clot formation and lysis, resulting in either unstable clots (predisposing to bleeding events) or persistent clots that are resistant to lysis (increasing risk of thrombosis). In this review, we discuss the factors responsible for alterations in fibrin(ogen) that can modulate clot stability, in turn predisposing to abnormal haemostasis. We also explore the mechanistic pathways that may allow the use of fibrinogen as a potential therapeutic target to treat vascular thrombosis or bleeding disorders. Better understanding of fibrinogen function will help to devise future effective and safe therapies to modulate thrombosis and bleeding risk, while maintaining the fine balance between clot formation and lysis.


Assuntos
Fator XIIIa/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Trombose/metabolismo , Animais , Fator XIIIa/genética , Fibrina/genética , Fibrinogênio/genética , Fibrinólise/genética , Fibrinólise/fisiologia , Humanos , Trombose/genética
13.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205443

RESUMO

Factor XIII (FXIII) is a transglutaminase that promotes thrombus stability by cross-linking fibrin. The cellular form, a homodimer of the A subunits, denoted FXIII-A, lacks a classical signal peptide for its release; however, we have shown that it is exposed on activated platelets. Here we addressed whether monocytes expose intracellular FXIII-A in response to stimuli. Using flow cytometry, we demonstrate that FXIII-A antigen and activity are up-regulated on human monocytes in response to stimulation by IL-4 and IL-10. Higher basal levels of the FXIII-A antigen were noted on the membrane of the monocytic cell line THP-1, but activity was significantly enhanced following stimulation with IL-4 and IL-10. In contrast, treatment with lipopolysaccharide did not upregulate exposure of FXIII-A in THP-1 cells. Quantification of the FXIII-A activity revealed a significant increase in THP-1 cells in total cell lysates following stimulation with IL-4 and IL-10. Following fractionation, the largest pool of FXIII-A was membrane associated. Monocytes were actively incorporated into the fibrin mesh of model thrombi. We found that stimulation of monocytes and THP-1 cells with IL-4 and IL-10 stabilized FXIII-depleted thrombi against fibrinolytic degradation, via a transglutaminase-dependent mechanism. Our data suggest that monocyte-derived FXIII-A externalized in response to stimuli participates in thrombus stabilization.


Assuntos
Fator XIIIa/metabolismo , Monócitos/metabolismo , Trombose/metabolismo , Voluntários Saudáveis , Humanos , Células THP-1/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34183396

RESUMO

The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.


Assuntos
Reagentes de Ligações Cruzadas/química , Fator XIIIa/metabolismo , Fibrinogênio/metabolismo , Embolia Pulmonar/etiologia , Embolia Pulmonar/patologia , Veia Cava Inferior/patologia , Trombose Venosa/complicações , Animais , Coagulação Sanguínea , Plaquetas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Imagem Óptica , Embolia Pulmonar/sangue , Trombose Venosa/sangue
15.
Int J Mol Sci ; 22(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069309

RESUMO

We identified a novel heterozygous hypofibrinogenemia, γY278H (Hiroshima). To demonstrate the cause of reduced plasma fibrinogen levels (functional level: 1.12 g/L and antigenic level: 1.16 g/L), we established γY278H fibrinogen-producing Chinese hamster ovary (CHO) cells. An enzyme-linked immunosorbent assay demonstrated that synthesis of γY278H fibrinogen inside CHO cells and secretion into the culture media were not reduced. Then, we established an additional five variant fibrinogen-producing CHO cell lines (γL276P, γT277P, γT277R, γA279D, and γY280C) and conducted further investigations. We have already established 33 γ-module variant fibrinogen-producing CHO cell lines, including 6 cell lines in this study, but only the γY278H and γT277R cell lines showed disagreement, namely, recombinant fibrinogen production was not reduced but the patients' plasma fibrinogen level was reduced. Finally, we performed fibrinogen degradation assays and demonstrated that the γY278H and γT277R fibrinogens were easily cleaved by plasmin whereas their polymerization in the presence of Ca2+ and "D:D" interaction was normal. In conclusion, our investigation suggested that patient γY278H showed hypofibrinogenemia because γY278H fibrinogen was secreted normally from the patient's hepatocytes but then underwent accelerated degradation by plasmin in the circulation.


Assuntos
Afibrinogenemia/genética , Fibrinogênios Anormais/genética , Fibrinogênios Anormais/metabolismo , Mutação , Adulto , Afibrinogenemia/sangue , Animais , Testes de Coagulação Sanguínea , Células CHO , Cricetulus , Fator XIIIa/química , Fator XIIIa/metabolismo , Feminino , Fibrina/metabolismo , Fibrinogênios Anormais/química , Fibrinolisina/metabolismo , Heterozigoto , Humanos , Immunoblotting , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trombina/metabolismo
16.
Int J Mol Sci ; 22(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802692

RESUMO

Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.


Assuntos
Fator XIIIa/metabolismo , Hemostasia , Cicatrização , Vasos Sanguíneos/metabolismo , Sistemas de Liberação de Medicamentos , Fator XIIIa/química , Humanos , Modelos Biológicos
17.
J Cutan Pathol ; 48(7): 980-985, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33844324

RESUMO

Cellular neurothekeoma is a cutaneous tumor with a distinctive histopathologic appearance characterized by a dermal-based multinodular proliferation of epithelioid to spindled cells. Although the tumor may show varying amounts of myxoid stroma, extensive myxoid change is uncommon. The tumor typically presents as a solitary nodule with a predilection for the head and neck and upper limbs; examples of multiple cellular neurothekeomas are decidedly rare. The present report describes a unique case of multiple myxoid cellular neurothekeomas arising in a 60-year-old female with systemic lupus erythematosus. Two papular lesions were identified involving the skin inferior to the umbilicus and the left inguinal crease. Both lesions were histopathologically similar, forming a nodular mass composed of epithelioid cells in a prominent myxoid stroma. By immunohistochemistry the lesional cells expressed NKI/C3, microphthalmia transcription factor (MiTF), and CD68, with focal staining for PGP9.5, factor XIIIa, and CD10 also observed. The tumors were negative for S-100, SOX-10, epithelial membrane antigen, desmin, smooth muscle actin, glial fibrillary acid protein, and CD34. The present case confirms that cellular neurothekeoma can present clinically as multiple lesions and can have a predominantly myxoid appearance, potentially mimicking other cutaneous myxoid lesions.


Assuntos
Lúpus Eritematoso Sistêmico/complicações , Neoplasias do Sistema Nervoso/patologia , Neurotecoma/diagnóstico , Neoplasias Cutâneas/patologia , Adolescente , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores Tumorais/metabolismo , Criança , Pré-Escolar , Diagnóstico Diferencial , Células Epitelioides/patologia , Fator XIIIa/metabolismo , Feminino , Humanos , Imuno-Histoquímica/métodos , Lactente , Masculino , Fator de Transcrição Associado à Microftalmia/metabolismo , Pessoa de Meia-Idade , Mixoma/patologia , Neprilisina/metabolismo , Neurotecoma/metabolismo , Ubiquitina Tiolesterase/metabolismo
18.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535700

RESUMO

Multidisciplinary research from the last few decades has revealed that Factor XIII subunit A (FXIII-A) is not only involved in blood coagulation, but may have roles in various diseases. Here, we aim to summarize data from studies involving patients with mutations in the F13A1 gene, performed in FXIII-A knock-out mice models, clinical and histological studies assessing correlations between diseases severity and FXIII-A levels, as well as from in vitro experiments. By providing a complex overview on its possible role in wound healing, chronic inflammatory bowel diseases, athe-rosclerosis, rheumatoid arthritis, chronic inflammatory lung diseases, chronic rhinosinusitis, solid tumors, hematological malignancies, and obesity, we also demonstrate how the field evolved from using FXIII-A as a marker to accept and understand its active role in inflammatory and malignant diseases.


Assuntos
Artrite Reumatoide/metabolismo , Aterosclerose/metabolismo , Fator XIIIa/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Pneumopatias/metabolismo , Neoplasias/metabolismo , Obesidade/metabolismo , Sinusite/metabolismo , Animais , Coagulação Sanguínea , Doença Crônica , Fator XIIIa/genética , Humanos , Inflamação , Camundongos , Camundongos Knockout , Mutação , Polimorfismo Genético , Microambiente Tumoral , Cicatrização
19.
Am J Dermatopathol ; 43(8): 560-566, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534206

RESUMO

BACKGROUND: Pleomorphic fibromas are rare flesh-colored benign neoplasms first described in 1989. Their histopathology is notable for nuclear pleomorphism of spindle cells and multinucleate giant cells but lacking mitoses. The cellular origin of these tumors is unknown. This case series describes an additional 18 lesions with discussion of histopathology and immunohistochemistry. METHODS: This case series of 18 pleomorphic fibromas uses immunohistochemical staining for CD34, CD68, factor XIIIa, and S-100 and general histopathologic examination under light microscopy to describe the lesions. RESULTS: Immunohistochemical stains for CD34 showed nearly universal positivity of the pleomorphic spindle cells, although some more focally. The pleomorphic cells were negative for CD68, variably positive for factor XIIIa, and universally negative for S-100. All the lesions showed characteristic nuclear pleomorphism with absent mitoses. Collagen thickening was variable, mucin was absent, and perivascular inflammation was present in all lesions. CONCLUSIONS: Pleomorphic fibromas are fibrous lesions with benign clinical course and histopathologic findings including nuclear pleomorphism. Immunohistochemical staining characteristics of the lesion, along with unique spindle cells and multinucleate giant cells help to differentiate this from other tumors.


Assuntos
Fibroma/metabolismo , Fibroma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Adulto , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Colágeno , Fator XIIIa/metabolismo , Feminino , Células Gigantes/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Mitose , Proteínas S100/metabolismo , Adulto Jovem
20.
Int J Mol Sci ; 22(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477282

RESUMO

The saliva of blood-sucking leeches contains a plethora of anticoagulant substances. One of these compounds derived from Haementeria ghilianii, the 66mer three-disulfide-bonded peptide tridegin, specifically inhibits the blood coagulation factor FXIIIa. Tridegin represents a potential tool for antithrombotic and thrombolytic therapy. We recently synthesized two-disulfide-bonded tridegin variants, which retained their inhibitory potential. For further lead optimization, however, structure information is required. We thus analyzed the structure of a two-disulfide-bonded tridegin isomer by solution 2D NMR spectroscopy in a combinatory approach with subsequent MD simulations. The isomer was studied using two fragments, i.e., the disulfide-bonded N-terminal (Lys1-Cys37) and the flexible C-terminal part (Arg38-Glu66), which allowed for a simplified, label-free NMR-structure elucidation of the 66mer peptide. The structural information was subsequently used in molecular modeling and docking studies to provide insights into the structure-activity relationships. The present study will prospectively support the development of anticoagulant-therapy-relevant compounds targeting FXIIIa.


Assuntos
Fator XIIIa/antagonistas & inibidores , Espectroscopia de Ressonância Magnética/métodos , Proteínas e Peptídeos Salivares/farmacologia , Sequência de Aminoácidos , Animais , Dissulfetos/química , Fator XIIIa/metabolismo , Fibrinolíticos/farmacologia , Humanos , Isomerismo , Sanguessugas/metabolismo , Imageamento por Ressonância Magnética/métodos , Modelos Moleculares , Simulação de Dinâmica Molecular , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA