Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513102

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Assuntos
Processamento Alternativo , Benzopiranos , Receptor beta de Estrogênio , Estruturas R-Loop , Fator de Processamento U2AF , Neoplasias de Mama Triplo Negativas , Humanos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Processamento Alternativo/efeitos dos fármacos , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Ligação Proteica , Sítios de Ligação
2.
Nucleic Acids Res ; 52(3): 1420-1434, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38088204

RESUMO

Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.


Assuntos
Sítios de Splice de RNA , Ribonucleoproteínas , Spliceossomos , Fator de Processamento U2AF , Humanos , Sítios de Ligação , Íntrons , Nucleotídeos/metabolismo , Ribonucleoproteínas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
3.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126797

RESUMO

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Membrana , Ribonucleoproteínas , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Splicing de RNA , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
4.
Cell Rep ; 42(12): 113534, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38065098

RESUMO

Human pre-mRNA splicing requires the removal of introns with highly variable lengths, from tens to over a million nucleotides. Therefore, mechanisms of intron recognition and splicing are likely not universal. Recently, we reported that splicing in a subset of human short introns with truncated polypyrimidine tracts depends on RBM17 (SPF45), instead of the canonical splicing factor U2 auxiliary factor (U2AF) heterodimer. Here, we demonstrate that SAP30BP, a factor previously implicated in transcriptional control, is an essential splicing cofactor for RBM17. In vitro binding and nuclear magnetic resonance analyses demonstrate that a U2AF-homology motif (UHM) in RBM17 binds directly to a newly identified UHM-ligand motif in SAP30BP. We show that this RBM17-SAP30BP interaction is required to specifically recruit RBM17 to phosphorylated SF3B1 (SF3b155), a U2 small nuclear ribonucleoprotein (U2 snRNP) component in active spliceosomes. We propose a mechanism for splicing in a subset of short introns, in which SAP30BP guides RBM17 in the assembly of active spliceosomes.


Assuntos
Splicing de RNA , Spliceossomos , Humanos , Íntrons/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Spliceossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Fatores de Transcrição/metabolismo , Precursores de RNA/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
Cell Rep ; 42(10): 113223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37805921

RESUMO

Pre-mRNA splicing is surveilled at different stages by quality control (QC) mechanisms. The leukemia-associated DExH-box family helicase hDHX15/scPrp43 is known to disassemble spliceosomes after splicing. Here, using rapid protein depletion and analysis of nascent and mature RNA to enrich for direct effects, we identify a widespread splicing QC function for DHX15 in human cells, consistent with recent in vitro studies. We find that suboptimal introns with weak splice sites, multiple branch points, and cryptic introns are repressed by DHX15, suggesting a general role in promoting splicing fidelity. We identify SUGP1 as a G-patch factor that activates DHX15's splicing QC function. This interaction is dependent on both DHX15's ATPase activity and on SUGP1's U2AF ligand motif (ULM) domain. Together, our results support a model in which DHX15 plays a major role in splicing QC when recruited and activated by SUGP1.


Assuntos
Splicing de RNA , Spliceossomos , Humanos , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/metabolismo
6.
J Am Chem Soc ; 145(39): 21646-21660, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733759

RESUMO

R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.


Assuntos
Estruturas R-Loop , Precursores de RNA , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , DNA/química , RNA/química , Regiões Promotoras Genéticas
7.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487637

RESUMO

U2AF1 is one of the most recurrently mutated splicing factors in lung adenocarcinoma and has been shown to cause transcriptome-wide pre-mRNA splicing alterations; however, the full-length altered mRNA isoforms associated with the mutation are largely unknown. To better understand the impact U2AF1 has on full-length isoform fate and function, we conducted high-throughput long-read cDNA sequencing from isogenic human bronchial epithelial cells with and without a U2AF1 S34F mutation. We identified 49,366 multi-exon transcript isoforms, more than half of which did not match GENCODE or short-read-assembled isoforms. We found 198 transcript isoforms with significant expression and usage changes relative to WT, only 68% of which were assembled by short reads. Expression of isoforms from immune-related genes is largely down-regulated in mutant cells and without observed splicing changes. Finally, we reveal that isoforms likely targeted by nonsense-mediated decay are down-regulated in U2AF1 S34F cells, suggesting that isoform changes may alter the translational output of those affected genes. Altogether, our work provides a resource of full-length isoforms associated with U2AF1 S34F in lung cells.


Assuntos
Células Epiteliais , Splicing de RNA , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Splicing de RNA/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células Epiteliais/metabolismo , Mutação/genética
8.
Cell Death Dis ; 14(1): 23, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36635261

RESUMO

Glioma is the most aggressive and common malignant neoplasms in human brain tumors. Numerous studies have showed that glioma stem cells (GSCs)drive the malignant progression of gliomas. Recent studies have revealed that circRNAs can maintain stemness and promote malignant progression of glioma stem cells. We used bioinformatics analysis to identify circRNAs and potential RNA-binding proteins (RBPs) in glioma. qRT-PCR, western blotting, RNA FISH, RNA pull-down, RNA immunoprecipitation assay, ChIP, immunohistochemistry, and immunofluorescence methods were used to quantified the expression of circNCAPG, U2AF65, RREB1 and TGF-ß1, and the underlying mechanisms between them. MTS, EDU, neurosphere formation, limiting dilution neurosphere formation and transwell assays examined the proliferation and invasive capability of GSCs, respectively. We identified a novel circRNA named circNCAPG was overexpressed and indicated the poor prognosis in glioma patients. Upregulating circNCAPG promoted the malignant progression of GSCs. RNA binding protein U2AF65 could stabilize circNCAPG by direct binding. Mechanically, circNCAPG interacted with and stabilized RREB1, as well as stimulated RREB1 nuclear translocation to activate TGF-ß1 signaling pathway. Furthermore, RREB1 transcriptionally upregulated U2AF65 expression to improve the stability of circNCAPG in GSCs, which established a feedback loop involving U2AF65, circNCAPG and RREB1. Since circRNA is more stable than mRNA and can execute its function continuously, targeting circNCAPG in glioma may be a novel promising therapeutic.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , RNA Circular , Humanos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , RNA Circular/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
9.
Adv Biol Regul ; 87: 100920, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216757

RESUMO

Mutations of splicing factor genes (including SF3B1, SRSF2, U2AF1 and ZRSR2) occur in more than half of all patients with myelodysplastic syndromes (MDS), a heterogeneous group of myeloid neoplasms. Splicing factor mutations lead to aberrant pre-mRNA splicing of many genes, some of which have been shown in functional studies to impact on hematopoiesis and to contribute to the MDS phenotype. This clearly demonstrates that impaired spliceosome function plays an important role in MDS pathophysiology. Recent studies that harnessed the power of induced pluripotent stem cell (iPSC) and CRISPR/Cas9 gene editing technologies to generate new iPSC-based models of splicing factor mutant MDS, have further illuminated the role of key downstream target genes. The aberrantly spliced genes and the dysregulated pathways associated with splicing factor mutations in MDS represent potential new therapeutic targets. Emerging data has shown that IRAK4 is aberrantly spliced in SF3B1 and U2AF1 mutant MDS, leading to hyperactivation of NF-κB signaling. Pharmacological inhibition of IRAK4 has shown efficacy in pre-clinical studies and in MDS clinical trials, with higher response rates in patients with splicing factor mutations. Our increasing knowledge of the effects of splicing factor mutations in MDS is leading to the development of new treatments that may benefit patients harboring these mutations.


Assuntos
DNA Recombinante , Síndromes Mielodisplásicas , Humanos , Fatores de Processamento de RNA/genética , DNA Recombinante/metabolismo , DNA Recombinante/farmacologia , DNA Recombinante/uso terapêutico , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/farmacologia , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Síndromes Mielodisplásicas/genética , Spliceossomos/genética , Splicing de RNA , Mutação
10.
Cell Mol Neurobiol ; 43(3): 1199-1218, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35748966

RESUMO

Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.


Assuntos
Células-Tronco Neurais , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paxilina/metabolismo , Metaloproteinase 2 da Matriz , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Processamento U2AF/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a RNA/metabolismo , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Immunother Cancer ; 11(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38164756

RESUMO

BACKGROUND: Myelodysplastic syndromes (MDS) arise from somatic mutations acquired in hematopoietic stem and progenitor cells, causing cytopenias and predisposing to transformation into secondary acute myeloid leukemia (sAML). Recurrent mutations in spliceosome genes, including U2AF1, are attractive therapeutic targets as they are prevalent in MDS and sAML, arise early in neoplastic cells, and are generally absent from normal cells, including normal hematopoietic cells. MDS and sAML are susceptible to T cell-mediated killing, and thus engineered T-cell immunotherapies hold promise for their treatment. We hypothesized that targeting spliceosome mutation-derived neoantigens with transgenic T-cell receptor (TCR) T cells would selectively eradicate malignant cells in MDS and sAML. METHODS: We identified candidate neoantigen epitopes from recurrent protein-coding mutations in the spliceosome genes SRSF2 and U2AF1 using a multistep in silico process. Candidate epitopes predicted to bind human leukocyte antigen (HLA) class I, be processed and presented from the parent protein, and not to be subject to tolerance then underwent in vitro immunogenicity screening. CD8+ T cells recognizing immunogenic neoantigen epitopes were evaluated in in vitro assays to assess functional avidity, confirm the predicted HLA restriction, the potential for recognition of similar peptides, and the ability to kill neoplastic cells in an antigen-specific manner. Neoantigen-specific TCR were sequenced, cloned into lentiviral vectors, and transduced into third-party T cells after knock-out of endogenous TCR, then tested in vitro for specificity and ability to kill neoplastic myeloid cells presenting the neoantigen. The efficacy of neoantigen-specific T cells was evaluated in vivo in a murine cell line-derived xenograft model. RESULTS: We identified two neoantigens created from a recurrent mutation in U2AF1, isolated CD8+ T cells specific for the neoantigens, and demonstrated that transferring their TCR to third-party CD8+ T cells is feasible and confers specificity for the U2AF1 neoantigens. Finally, we showed that these neoantigen-specific TCR-T cells do not recognize normal hematopoietic cells but efficiently kill malignant myeloid cells bearing the specific U2AF1 mutation, including primary cells, in vitro and in vivo. CONCLUSIONS: These data serve as proof-of-concept for developing precision medicine approaches that use neoantigen-directed T-cell receptor-transduced T cells to treat MDS and sAML.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Epitopos/metabolismo
12.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292918

RESUMO

Pancreatic cancer is one of the most lethal malignant tumors. However, the molecular mechanisms responsible for its progression are little known. This study aimed to understand the regulatory role of CD44V3 in pancreatic cancer. A Kaplan-Meier analysis was performed to reveal the correlation between CD44/CD44V3 expression and the prognosis of pancreatic cancer patients. CD44V3 and U2AF1 were knocked down using shRNAs. The proliferation, migration, invasion, and stemness of two pancreatic cell lines, BxPC-3 and AsPC-1, were examined. The expression of CD44V3, cancer-associated markers, and the activation of AKT signaling were detected by qRT-PCR and Western blot. Both CD44 and CD44V3 expression levels were associated with a poor prognosis in pancreatic cancer patients. Interestingly, the expression of CD44V3, instead of CD44, was greatly increased in tumor tissues. CD44V3 knockdown inhibited the proliferation, migration, invasion, and stemness of cancer cells. CD44V3 splicing was regulated by U2AF1 and downregulation of U2AF1 enhanced CD44V3 expression, which promoted pancreatic cancer progression. CD44V3 is an important cancer-promoting factor, which may serve as a potential candidate for pancreatic cancer intervention.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Processamento U2AF/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
13.
J Chem Inf Model ; 62(24): 6691-6703, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040856

RESUMO

The U2AF2 splicing factor, made of two tandem RNA recognition motifs (RRMs) joined by a flexible linker, selects the intronic polypyrimidine sequence of premature mRNA, thus ensuring splicing fidelity. Increasing evidence links mutations of key splicing factors, including U2AF2, to a variety of cancers. Nevertheless, the impact of U2AF2 cancer-associated mutations on polypyrimidine recognition remains unclear. Here, we combined extensive (18 µs-long) all-atom molecular dynamics simulations and dynamical network theory analysis (NWA) of U2AF2, in its wild-type form and in the presence of the six most frequent cancer-associated mutations, bound to a poly-U strand. Our results reveal that the selected mutations affect the pre-mRNA binding at two hot spot regions, irrespectively of where these mutants are placed on the distinct U2AF2 domains. Complementarily, NWA traced the existence of cross-communication pathways, connecting each mutation site to these recognition hot spots, whose strength is altered by the mutations. Our outcomes suggest the existence of a structural/dynamical interplay of the two U2AF2's RRMs underlying the recognition of the polypyrimidine tract and reveal that the cancer-associated mutations affect the polypyrimidine selection by altering the RRMs' cooperativity. This mechanism may be shared by other RNA binding proteins hallmarked, like U2AF2, by multidomain architecture and high plasticity.


Assuntos
Neoplasias , Precursores de RNA , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias/genética , Mutação , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
14.
J Immunol Res ; 2022: 4163198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846429

RESUMO

Being one of the most lethal malignant tumors worldwide, pancreatic carcinoma (PC) shows strong invasiveness and high mortality. In tumorigenesis and progression, the role played by long-chain noncoding RNAs (lncRNAs) cannot be ignored. This article mainly probes into the function of lncRNA ZFAS1 in PC. ZFAS1 expression in PC and normal counterparts retrieved from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) database was analysed by GEPIA2. Its expression profile in clinical specimens and human PC cell strains was quantified using qRT-PCR. Measurements of BxPC-3 cell multiplication and invasiveness employed CCK-8, plate clone formation test, and Transwell chamber assay. ZFAS1's impact on lipid content in BxPC-3 cells was detected. RNA pulldown and RIP assays analyzed the interaction of ZFAS1 with U2AF2 and HMGCR in BxPC-3 cells. Finally, the impacts of U2AF2 and HMGCR on the biological behavior of BxPC-3 were observed. ZFAS1 was kept at a high level in PC tissues versus the normal counterparts. ZFAS1 gene knockout remarkably suppressed PC cell multiplication and invasiveness and decreased the contents of free fatty acids, total cholesterol, triglycerides, and phospholipids. Mechanistically, ZFAS1 stabilized HMGCR mRNA through U2AF2, thus increasing HMGCR expression and promoting PC lipid accumulation. Meanwhile, reduced PC cell viability and invasiveness were observed after downregulating U2AF2 and HMGCR. As an oncogene of PC, ZFAS1 can modulate lipometabolism and stabilize HMGCR mRNA expression by binding with U2AF2 in PC, which is a candidate target for PC diagnosis and treatment.


Assuntos
MicroRNAs , Neoplasias Pancreáticas/metabolismo , RNA Longo não Codificante , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Hidroximetilglutaril-CoA Redutases , Lipídeos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias Pancreáticas
15.
J Biol Chem ; 298(8): 102224, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780835

RESUMO

During spliceosome assembly, the 3' splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2-SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2-SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2-SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM-SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2-SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2-SF1 and U2AF2-SF3B1 complexes during the pre-mRNA splicing process.


Assuntos
Precursores de RNA , Fatores de Processamento de RNA/química , Splicing de RNA , Fator de Processamento U2AF/química , Humanos , Ligantes , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fator de Processamento U2AF/metabolismo
16.
Front Cell Infect Microbiol ; 12: 888428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782149

RESUMO

E. histolytica is the etiological agent of intestinal amebiasis and liver abscesses, which still poses public health threat globally. Metronidazole is the drug of choice against amebiasis. However, metronidazole-resistant amoebic clinical isolates and strains have been reported recently, challenging the efforts for amebiasis eradication. In search of alternative treatments, E. histolytica transcriptomes have shown the association of genes involved in RNA metabolism with the virulence of the parasite. Among the upregulated genes in amoebic liver abscesses are the splicing factors EhU2AF2 and a paralog of EhSF3B1. For this reason and because EhU2AF2 contains unusual KH-QUA2 (84KQ) motifs in its lengthened C-terminus domain, here we investigated how the role of EhU2AF2 in pre-mRNA processing impacts the virulence of the parasite. We found that 84KQ is involved in splicing inhibition/intron retention of several virulence and non-virulence-related genes. The 84KQ domain interacts with the same domain of the constitutive splicing factor SF1 (SF1KQ), both in solution and when SF1KQ is bound to branchpoint signal RNA probes. The 84KQ-SF1KQ interaction prevents splicing complex E to A transition, thus inhibiting splicing. Surprisingly, the deletion of the 84KQ domain in EhU2AF2 amoeba transformants increased splicing and enhanced the in vitro and in vivo virulence phenotypes. We conclude that the interaction of the 84KQ and SF1KQ domains, probably involving additional factors, tunes down Entamoeba virulence by favoring intron retention.


Assuntos
Entamoeba histolytica , Proteínas de Protozoários/metabolismo , Fatores de Processamento de RNA/metabolismo , Animais , Disenteria Amebiana/parasitologia , Entamoeba histolytica/metabolismo , Entamoeba histolytica/patogenicidade , Humanos , Metronidazol , Splicing de RNA , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
17.
Nucleic Acids Res ; 50(14): 8262-8278, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871302

RESUMO

We recently reported that serine-arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.


Assuntos
Precursores de RNA , Splicing de RNA , Spliceossomos , Animais , Mamíferos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
18.
Nucleic Acids Res ; 50(9): 5299-5312, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524551

RESUMO

The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.


Assuntos
Nucleotídeos , Precursores de RNA , Fator de Processamento U2AF , Humanos , Nucleotídeos/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Fator de Processamento U2AF/metabolismo , Uridina/metabolismo
19.
Clin Exp Pharmacol Physiol ; 49(7): 740-747, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35434831

RESUMO

The recurrent mutation (S34F) in splicing factor U2AF1 is frequently observed in lung adenocarcinoma, but its function remains largely unknown. To determine the mechanistic basis and consequences of U2AF1 mutations, we established non-small cell lung carcinoma A549 cell lines with exogenous expression of wildtype (U2AF1-WT) or mutant (U2AF1-S34F). Splicing analysis revealed that U2AF1-S34F mainly caused aberrant exon usage and affected splicing of numerous DNA damage repair genes. Compared to A549 cells expressing U2AF1-WT, cells expressing U2AF1-S34F showed enhanced DNA damage and cell death in response to ATR inhibitors (ATRi). Mechanistically, U2AF1-S34F induced mis-splicing and downregulation of a key homologous recombination protein RAD51. Overexpression of RAD51 could largely rescue the defective DNA damage response in cells expressing U2AF1-S34F. Moreover, A549 cells expressing U2AF1-S34F, but not U2AF1-WT, were highly sensitive to treatment even with low dose of RAD51 inhibitor on ATRi-induced DNA damage. Our results suggest that U2AF1-S34F causes mis-splicing of DNA damage repair factors in lung cancer and sensitizes cells to RAD51 inhibition.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Rad51 Recombinase , Fator de Processamento U2AF , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Processamento Alternativo , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
20.
Brain Res ; 1788: 147921, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452660

RESUMO

BACKGROUND: Ischaemic stroke is the leading cause of mortality and disability in the world. LncRNA NEAT1 has been shown to play an important role in ischaemic injury, but the molecular mechanism remains unclear. METHODS: qRT-PCR was used to determine the expression of lncRNA NEAT1 in OGD/R-induced BV-2 cells. Cell viability was assessed by an MTT assay, and cell apoptosis was assessed by flow cytometry. The expression of related proteins was evaluated by Western blotting and ELISA. The interactions among lncRNA NEAT1, U2AF2 and Wnt3a mRNA was demonstrated by RIP and RNA pulldown assays. XAV-939 was used as an inhibitor of the Wnt/ß-catenin pathway. RESULTS: LncRNA NEAT1 was found to be downregulated in OGD/R-induced BV-2 cells. Overexpression of lncRNA NEAT1 protected BV-2 cells against OGD/R-induced injury. LncRNA NEAT1 enhanced the stability of Wnt3a mRNA via U2AF2. Knockdown of Wnt3a or blockade of the Wnt/ß-catenin pathway rescued the effect of lncRNA NEAT1. CONCLUSIONS: LncRNA NEAT1 protected cells against OGD/R-induced apoptosis and the inflammatory response by activating the Wnt/ß-catenin pathway through upregulation of Wnt3a in a U2AF2-dependent manner. LncRNA NEAT1 could be a promising therapeutic candidate for ischaemic stroke treatment in the future.


Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , RNA Longo não Codificante , Via de Sinalização Wnt , Proteína Wnt3A , beta Catenina , Apoptose/genética , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Humanos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro , Fator de Processamento U2AF/metabolismo , Proteína Wnt3A/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA