Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.789
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(41): e2414618121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361641

RESUMO

The transcription factor E2F1 serves as a regulator of the cell cycle and promotes cell proliferation. It is highly expressed in cancer tissues and contributes to their malignant transformation. Degradation by the ubiquitin-proteasome system may help to prevent such overexpression of E2F1 and thereby to suppress carcinogenesis. A detailed understanding of the mechanisms underlying E2F1 degradation may therefore inform the development of new cancer treatments. We here identified SCFFBXW7 as a ubiquitin ligase for E2F1 by comprehensive analysis. We found that phosphorylation of E2F1 at serine-403 promotes its binding to FBXW7 (F-box/WD repeat-containing protein 7) followed by its ubiquitination and degradation. Furthermore, calcineurin, a Ca2+/calmodulin-dependent serine-threonine phosphatase, was shown to stabilize E2F1 by mediating its dephosphorylation at serine-403 and thereby preventing FBXW7 binding. Treatment of cells with Ca2+ channel blockers resulted in downregulation of both E2F1 protein and the expression of E2F1 target genes, whereas treatment with the Ca2+ ionophore ionomycin induced upregulation of E2F1. Finally, the calcineurin inhibitor FK506 attenuated xenograft tumor growth in mice in association with downregulation of E2F1 in the tumor tissue. Impairment of the balance between the opposing actions of FBXW7 and calcineurin in the regulation of E2F1 abundance may therefore play an important role in carcinogenesis.


Assuntos
Calcineurina , Fator de Transcrição E2F1 , Proteína 7 com Repetições F-Box-WD , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Calcineurina/metabolismo , Calcineurina/genética , Humanos , Fosforilação , Animais , Camundongos , Ubiquitinação , Ligação Proteica , Células HEK293 , Tacrolimo/farmacologia , Linhagem Celular Tumoral , Estabilidade Proteica , Proteólise
2.
Chin Clin Oncol ; 13(Suppl 1): AB067, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295385

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most malignant brain tumor and ranks among the most lethal of all human cancers, without improvements in survival over the last 30 years. Data obtained in our group suggest that PARP1, a well-known DNA-repairing protein, could also play a key role in the regulation of cell cycle through its interaction with the transcription factor E2F1. Therefore, considering that most oncogenic processes are associated with cell cycle deregulation, we hypothesized that disruption of PARP1-E2F1 interaction would provide a novel therapeutic approach to different types of cancer. METHODS: The identification of novel compounds disrupting PARP1-E2F1 interaction was carried out by combining in silico and in vitro screening, using a rational drug design. The virtual screen was performed using a molecular library of several million compounds at the selected target site, using AtomNet® (Atomwise, San Francisco, CA, USA), the first deep learning neural network for structure-based drug design and discovery. Since there is no complete structural information of the PARP1-E2F1 protein-protein interaction, a homologous structure of the BRCT domain of BRCA1 complex with the phospho-peptide (PDBID: 1T2V) was used to identify the potential binding interface of BRCT domain of PARP-1 (PDBID: 2COK) and the E2F1 protein. Top scoring compounds were clustered and filtered to obtain a final subset of 83 compounds that were incorporated to our in vitro screening, which included both transcriptional E2F1 activity and survival studies. Complete culture medium supplemented with the compounds selected in the in silico screening (10 µM) were added and incubated for 24 hours. E2F1 activity was observed by measuring luminescence. For the viability assay, the fluorescence reading was performed (excitation 544 nm and emission 590 nm). RESULTS: The in silico and in vitro screening resulted in 12 compounds that inhibited E2F1 transcriptional activity and significantly reduced cell number. The highest inhibition of both E2F1 transcriptional activity and cell growth was observed with compound 3797, which was selected for further studies. CONCLUSIONS: Both in silico and in vitro results indicate that inhibition of PARP1-E2F1 transcriptional activity may provide a new rationale for designing novel therapeutic approaches for the treatment of GBM.


Assuntos
Fator de Transcrição E2F1 , Glioblastoma , Poli(ADP-Ribose) Polimerase-1 , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Fator de Transcrição E2F1/metabolismo , Desenvolvimento de Medicamentos/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
3.
Cell Death Dis ; 15(9): 657, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242557

RESUMO

Pancreatic cancer (PC) is a highly malignant solid tumor whose resistance to gemcitabine (GEM) chemotherapy is a major cause of poor patient prognosis. Although PC is known to thrive on malnutrition, the mechanism underlying its chemotherapy resistance remains unclear. The current study analyzed clinical tissue sample databases using bioinformatics tools and observed significantly upregulated expression of the deubiquitinase STAMBP in PC tissues. Functional experiments revealed that STAMBP knockdown remarkably increases GEM sensitivity in PC cells. Multiple omics analyses suggested that STAMBP enhances aerobic glycolysis and suppresses mitochondrial respiration to increase GEM resistance in PC both in vitro and in vivo. STAMBP knockdown decreased PDK1 levels, an essential regulator of the aerobic glycolytic process, in several cancers. Mechanistically, STAMBP promoted the PDK1-mediated Warburg effect and chemotherapy resistance by modulating E2F1 via direct binding to E2F1 and suppressing its degradation and ubiquitination. High-throughput compound library screening using three-dimensional protein structure analysis and drug screening identified the FDA drug entrectinib as a potent GEM sensitizer and STAMBP inhibitor, augmenting the antitumor effect of GEM in a patient-derived xenograft (PDX) model. Overall, we established a novel mechanism, via the STAMBP-E2F1-PDK1 axis, by which PC cells become chemoresistant in a nutrient-poor tumor microenvironment.


Assuntos
Desoxicitidina , Resistencia a Medicamentos Antineoplásicos , Gencitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator de Transcrição E2F1 , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
BMC Bioinformatics ; 25(1): 314, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333873

RESUMO

BACKGROUND: The interpretation of large datasets, such as The Cancer Genome Atlas (TCGA), for scientific and research purposes, remains challenging despite their public availability. In this study, we focused on identifying gene expression profiles most relevant to patient prognosis and aimed to develop a method and database to address this issue. To achieve this, we introduced Luo's Optimization Categorization Curve (LOCC), an innovative tool for visualizing and scoring continuous variables against dichotomous outcomes. To demonstrate the efficacy of LOCC using real-world data, we analyzed gene expression profiles and patient data from TCGA hepatocellular carcinoma samples. RESULTS: To showcase LOCC, we demonstrate an optimal cutoff for E2F1 expression in hepatocellular carcinoma, which was subsequently validated in an independent cohort. Compared to ROC curves and their AUC, LOCC offered a superior description of the predictive value of E2F1 expression across various cancer types. The LOCC score, comprised of factors representing significance, range, and impact of the biomarker, facilitated the ranking of all gene expression profiles in hepatocellular carcinoma, aiding in the evaluation and understanding of previously published prognostic gene signatures. We also demonstrate that LOCC does not have the same assumptions required of Cox proportional hazards modeling for accurate analysis. Repeated sampling demonstrated that LOCC scores outperformed ROC's AUC in discriminating predictors from non-predictors. Additionally, gene set enrichment analysis revealed significant associations between certain genes and prognosis, such as E2F target genes and G2M checkpoint with poor prognosis, and bile acid metabolism and oxidative phosphorylation with good prognosis. CONCLUSION: In summary, we present LOCC as a novel visualization tool for the analysis of gene expression in cancer, particularly for understanding and selecting cutoffs. Our findings suggest that LOCC scores, which effectively rank genes based on their prognostic potential, represent a more suitable approach than ROC curves and Cox proportional hazard for prognostic modeling and understanding in cancer gene expression analysis. LOCC holds promise as an invaluable tool for advancing precision medicine and furthering biomarker research. Further research regarding multivariable integration and validation will help LOCC reach its full potential and establish its utility across diverse cancer types and clinical settings.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Prognóstico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Perfilação da Expressão Gênica/métodos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Curva ROC
5.
Biochim Biophys Acta Mol Cell Res ; 1871(8): 119848, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39305937

RESUMO

Parkinson's disease (PD) is a predominant movement disorder caused mainly due to selective loss of the dopaminergic neurons in the substantia nigra pars compacta of the mid brain. There is currently no cure for PD barring treatments to manage symptoms. The reasons might be due to lack of precise understanding of molecular mechanisms leading to neurodegeneration. Aberrant cell cycle activation has been implicated in neuronal death pathways of various neurodegenerative diseases including PD. This study investigates the role of cell cycle regulator Cell division cycle 25A (Cdc25A) in a PD-relevant neuron death model induced by 6-OHDA treatment. We find Cdc25A is rapidly elevated, activated and is playing a key role in neuron death by regulating Rb phosphorylation and E2F1 activity. Knockdown of Cdc25A via shRNA downregulates the levels of pro-apoptotic PUMA, an E2F1 target and cleaved Caspase-3 levels, suggesting Cdc25A may regulate neuronal apoptosis through these effectors. Our work sheds light on the intricate signaling networks involved in neurodegeneration and highlights Cdc25A as a potential therapeutic target for mitigating aberrant cell cycle re-entry underlying PD pathogenesis. These novel insights into molecular mechanisms provide a foundation for future development of neuroprotective strategies to slow or prevent progression of this debilitating disease.


Assuntos
Proteínas Reguladoras de Apoptose , Fator de Transcrição E2F1 , Doença de Parkinson , Proteína do Retinoblastoma , Fosfatases cdc25 , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Fosfatases cdc25/metabolismo , Fosfatases cdc25/genética , Animais , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Transdução de Sinais , Humanos , Apoptose , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Oxidopamina/farmacologia , Modelos Animais de Doenças , Proteínas Supressoras de Tumor
6.
PLoS One ; 19(9): e0310219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39259742

RESUMO

Nucleostemin (NS) plays a role in liver regeneration, and aging reduces its expression in the baseline and regenerating livers following 70% partial hepatectomy (PHx). Here we interrogate the mechanism controlling NS expression during liver regeneration and aging. The NS promoter was analyzed by TRANSFAC. Functional studies were performed using cell-based luciferase assay, endogenous NS expression in Hep3B cells, mouse livers with a gain-of-function mutation of C/EBPα (S193D), and mouse livers with C/EBPα knockdown. We found a CAAT box with four C/EBPα binding sites (-1216 to -735) and a GC box with consensus binding sites for c-Myc, E2F1, and p300-associated protein complex (-633 to -1). Age-related changes in NS expression correlated positively with the expression of c-Myc, E2F1, and p300, and negatively with that of C/EBPα and C/EBPß. PHx upregulated NS expression at 1d, coinciding with an increase in E2F1 and a decrease in C/EBPα. C/EBPα bound to the consensus sequences found in the NS promoter in vitro and in vivo, inhibited its transactivational activity in a binding site-dependent manner, and decreased the expression of endogenous NS in Hep3B cells. In vivo activation of C/EBPα by the S193D mutation resulted in a 4th-day post-PHx reduction of NS, a feature shared by 16-m/o livers. Finally, C/EBPα knockdown increased its expression in aged (24-m/o) livers under both baseline and regeneration conditions. This study reports the C/EBPα suppression of NS expression in aged livers, providing a new perspective on the mechanistic orchestration of tissue homeostasis in aging.


Assuntos
Envelhecimento , Proteínas de Ligação ao GTP , Regeneração Hepática , Proteínas Nucleares , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Animais , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Envelhecimento/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Hepatectomia , Sítios de Ligação , Fígado/metabolismo , Proteína p300 Associada a E1A/metabolismo , Regulação da Expressão Gênica , Transcrição Gênica , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Masculino , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Proteínas de Ligação a RNA
7.
Aging (Albany NY) ; 16(16): 11843-11856, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39172101

RESUMO

BACKGROUND: Gastric cancer (GC) stands as a prevalent and challenging malignancy within the gastrointestinal tract. The potential of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in oncology has garnered immense research interest. This study aims to elucidate the relevance, biological roles, and mechanistic pathways of LncRNA HAGLR in the context of GC. METHODS: The assessments of cell proliferation, migration, and invasion were executed using CCK-8, wound healing, and Transwell assays. The interactions between HAGLR, miR-20a-5p, and E2F1 were appraised through luciferase reporter assays, fluorescence in situ hybridization (FISH), and RNA immunoprecipitation (RIP). A tumor xenograft model provided in vivo validation for in vitro findings. RESULTS: Elevated levels of HAGLR in GC cells and tissue specimens were linked to worse patient outcomes. The inhibition of HAGLR led to a decrease in GC cell proliferation, migration, and invasion, whereas its activation prompted contrary effects. The impact of HAGLR on cell migration and invasion was notably associated with epithelial-mesenchymal transition (EMT). Through bioinformatics, luciferase reporter assays, FISH, RIP, and Western blot analyses, it was revealed that HAGLR acts as a molecular sponge for miR-20a-5p, consequently augmenting E2F1 levels. CONCLUSIONS: The data suggest that the HAGLR/miR-20a-5p/E2F1 regulatory cascade is implicated in GC pathogenesis, offering a novel therapeutic avenue for GC management.


Assuntos
Movimento Celular , Proliferação de Células , Fator de Transcrição E2F1 , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Camundongos , Transição Epitelial-Mesenquimal/genética , Progressão da Doença , Masculino , Feminino , Invasividade Neoplásica/genética , Camundongos Nus
8.
EMBO J ; 43(19): 4197-4227, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160277

RESUMO

In mammals, the transition from mitosis to meiosis facilitates the successful production of gametes. However, the regulatory mechanisms that control meiotic initiation remain unclear, particularly in the context of complex histone modifications. Herein, we show that KDM2A, acting as a lysine demethylase targeting H3K36me3 in male germ cells, plays an essential role in modulating meiotic entry and progression. Conditional deletion of Kdm2a in mouse pre-meiotic germ cells results in complete male sterility, with spermatogenesis ultimately arrested at the zygotene stage of meiosis. KDM2A deficiency disrupts H3K36me2/3 deposition in c-KIT+ germ cells, characterized by a reduction in H3K36me2 but a dramatic increase in H3K36me3. Furthermore, KDM2A recruits the transcription factor E2F1 and its co-factor HCFC1 to the promoters of key genes required for meiosis entry and progression, such as Stra8, Meiosin, Spo11, and Sycp1. Collectively, our study unveils an essential role for KDM2A in mediating H3K36me2/3 deposition and controlling the programmed gene expression necessary for the transition from mitosis to meiosis during spermatogenesis.


Assuntos
Fator de Transcrição E2F1 , Histona Desmetilases com o Domínio Jumonji , Meiose , Espermatogênese , Animais , Masculino , Camundongos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Espermatogênese/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Fator C1 de Célula Hospedeira/metabolismo , Fator C1 de Célula Hospedeira/genética , Histonas/metabolismo , Histonas/genética , Camundongos Knockout , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Histona Desmetilases
9.
Pharmacol Res ; 208: 107377, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39209080

RESUMO

The bromodomain and extraterminal domain (BET) family proteins serve as primary readers of acetylated lysine residues and play crucial roles in cell proliferation and differentiation. Dysregulation of BET proteins has been implicated in tumorigenesis, making them important therapeutic targets. BET-bromodomain (BD) inhibitors and BET-targeting degraders have been developed to inhibit BET proteins. In this study, we found that the BET inhibitor MS645 exhibited superior antiproliferative activity than BET degraders including ARV771, AT1, MZ1 and dBET1 in triple-negative breast cancer (TNBC) cells. Treatment with MS645 led to the dissociation of BETs, MED1 and RNA polymerase II from the E2F1-3 promoter, resulting in the suppression of E2F1-3 transcription and subsequent inhibition of cell growth in TNBC. In contrast, while ARV771 displaced BET proteins from chromatin, it did not significantly alter E2F1-3 expression. Mechanistically, ARV771 induced BRD4 depletion at protein level, which markedly increased EGR1 expression. This elevation of EGR1 subsequently recruited septin 2 and septin 9 to E2F1-3 promoters, enhancing E2F1-3 transcription and promoting cell proliferation rate in vitro and in vivo. Our findings provide valuable insights into differential mechanisms of BET inhibition and highlight potential of developing BET-targeting molecules as therapeutic strategies for TNBC.


Assuntos
Proliferação de Células , Fator de Transcrição E2F1 , Proteína 1 de Resposta de Crescimento Precoce , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Animais , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Feminino , Linhagem Celular Tumoral , Fatores de Transcrição E2F/metabolismo , Fatores de Transcrição E2F/genética , Antineoplásicos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Camundongos Nus , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade 1 do Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/metabolismo , Camundongos , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular , Fator de Transcrição E2F3
10.
Clin Res Hepatol Gastroenterol ; 48(8): 102446, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128592

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) stands as the prevailing manifestation of primary liver cancer. Previous studies have implicated ARHGEF39 in various cancer progression processes, but its impact on HCC metastasis remains unclear. METHODS: Bioinformatics analysis and qRT-PCR were employed to test ARHGEF39 expression in HCC tissues and cells, identified enriched pathways associated with ARHGEF39, and investigated its regulatory relationship with E2F1. The impact of ARHGEF39 overexpression or knockdown on cellular phenotypes in HCC was assessed through the implementation of CCK-8 and Transwell assays. Accumulation of neutral lipids was determined by BODIPY 493/503 staining, while levels of triglycerides and phospholipids were measured using specific assay kits. Expression of E-cadherin, Vimentin, MMP-2, MMP-9, and FASN were analyzed by Western blot. The interaction between ARHGEF39 and E2F1 was validated through ChIP and dual-luciferase reporter assays. RESULTS: Our study demonstrated upregulated expression of both ARHGEF39 and E2F1 in HCC, with ARHGEF39 being associated with fatty acid metabolism (FAM) pathways. Additionally, ARHGEF39 was identified as a downstream target gene of E2F1. Cell-based experiments unmasked that high expression of ARHGEF39 mediated the promotion of HCC cell viability, migration, and invasion via enhanced FAM. Moreover, rescue assays demonstrated that the promotion of HCC cell metastasis by high ARHGEF39 expression was attenuated upon treatment with Orlistat. Conversely, the knockdown of E2F1 suppressed HCC cell metastasis and FAM, while the upregulation of ARHGEF39 counteracted the repressive effects of E2F1 downregulation on the metastatic potential of HCC cells. CONCLUSION: Our findings confirmed the critical role of ARHGEF39 in HCC metastasis and unmasked potential molecular mechanisms through which ARHGEF39 fostered HCC metastasis via FAM, providing a theoretical basis for exploring novel molecular markers and preventive strategies for HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Fator de Transcrição E2F1 , Ácidos Graxos , Neoplasias Hepáticas , Fatores de Troca de Nucleotídeo Guanina Rho , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Ácidos Graxos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Metástase Neoplásica , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
11.
Cancer Lett ; 601: 217148, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098759

RESUMO

Studying the mechanisms underlying clear cell renal cell carcinoma (ccRCC), the most common subtype of kidney cancer, may address an unmet need in ccRCC-targeted drug research. Growing evidences indicate that protein phosphatase 4 (PP4) plays an important role in cancer biology. Here, we characterized the upregulation of PP4 core component SMEK1 in ccRCC using tissue microarrays and revealed that its high expression is closely associated with reduced patient survival. We then conducted cell function experiments and animal experiments to prove the tumor-promoting effect of SMEK1. Next, RNA-seq was performed to explore its underlying mechanism, and the results revealed that SMEK1-regulated genes were extensively involved in cell motility, and the canonical tyrosine kinase receptor EGFR was one of its targets. Moreover, we verified the regulatory effect of SMEK1 on EGFR and its downstream MAPK and AKT pathway through molecular experiments, in which erlotinib, a tyrosine kinase inhibitor, can partially block this regulation, demonstrating that SMEK1 mediates its effects dependent on the tyrosine kinase activity of EGFR. Mechanistically, SMEK1 bond to PRMT5 and facilitated PRMT5-mediated histone methylation to promote the transcription of EGFR. Furthermore, we studied the upstream regulators of SMEK1 and demonstrated that the transcription factor E2F1 could directly bind to the SMEK1 promoter by chromatin immunoprecipitation. Functionally, E2F1 could also induce ccRCC progression by manipulating the expression of SMEK1. Collectively, our findings demonstrate the overexpression of SMEK1 in ccRCC, and reveal a novel E2F1/SMEK1/PRMT5/EGFR-tyrosine-kinase-dependent pathway for ccRCC progression.


Assuntos
Carcinoma de Células Renais , Progressão da Doença , Receptores ErbB , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Transdução de Sinais , Movimento Celular , Masculino , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Feminino , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética
12.
J Immunother ; 47(8): 313-322, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005046

RESUMO

Tumor immunotherapy has recently gained popularity as a cancer treatment strategy. The molecular mechanism controlling immune infiltration in lung adenocarcinoma (LUAD) cells, however, is not well characterized. Investigating the immune infiltration modulation mechanism in LUAD is crucial. LUAD patient samples were collected, and HES6 expression and immune infiltration level of CD8 + T cells in patient tissues were analyzed. Bioinformatics was utilized to identify binding relationship between E2F1 and HES6, and enrichment pathway of HES6. The binding of E2F1 to HES6 was verified using dual-luciferase and ChIP experiments. HES6 and E2F1 expression in LUAD cells was detected. LUAD cells were co-cultured with CD8 + T cells, and the CD8 + T cell killing level, IFN-γ secretion, and CD8 + T-cell chemotaxis level were measured. Expression of key genes involved in oxidative phosphorylation was detected, and the oxygen consumption rate of LUAD cells was assessed. A mouse model was constructed to assay Ki67 expression and apoptosis in tumor tissue. High expression of HES6 promoted CD8 + T-cell infiltration and enhanced T-cell killing ability through oxidative phosphorylation. Further bioinformatics analysis, molecular experiments, and cell experiments verified that E2F1 negatively regulated HES6 by oxidative phosphorylation, which suppressed CD8 + T-cell immune infiltration. In addition, in vivo assays illustrated that silencing HES6 repressed tumor cell immune evasion. E2F1 inhibited HES6 transcription, thereby mediating oxidative phosphorylation to suppress immune infiltration of CD8 + T cells in LUAD. The biological functions and signaling pathways of these genes were analyzed, which may help to understand the possible mechanisms regulating immune infiltration in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linfócitos T CD8-Positivos , Fator de Transcrição E2F1 , Neoplasias Pulmonares , Linfócitos do Interstício Tumoral , Fosforilação Oxidativa , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Animais , Camundongos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Microambiente Tumoral/imunologia , Feminino , Masculino
13.
Cell Biochem Biophys ; 82(3): 2957-2975, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39014186

RESUMO

Podocyte damage plays a crucial role in the occurrence and development of diabetic nephropathy (DN). Accumulating evidence suggests that dysregulation of transcription factors plays a crucial role in podocyte damage in DN. However, the biological functions and underlying mechanisms of most transcription factors in hyperglycemia-induced podocytes damage remain largely unknown. Through integrated analysis of data mining, bioinformatics, and RT-qPCR validation, we identified a critical transcription factor forkhead box F1 (FOXF1) implicated in DN progression. Moreover, we discovered that FOXF1 was extensively down-regulated in renal tissue and serum from DN patients as well as in high glucose (HG)-induced podocyte damage. Meanwhile, our findings showed that FOXF1 might be a viable diagnostic marker for DN patients. Functional experiments demonstrated that overexpression of FOXF1 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and fibrosis in HG-induced podocytes damage. Mechanistically, we found that the downregulation of FOXF1 in HG-induced podocyte damage was caused by DNMT1 directly binding to FOXF1 promoter and mediating DNA hypermethylation to block FOXF1 transcriptional activity. Furthermore, we found that FOXF1 inhibited the transcriptional expression of miR-342-3p by binding to the promoter of miR-342, resulting in reduced sponge adsorption of miR-342-3p to E2F1, promoting the expression of E2F1, and thereby inhibiting HG-induced podocytes damage. In conclusion, our findings showed that blocking the FOXF1/miR-342-3p/E2F1 axis greatly alleviated HG-induced podocyte damage, which provided a fresh perspective on the pathogenesis and therapeutic strategies for DN patients.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Nefropatias Diabéticas , Regulação para Baixo , Fator de Transcrição E2F1 , Fatores de Transcrição Forkhead , Glucose , MicroRNAs , Podócitos , Podócitos/metabolismo , Podócitos/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Humanos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Glucose/farmacologia , Glucose/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Animais , Apoptose/efeitos dos fármacos , Metilação de DNA , Regiões Promotoras Genéticas , Camundongos , Proliferação de Células
14.
J Pathol ; 264(1): 68-79, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39022843

RESUMO

Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.


Assuntos
Fator de Transcrição E2F1 , Transição Epitelial-Mesenquimal , Histona Desmetilases , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Fatores de Transcrição , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/enzimologia , Animais , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Camundongos , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos Knockout , Transdução de Sinais , Metástase Neoplásica , Camundongos Transgênicos , Movimento Celular
15.
J Transl Med ; 22(1): 639, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978058

RESUMO

BACKGROUND: Breast cancer is one of the most common malignant tumors in women. Cell division cycle associated 5 (CDCA5), a master regulator of sister chromatid cohesion, was reported to be upregulated in several types of cancer. Here, the function and regulation mechanism of CDCA5 in breast cancer were explored. METHODS: CDCA5 expression was identified through immunohistochemistry staining in breast cancer specimens. The correlation between CDCA5 expression with clinicopathological features and prognosis of breast cancer patients was analyzed using a tissue microarray. CDCA5 function in breast cancer was explored in CDCA5-overexpressed/knockdown cells and mice models. Co-IP, ChIP and dual-luciferase reporter assay assays were performed to clarify underlying molecular mechanisms. RESULTS: We found that CDCA5 was expressed at a higher level in breast cancer tissues and cell lines, and overexpression of CDCA5 was significantly associated with poor prognosis of patients with breast cancer. Moreover, CDCA5 knockdown significantly suppressed the proliferation and migration, while promoted apoptosis in vitro. Mechanistically, we revealed that CDCA5 played an important role in promoting the binding of E2F transcription factor 1 (E2F1) to the forkhead box M1 (FOXM1) promoter. Furthermore, the data of in vitro and in vivo revealed that depletion of FOXM1 alleviated the effect of CDCA5 overexpression on breast cancer. Additionally, we revealed that the Wnt/ß-catenin signaling pathway was required for CDCA5 induced progression of breast cancer. CONCLUSIONS: We suggested that CDCA5 promoted progression of breast cancer via CDCA5/FOXM1/Wnt axis, CDCA5 might serve as a novel therapeutic target for breast cancer treatment.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Proliferação de Células , Progressão da Doença , Fator de Transcrição E2F1 , Proteína Forkhead Box M1 , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Feminino , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Pessoa de Meia-Idade , Apoptose , Prognóstico , Camundongos Nus , Movimento Celular , Regiões Promotoras Genéticas/genética , Camundongos Endogâmicos BALB C , Camundongos , Técnicas de Silenciamento de Genes , Proteínas Adaptadoras de Transdução de Sinal
16.
Biomed Res Int ; 2024: 5058607, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045407

RESUMO

Psoriasis increases the risk of developing various cancers, including colon cancer. The pathogenesis of the co-occurrence of psoriasis and cancer is not yet clear. This study is aimed at analyzing the pathogenesis of psoriasis combined with cancer by bioinformatic analysis. Skin tissue data from psoriasis (GSE117239) and intestinal tissue data from colon cancer (GSE44076) were downloaded from the GEO database. One thousand two hundred ninety-six common differentially expressed genes and 688 common shared genes for psoriasis and colon cancer were determined, respectively, using the limma R package and weighted gene coexpression network analysis (WGCNA) methods. The results of the GO and KEGG enrichment analyses were mainly related to the biological processes of the cell cycle. Thirteen hub genes were selected, including AURKA, DLGAP5, NCAPG, CCNB1, NDC80, BUB1B, TTK, CCNB2, AURKB, TOP2A, ASPM, BUB1, and KIF20A. These hub genes have high diagnostic value, and most of them are positively correlated with activated CD4 T cells. Three hub transcription factors (TFs) were also predicted: E2F1, E2F3, and BRCA1. These hub genes and hub TFs are highly expressed in various cancers. Furthermore, 251 drugs were predicted, and some of them overlap with existing therapeutic drugs for psoriasis or colon cancer. This study revealed some genetic mechanisms of psoriasis and cancer by bioinformatic analysis. These hub genes, hub TFs, and predicted drugs may provide new perspectives for further research on the mechanism and treatment.


Assuntos
Biologia Computacional , Redes Reguladoras de Genes , Psoríase , Humanos , Psoríase/genética , Biologia Computacional/métodos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição E2F1/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Proteína BRCA1/genética
17.
Cancer Res Commun ; 4(7): 1863-1880, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38957115

RESUMO

Various lines of investigation support a signaling interphase shared by receptor tyrosine kinases and the DNA damage response. However, the underlying network nodes and their contribution to the maintenance of DNA integrity remain unknown. We explored MET-related metabolic pathways in which interruption compromises proper resolution of DNA damage. Discovery metabolomics combined with transcriptomics identified changes in pathways relevant to DNA repair following MET inhibition (METi). METi by tepotinib was associated with the formation of γH2AX foci and with significant alterations in major metabolic circuits such as glycolysis, gluconeogenesis, and purine, pyrimidine, amino acid, and lipid metabolism. 5'-Phosphoribosyl-N-formylglycinamide, a de novo purine synthesis pathway metabolite, was consistently decreased in in vitro and in vivo MET-dependent models, and METi-related depletion of dNTPs was observed. METi instigated the downregulation of critical purine synthesis enzymes including phosphoribosylglycinamide formyltransferase, which catalyzes 5'-phosphoribosyl-N-formylglycinamide synthesis. Genes encoding these enzymes are regulated through E2F1, whose levels decrease upon METi in MET-driven cells and xenografts. Transient E2F1 overexpression prevented dNTP depletion and the concomitant METi-associated DNA damage in MET-driven cells. We conclude that DNA damage following METi results from dNTP reduction via downregulation of E2F1 and a consequent decline of de novo purine synthesis. SIGNIFICANCE: Maintenance of genome stability prevents disease and affiliates with growth factor receptor tyrosine kinases. We identified de novo purine synthesis as a pathway in which key enzymatic players are regulated through MET receptor and whose depletion via MET targeting explains MET inhibition-associated formation of DNA double-strand breaks. The mechanistic importance of MET inhibition-dependent E2F1 downregulation for interference with DNA integrity has translational implications for MET-targeting-based treatment of malignancies.


Assuntos
Dano ao DNA , Fator de Transcrição E2F1 , Proteínas Proto-Oncogênicas c-met , Purinas , Dano ao DNA/efeitos dos fármacos , Purinas/biossíntese , Purinas/metabolismo , Animais , Camundongos , Humanos , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Reparo do DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos
18.
Sci Rep ; 14(1): 16051, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992083

RESUMO

RNA-binding proteins (RBPs) are a class of proteins that primarily function by interacting with different types of RNAs and play a critical role in regulating the transcription and translation of cancer-related genes. However, their role in the progression of hepatocellular carcinoma (HCC) remains unclear. In this study, we analyzed RNA sequencing data and the corresponding clinical information of patients with HCC to screen for prognostic RBPs. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) was identified as an independent prognostic factor for liver cancer. It is upregulated in HCC and is associated with a poor prognosis. Elevated IGF2BP3 expression was validated via immunohistochemical analysis using a tissue microarray of patients with HCC. IGF2BP3 knockdown inhibited the proliferation of Hep3B and HepG2 cells, whereas IGF2BP3 overexpression promoted the expansion of HuH-7 and MHCC97H cells. Mechanistically, IGF2BP3 modulates cell proliferation by regulating E2F1 expression. DNA hypomethylation of the IGF2BP3 gene may increase the expression of IGF2BP3, thereby enhancing cell proliferation in HCC. Therefore, IGF2BP3 may act as a novel prognostic biomarker and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Metilação de DNA , Fator de Transcrição E2F1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Regulação para Cima , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Proliferação de Células/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Masculino , Regulação para Cima/genética , Feminino , Prognóstico , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Células Hep G2 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
19.
Pathol Res Pract ; 260: 155429, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39024731

RESUMO

OBJECTIVE: Metastases in the advanced stages of colorectal cancer (CRC) present a major challenge to its treatment. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in enhancing the metastasis and invasion ability of cancer cells. However, the progress of E2F transcription factor 1 (E2F1) and Regulator of chromatin condensation 1 (RCCD1) in CRC on EMT has not been studied. METHODS: The CRC differential expression data from The Cancer Genome Atlas database were analyzed by Gene Set Enrichment Analysis to verify the difference in expression of E2F1 and RCCD1 in cancerous and para-cancerous tissues.DNA-pull down and dual luciferase experiments confirmed that E2F1 regulates RCCD1. Western-blot and q-PCR experiments confirmed that E2F1 regulates RCCD1 and participates in the EMT-related progress of CRC.EDU, Wound healing and Transwell experiments verified the effects of regulation of E2F1 and RCCD1 on the proliferation, migration and invasion of CRC cells. RESULTS: E2F1 and RCCD1 are highly expressed in cancer tissues and cancer cells. E2F1 binds to the upstream promoter of RCCD1 to regulate RCCD1 and affect the expression of EMT-related targets in CRC cells. It also affects the proliferation, migration and invasion of CRC cells. CONCLUSIONS: E2F1 regulates the involvement of RCCD1 in CRC EMT and affects the proliferation, migration and invasion ability of CRC cells.


Assuntos
Neoplasias Colorretais , Fator de Transcrição E2F1 , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Transição Epitelial-Mesenquimal/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Movimento Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , Invasividade Neoplásica/genética , Progressão da Doença , Linhagem Celular Tumoral
20.
Cell Death Dis ; 15(6): 427, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890303

RESUMO

As the second most common malignant tumor in the urinary system, renal cell carcinoma (RCC) is imperative to explore its early diagnostic markers and therapeutic targets. Numerous studies have shown that AURKB promotes tumor development by phosphorylating downstream substrates. However, the functional effects and regulatory mechanisms of AURKB on clear cell renal cell carcinoma (ccRCC) progression remain largely unknown. In the current study, we identified AURKB as a novel key gene in ccRCC progression based on bioinformatics analysis. Meanwhile, we observed that AURKB was highly expressed in ccRCC tissue and cell lines and knockdown AURKB in ccRCC cells inhibit cell proliferation and migration in vitro and in vivo. Identified CDC37 as a kinase molecular chaperone for AURKB, which phenocopy AURKB in ccRCC. AURKB/CDC37 complex mediate the stabilization of MYC protein by directly phosphorylating MYC at S67 and S373 to promote ccRCC development. At the same time, we demonstrated that the AURKB/CDC37 complex activates MYC to transcribe CCND1, enhances Rb phosphorylation, and promotes E2F1 release, which in turn activates AURKB transcription and forms a positive feedforward loop in ccRCC. Collectively, our study identified AURKB as a novel marker of ccRCC, revealed a new mechanism by which the AURKB/CDC37 complex promotes ccRCC by directly phosphorylating MYC to enhance its stability, and first proposed AURKB/E2F1-positive feedforward loop, highlighting AURKB may be a promising therapeutic target for ccRCC.


Assuntos
Aurora Quinase B , Carcinoma de Células Renais , Proteínas de Ciclo Celular , Progressão da Doença , Fator de Transcrição E2F1 , Neoplasias Renais , Proteínas Proto-Oncogênicas c-myc , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Fosforilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Aurora Quinase B/metabolismo , Aurora Quinase B/genética , Proliferação de Células , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Movimento Celular/genética , Chaperoninas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA