Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Clin Transl Oncol ; 24(2): 363-370, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34460057

RESUMO

BACKGROUND: Gliomas is a major challenge of current medical system, and thousands of people are struggling in the pain of this disease worldwide. In the last decade, the functions of miRNAs have been revealed by many studies, and the intervention on miRNA dysfunctions has been thought as a promising way to counter cancer. MiR-493-5p has been identified as a tumor inhibitor to suppress the progressions of several tumors while its role in gliomas remains unknown. Hence, the study investigated the expression levels of miR-493-5p in glioma tissues and cell lines. METHODS: CCK-8 assay, transwell assay and flow cytometry assay were used to observe the effects of miR-493-5p on tumor cells. The downstream targets of miR-493-5p were also searched and verified with online databases and dual-luciferase reporter assay. Moreover, the activities of P53 and PI3K/AKT pathways were also explored by western blot to illustrate the regulation mechanism of miR-493-5p on glioma development. RESULTS: The results showed that miR-493-5p was significantly downregulated in pathological tissues and glioma cell lines, and the increased miR-493-5p effectively inhibited the malignant behavior and promoted the apoptosis of glioma cells. CONCLUSIONS: E2F3 was confirmed as a target of miR-493-5p, and the effects of miR-493-5p on the phenotype of glioma cells could be partly reversed by E2F3. Besides, it was also found that miR-493-5p could effectively suppress the expression of E2F3 and then improve the dysfunctions of the P53 and PI3K/AKT pathways.


Assuntos
Neoplasias Encefálicas/etiologia , Fator de Transcrição E2F3/fisiologia , Glioma/etiologia , MicroRNAs/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(2): 178-184, 2020 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-32220185

RESUMO

OBJECTIVE: To investigate the effect of miR-503-5p on the proliferation, invasion, migration and epithelialization of cervical cancer HeLa cells via targeting E2 F3. METHODS: Four ccervical cancer HeLa cells groups were set up including control group, mimic-NC group, miR-503-5p mimic group, E2 F3 group, miR-503-5p mimic+ E2 F3 group (mimic+ E2 F3 group). The plasmids were separately or jointly transinfected into cervical cancer Hela cells of each group by Lipofectamine 2000, After transinfection, the target gene was predicted by gene prediction software, the targeting relationship was verified by fluorescein experiment, the expression of miR-503-5p and E2 F3 was detected by RT-PCR, cell proliferation was detected by MTT assay, expression of Ki67, proliferating cell nuclear antigen (PCNA), E-cadherin and N-cadherin were detected by Western blot, cell invasion was detected by Transwell, and cell migration was detected by scratch test. Nude mice were divided into control group and miR-503-5p mimic group, and 0.2 mL of cervical cancer HeLa cell suspension transfected with mimic-NC or miR-503-5p mimic was injected subcutaneously into the ventral side of the right hind limb of nude mice. Thirty days post injection, the nude mice were sacrificed by cervical dislocation. The tumor weight was weighed by an electronic balance, and the expression of KI67 and Vimentin in the tumor tissue was detected by immunohistochemistry. RESULTS: The expression level of miR-503-5p in cervical cancer HeLa cells was down-regulated, miR-503-5p directly targeted E2 F3 by binding with E2 F3 at binding sites in the 3'UTR region. Over-expressing of miR-503-5p inhibited the expression of E2 F3, significantly decreased cell growth rate and the expression level of Ki67 and PCNA, decreased the number of invasive cells, widened the scratches, reduced the healing rate, up-regulated the expression of E-cadherin and also down-regulated the expression of N-cadherin ( P<0.01). Over-expressing of miR-503-5p significantly reduced the volume and weight of transplanted tumors, and decreased the proportion of positive Ki67 and Vimentin ( P<0.01). CONCLUSION: miR-503-5p inhibits the proliferation, invasion, migration and epithelialization of cervical cancer HeLa cells by targeting E2 F3.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3/fisiologia , MicroRNAs/fisiologia , Neoplasias do Colo do Útero , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
3.
Cell Rep ; 27(12): 3547-3560.e5, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31130414

RESUMO

Orchestrating cell-cycle-dependent mRNA oscillations is critical to cell proliferation in multicellular organisms. Even though our understanding of cell-cycle-regulated transcription has improved significantly over the last three decades, the mechanisms remain untested in vivo. Unbiased transcriptomic profiling of G0, G1-S, and S-G2-M sorted cells from FUCCI mouse embryos suggested a central role for E2Fs in the control of cell-cycle-dependent gene expression. The analysis of gene expression and E2F-tagged knockin mice with tissue imaging and deep-learning tools suggested that post-transcriptional mechanisms universally coordinate the nuclear accumulation of E2F activators (E2F3A) and canonical (E2F4) and atypical (E2F8) repressors during the cell cycle in vivo. In summary, we mapped the spatiotemporal expression of sentinel E2F activators and canonical and atypical repressors at the single-cell level in vivo and propose that two distinct E2F modules relay the control of gene expression in cells actively cycling (E2F3A-8-4) and exiting the cycle (E2F3A-4) during mammalian development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Diferenciação Celular , Fator de Transcrição E2F3/fisiologia , Fator de Transcrição E2F4/fisiologia , Regulação da Expressão Gênica , Proteínas Repressoras/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Transcriptoma
4.
Neuropsychopharmacology ; 44(4): 776-784, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552390

RESUMO

Drug abuse is a multifaceted disorder that involves maladaptive decision making. Long-lasting changes in the addicted brain are mediated by a complex circuit of brain reward regions. The prefrontal cortex (PFC) is one region in which chronic drug exposure changes expression and function of upstream transcriptional regulators to alter drug responses and aspects of the addicted phenotype. We reported recently that the transcription factor E2F3a is a critical mediator of cocaine responses in the nucleus accumbens. E2F3a is one of two splice variants of the E2f3 gene; the other is E2F3b. Another recent study predicted E2F3 as an upstream regulator of the transcriptional response to cocaine self-administration (SA) in PFC. Based on previous findings that E2F3a and E2F3b have divergent regulatory roles, we set out to study the putative transcriptional role of these transcripts in PFC in the context of repeated I.P. cocaine exposure. We implemented viral-mediated isoform-specific gene manipulation, RNA-sequencing, advanced bioinformatics analyses, and animal behavior to determine how E2F3a and E2F3b contribute to persistent cocaine-induced transcriptional changes in PFC. We show that E2F3b, but not E2F3a, in PFC is critical for cocaine locomotor and place preference behaviors. Interestingly, RNA-seq of PFC following E2f3b overexpression or I.P. cocaine exposure showed very different effects on expression levels of differentially expressed genes. However, we found that E2F3b drives a similar transcriptomic pattern to that of cocaine SA with overlapping upstream regulators and downstream pathways predicted. These findings reveal a novel transcriptional mechanism in PFC that controls behavioral and molecular responses to cocaine.


Assuntos
Cocaína/farmacologia , Fator de Transcrição E2F3/fisiologia , Expressão Gênica/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Transcriptoma/efeitos dos fármacos
5.
Biol Psychiatry ; 84(3): 167-179, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397901

RESUMO

BACKGROUND: Lasting changes in gene expression in brain reward regions, including nucleus accumbens (NAc), contribute to persistent functional changes in the addicted brain. We and others have demonstrated that altered expression of several candidate transcription factors in NAc regulates drug responses. A recent large-scale genome-wide study from our group predicted transcription factor E2F3 (E2F3) as a prominent upstream regulator of cocaine-induced changes in gene expression and alternative splicing. METHODS: We studied expression of two E2F3 isoforms-E2F3a and E2F3b-in mouse NAc after repeated cocaine administration and assayed the effects of overexpression or depletion of E2f3 isoforms in NAc on cocaine behavioral responses. We then performed RNA sequencing to investigate the effect of E2f3a overexpression in this region on gene expression and alternative splicing and performed quantitative chromatin immunoprecipitation at downstream targets in NAc following E2f3a overexpression or repeated cocaine exposure. Sample sizes varied between experiments and are noted in the text. RESULTS: We showed that E2f3a, but not E2f3b, overexpression or knockdown in mouse NAc regulates cocaine-induced locomotor and place conditioning behavior. Furthermore, we demonstrated that E2f3a overexpression substantially recapitulates genome-wide transcriptional profiles and alternative splicing induced by cocaine. We further validated direct binding of E2F3a at key target genes following cocaine exposure. CONCLUSIONS: This study establishes E2F3a as a novel transcriptional regulator of cocaine action in NAc. The findings reveal a crucial role for E2F3a in the regulation of cocaine-elicited behavioral states. Moreover, the importance of this role is bolstered by the extensive recapitulation of cocaine's transcriptional effects in NAc by overexpression of E2f3a.


Assuntos
Processamento Alternativo , Cocaína/farmacologia , Fator de Transcrição E2F3/fisiologia , Núcleo Accumbens/fisiologia , Animais , Comportamento Animal , Imunoprecipitação da Cromatina , Fator de Transcrição E2F3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Isoformas de Proteínas/genética
6.
J Cancer Res Clin Oncol ; 144(3): 531-542, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29350287

RESUMO

PURPOSE: lncRNA H19 has been considered as an oncogenic lncRNA in many human tumours. In the present study, we identify the role and molecular mechanism of lncRNA H19 in melanoma. METHOD: QRT-PCR was used to detect the expression of lncRNA H19 and E2F3 was detected in melanoma tissues. Cell counting kit-8 (CCK8), representative metabolites analysis was used to explore the biological function of lncRNA H19, miR-106a-5p and E2F3 in melanoma cells. Bioinformatics, luciferase reporter assays, MS2-RIP and RNA pull-down assay was used to demonstrate the molecular mechanism of lncRNA H19 in melanoma. We further test the function of lncRNA H19 in vivo though Xenograft tumour assay. RESULTS: We found that lncRNA H19 was increased in melanoma tissue, and lncRNA H19 was correlated with poor prognosis of melanoma patients. miR-106a-5p acts as a tumour suppressor in melanoma by targeting E2F3. E2F3 affects the melanoma cell glucose metabolism and growth. We also demonstrated that lncRNA H19 may function as the sponge of miR-106a-5p to up-regulate E2F3 expression, and consequently promote the glucose metabolism and growth of melanoma. CONCLUSIONS: This result elucidates a new mechanism for lncRNA H19 in melanoma development and provides a survival indicator and potential therapeutic target for melanoma patients.


Assuntos
Proliferação de Células/genética , Fator de Transcrição E2F3/fisiologia , Glucose/metabolismo , Melanoma , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Metabolismo dos Carboidratos/genética , Linhagem Celular Tumoral , Fator de Transcrição E2F3/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade , Melanoma/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
7.
Acta Biochim Biophys Sin (Shanghai) ; 49(7): 598-608, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28510638

RESUMO

Asthma is a chronic inflammatory pulmonary disease and respiratory syncytial virus (RSV) infection is a common cause of lower respiratory tract illness in infants and young children. α-Asarone presents many pharmacological effects and has been demonstrated to be useful in treating asthma. However, the functional mechanism of α-asarone in RSV-infected asthma has not been investigated. Long non-coding RNAs (lncRNAs) have been reported to play critical roles in many biological processes. Although many lncRNAs have been characterized, few were reported in asthma, especially in RSV-induced asthma. Currently, a novel post-transcriptional regulation has been proposed in which lncRNAs function as competing endogenous RNAs (ceRNAs) to competitively sponge miRNAs, thereby regulating the target genes. In the present study, we established an RSV-infected Sprague-Dawley rat model and demonstrated that lncRNA-PVT1 is involved in the mechanism of α-asarone in treating RSV-induced asthma, and lncRNA-PVT1 regulates the expression of E2F3 by functioning as a ceRNA which competitively sponges miR-203a.


Assuntos
Anisóis/farmacologia , Asma/tratamento farmacológico , Brônquios/efeitos dos fármacos , Fator de Transcrição E2F3/fisiologia , MicroRNAs/fisiologia , RNA Longo não Codificante/fisiologia , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Derivados de Alilbenzenos , Animais , Anisóis/uso terapêutico , Asma/patologia , Brônquios/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Infecções por Vírus Respiratório Sincicial/patologia
8.
Cancer Sci ; 105(10): 1360-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25088905

RESUMO

Mutant mouse models are indispensable tools for clarifying gene functions and elucidating the pathogenic mechanisms of human diseases. Here, we describe novel cancer models bearing point mutations in the retinoblastoma gene (Rb1) generated by N-ethyl-N-nitrosourea mutagenesis. Two mutations in splice sites reduced Rb1 expression and led to a tumor spectrum and incidence similar to those observed in the conventional Rb1 knockout mice. The missense mutant, Rb1(D326V/+) , developed pituitary tumors, but thyroid tumors were completely suppressed. Immunohistochemical analyses of thyroid tissue revealed that E2F1, but not E2F2/3, was selectively inactivated, indicating that the mutant Rb protein (pRb) suppressed thyroid tumors by inactivating E2F1. Interestingly, Rb1(D326V/+) mice developed pituitary tumors that originated from the intermediate lobe of the pituitary, despite selective inactivation of E2F1. Furthermore, in the anterior lobe of the pituitary, other E2F were also inactivated. These observations show that pRb mediates the inactivation of E2F function and its contribution to tumorigenesis is highly dependent on the cell type. Last, by using a reconstitution assay of synthesized proteins, we showed that the D326V missense pRb bound to E2F1 but failed to interact with E2F2/3. These results reveal the effect of the pRb N-terminal domain on E2F function and the impact of the protein on tumorigenesis. Thus, this mutant mouse model can be used to investigate human Rb family-bearing mutations at the N-terminal region.


Assuntos
Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Mutação , Proteína do Retinoblastoma/genética , Neoplasias da Glândula Tireoide/genética , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neoplasias da Glândula Tireoide/etiologia
9.
Biochim Biophys Acta ; 1839(9): 858-65, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25017995

RESUMO

The histone methyltransferase enhancer of zeste homolog 2 (EZH2) has recently attracted considerable attention because of its dysregulation in prostate cancer (PCa) and its important function in PCa development. To date, little is known about the underlying cellular function and regulatory networks of EZH2 in PCa. This study aims to determine whether or not the autoregulatory feedback loop of EZH2/miR-200c/E2F3 serves key functions in PCa development. Bioinformatics and integrative analytical approaches were employed to identify the relationships of EZH2 to specific cancer-related gene sets. Results indicated that the enrichment of gene sets about cell cycle progression was associated with EZH2 expression. The depletion of EZH2 in cell experiments inhibited PCa cell growth and blocked cell cycle accompanying the downregulation of E2F3 expression. Furthermore, miR-200c served as an important mediator between EZH2 and E2F3. Compared with scrambled control cells, sh-EZH2 cells showed lower H3K27me3 expression and higher miR-200c expression. Western blot and luciferase reporter assays showed that miR-200c inversely modulated E2F3 by directly targeting the binding site within 3'UTR. Moreover, decreased miR-200c expression largely abrogated the effect of sh-EZH2 on E2F3 expression and E2F3-induced cell cycle progression. EZH2 was positively regulated by E2F3 at the transcriptional level. Immunohistochemistry and in situ hybridization revealed a significant correlation among EZH2, miR-200c, and E2F3 expression in human PCa tissues. In conclusion, the autoregulatory feedback loop of EZH2/miR-200c/E2F3 served an important function in PCa development. Targeting this aberrantly activated feedback loop may provide a new therapeutic strategy against PCa.


Assuntos
Fator de Transcrição E2F3/fisiologia , MicroRNAs/fisiologia , Complexo Repressor Polycomb 2/fisiologia , Neoplasias da Próstata/etiologia , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Masculino , Complexo Repressor Polycomb 2/genética
10.
Mol Cell Biol ; 34(17): 3229-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24934442

RESUMO

While the E2F transcription factors (E2Fs) have a clearly defined role in cell cycle control, recent work has uncovered new functions. Using genomic signature methods, we predicted a role for the activator E2F transcription factors in the mouse mammary tumor virus (MMTV)-polyomavirus middle T oncoprotein (PyMT) mouse model of metastatic breast cancer. To genetically test the hypothesis that the E2Fs function to regulate tumor development and metastasis, we interbred MMTV-PyMT mice with E2F1, E2F2, or E2F3 knockout mice. With the ablation of individual E2Fs, we noted alterations of tumor latency, histology, and vasculature. Interestingly, we noted striking reductions in metastatic capacity and in the number of circulating tumor cells in both the E2F1 and E2F2 knockout backgrounds. Investigating E2F target genes that mediate metastasis, we found that E2F loss led to decreased levels of vascular endothelial growth factor (Vegfa), Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression changes indicate that the E2Fs control the expression of genes critical to angiogenesis, the remodeling of the extracellular matrix, tumor cell survival, and tumor cell interactions with vascular endothelial cells that facilitate metastasis to the lungs. Taken together, these results reveal that the E2F transcription factors play key roles in mediating tumor development and metastasis in addition to their well-characterized roles in cell cycle control.


Assuntos
Fatores de Transcrição E2F/fisiologia , Neoplasias Mamárias Experimentais/etiologia , Animais , Antígenos Transformantes de Poliomavirus , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/secundário , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Knockout , Células Neoplásicas Circulantes/patologia , Neovascularização Patológica/genética , Infecções por Retroviridae/etiologia , Infecções por Retroviridae/patologia , Transdução de Sinais , Microambiente Tumoral , Infecções Tumorais por Vírus/etiologia , Infecções Tumorais por Vírus/patologia
11.
PLoS One ; 8(6): e65755, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799044

RESUMO

Insufficient neovascularization, characterized by poor endothelial cell (EC) growth, contributes to the pathogenesis of ischemic heart disease and limits cardiac tissue preservation and regeneration. The E2F family of transcription factors are critical regulators of the genes responsible for cell-cycle progression and growth; however, the specific roles of individual E2Fs in ECs are not well understood. Here we investigated the roles of E2F2 and E2F3 in EC growth, angiogenesis, and their functional impact on myocardial infarction (MI). An endothelial-specific E2F3-deficient mouse strain VE-Cre; E2F3(fl/fl) was generated, and MI was surgically induced in VE-Cre; E2F3(fl/fl) and E2F2-null (E2F2 KO) mice and their wild-type (WT) littermates, VE-Cre; E2F3(+/+) and E2F2 WT, respectively. The cardiac function, infarct size, and vascular density were significantly better in E2F2 KO mice and significantly worse in VE-Cre; E2F3(fl/fl) mice than in their WT littermates. The loss of E2F2 expression was associated with an increase in the proliferation of ECs both in vivo and in vitro, while the loss of E2F3 expression led to declines in EC proliferation. Thus, E2F3 promotes while E2F2 suppresses ischemic cardiac repair through corresponding changes in EC proliferation; and differential targeting of specific E2F members may provide a novel strategy for therapeutic angiogenesis of ischemic heart disease.


Assuntos
Proliferação de Células , Vasos Coronários/fisiopatologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Neovascularização Fisiológica , Animais , Células Cultivadas , Vasos Coronários/patologia , Células Endoteliais/fisiologia , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Função Ventricular Esquerda
12.
Cell Death Differ ; 20(7): 931-40, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23558950

RESUMO

The 'activating' E2fs (E2f1-3) are transcription factors that potently induce quiescent cells to divide. Work on cultured fibroblasts suggested they were essential for division, but in vivo analysis in the developing retina and other tissues disproved this notion. The retina, therefore, is an ideal location to assess other in vivo adenovirus E2 promoter binding factor (E2f) functions. It is thought that E2f1 directly induces apoptosis, whereas other activating E2fs only induce death indirectly by upregulating E2f1 expression. Indeed, mouse retinoblastoma (Rb)-null retinal neuron death requires E2f1, but not E2f2 or E2f3. However, we report an entirely distinct mechanism in dying cone photoreceptors. These neurons survive Rb loss, but undergo apoptosis in the cancer-prone retina lacking both Rb and its relative p107. We show that while E2f1 killed Rb/p107 null rod, bipolar and ganglion neurons, E2f2 was required and sufficient for cone death, independent of E2f1 and E2f3. Moreover, whereas E2f1-dependent apoptosis was p53 and p73-independent, E2f2 caused p53-dependent cone death. Our in vivo analysis of cone photoreceptors provides unequivocal proof that E2f-induces apoptosis independent of E2f1, and reveals distinct E2f1- and E2f2-activated death pathways in response to a single tumorigenic insult.


Assuntos
Apoptose/fisiologia , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Apoptose/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F3/deficiência , Fator de Transcrição E2F3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Retina/patologia , Retina/fisiopatologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/fisiologia , Proteína p107 Retinoblastoma-Like/deficiência , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/fisiologia , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
13.
EMBO J ; 31(4): 972-85, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22157815

RESUMO

The activating E2F-transcription factors are best known for their dependence on the Retinoblastoma protein and their role in cellular proliferation. E2F3 is uniquely amplified in specific human tumours where its expression is inversely correlated with the survival of patients. Here, E2F3B interaction partners were identified by mass spectrometric analysis. We show that the SNF2-like helicase HELLS interacts with E2F3A in vivo and cooperates with its oncogenic functions. Depletion of HELLS severely perturbs the induction of E2F-target genes, hinders cell-cycle re-entry and growth. Using chromatin immmunoprecipitation coupled to sequencing, we identified genome-wide targets of HELLS and E2F3A/B. HELLS binds promoters of active genes, including the trithorax-related MLL1, and co-regulates E2F3-dependent genes. Strikingly, just as E2F3, HELLS is overexpressed in human tumours including prostate cancer, indicating that either factor may contribute to the malignant progression of tumours. Our work reveals that HELLS is important for E2F3 in tumour cell proliferation.


Assuntos
Transformação Celular Neoplásica , DNA Helicases/fisiologia , Fator de Transcrição E2F3/fisiologia , Transcrição Gênica/fisiologia , Ciclo Celular , Imunoprecipitação da Cromatina , DNA Helicases/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Ligação Proteica
14.
Oncogene ; 30(38): 4038-49, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21516127

RESUMO

Recently we showed an integral epidermal growth factor receptor (EGFR)-E2F3a signaling path, in which E2F3a was found to be essential in EGFR-mediated proliferation in ovarian cancer cells. The present work evaluates the clinical relevance of this novel axis and of E2F3a itself in a large set of 130 ovarian cancer specimens. For this purpose E2F3a and its counterpart, E2F3b, were measured by RT-PCR and activated EGFR was assessed by immunohistochemistry. When compared with healthy control tissue, both E2F3 isoforms were overexpressed in the cancers, but only E2F3a expression correlated with tumor stage (ρ=0.349, P=0.0001) and residual disease (ρ=0.254, P=0.004). Univariate survival analyses showed E2F3a and activated EGFR to be associated with poor PFS and OS. Furthermore, a strong, positive correlation between activated EGFR and E2F3a expression was shown (P=0.0001). We further identified two EGFR-independent mechanisms that regulate E2F3a expression, namely one, acting by promoter methylation of miR-34a, which by its physical interaction with E2F3a transcripts causes their degradation, and the second based on 6p22 gene locus amplification. MiRIDIAN-based knockdown and induction of miR-34a evidenced a direct regulatory link between miR-34a and E2F3a, and the tumor-suppressive character of miR-34a was documented by its association with improved survival. Although, 6p22 gene locus amplification was detected in a significant number of ovarian cancer specimens, 6p22 ploidy was not relevant in predicting survival. In Cox regression analysis, E2F3a, but not activated EGFR or miR-34a expression, retained independent prognostic significance (PFS: hazards ratio 3.785 (1.326-9.840), P=0.013; OS: hazards ratio 4.651 (1.189-15.572), P=0.013). These clinical findings highlight the relevance of E2F3a in the biology of ovarian cancer. Moreover, identification of EGFR-independent mechanisms in E2F3a control can be helpful in explaining the non-responsiveness of therapeutic EGFR targeting in ovarian cancer.


Assuntos
Fator de Transcrição E2F3/fisiologia , Neoplasias Ovarianas/patologia , Idoso , Cromossomos Humanos Par 6 , Metilação de DNA , Fator de Transcrição E2F3/análise , Fator de Transcrição E2F3/genética , Receptores ErbB/fisiologia , Feminino , Amplificação de Genes , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Neoplasias Ovarianas/química , Neoplasias Ovarianas/genética , Prognóstico , Regiões Promotoras Genéticas
15.
Dev Biol ; 351(1): 35-45, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21185283

RESUMO

E2F transcription factors regulate the progression of the cell cycle by repression or transactivation of genes that encode cyclins, cyclin dependent kinases, checkpoint regulators, and replication proteins. Although some E2F functions are independent of the Retinoblastoma tumor suppressor (Rb) and related family members, p107 and p130, much of E2F-mediated repression of S phase entry is dependent upon Rb. We previously showed in cultured mouse embryonic fibroblasts that concomitant loss of three E2F activators with overlapping functions (E2F1, E2F2, and E2F3) triggered the p53-p21(Cip1) response and caused cell cycle arrest. Here we report on a dramatic difference in the requirement for E2F during development and in cultured cells by showing that cell cycle entry occurs normally in E2f1-3 triply-deficient epithelial stem cells and progenitors of the developing lens. Sixteen days after birth, however, massive apoptosis in differentiating epithelium leads to a collapse of the entire eye. Prior to this collapse, we find that expression of cell cycle-regulated genes in E2F-deficient lenses is aberrantly high. In a second set of experiments, we demonstrate that E2F3 ablation alone does not cause abnormalities in lens development but rescues phenotypic defects caused by loss of Rb, a binding partner of E2F known to recruit histone deacetylases, SWI/SNF and CtBP-polycomb complexes, methyltransferases, and other co-repressors to gene promoters. Together, these data implicate E2F1-3 in mediating transcriptional repression by Rb during cell cycle exit and point to a critical role for their repressive functions in cell survival.


Assuntos
Proliferação de Células , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F2/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Fator de Transcrição E2F1/deficiência , Fator de Transcrição E2F2/deficiência , Fator de Transcrição E2F3/deficiência , Células Epiteliais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia
16.
Mol Cell Biol ; 29(2): 414-24, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19015245

RESUMO

The E2f3 locus encodes two Rb-binding gene products, E2F3a and E2F3b, which are differentially regulated during the cell cycle and are thought to be critical for cell cycle progression. We targeted the individual inactivation of E2f3a or E2f3b in mice and examined their contributions to cell proliferation and development. Chromatin immunoprecipitation and gene expression experiments using mouse embryo fibroblasts deficient in each isoform showed that E2F3a and E2F3b contribute to G(1)/S-specific gene expression and cell proliferation. Expression of E2f3a or E2f3b was sufficient to support E2F target gene expression and cell proliferation in the absence of other E2F activators, E2f1 and E2f2, suggesting that these isoforms have redundant functions. Consistent with this notion, E2f3a(-/-) and E2f3b(-/-) embryos developed normally, whereas embryos lacking both isoforms (E2f3(-/-)) died in utero. We also find that E2f3a and E2f3b have redundant and nonredundant roles in the context of Rb mutation. Analysis of double-knockout embryos suggests that the ectopic proliferation and apoptosis in Rb(-/-) embryos is mainly mediated by E2f3a in the placenta and nervous system and by both E2f3a and E2f3b in lens fiber cells. Together, we conclude that the contributions of E2F3a and E2F3b in cell proliferation and development are context dependent.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/fisiologia , Desenvolvimento Embrionário , Genes do Retinoblastoma , Animais , Linhagem Celular , Sistema Nervoso Central/embriologia , Imunoprecipitação da Cromatina , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/genética , Eritropoese/genética , Olho/embriologia , Feminino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Sistema Nervoso Periférico/embriologia , Placenta/metabolismo , Placenta/patologia , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ativação Transcricional , Trofoblastos/citologia , Trofoblastos/fisiologia
17.
Oncogene ; 27(51): 6561-70, 2008 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18663357

RESUMO

The E2f transcription factors are key downstream targets of the retinoblastoma protein tumor suppressor that control cell proliferation. E2F3 has garnered particular attention because it is amplified in various human tumors. E2f3 mutant mice typically die around birth and E2f3-deficient cells have a proliferation defect that correlates with impaired E2f target gene activation and also induction of p19(Arf) and p53. The E2f3 locus encodes two isoforms, E2f3a and E2f3b, which differ in their N-termini. However, it is unclear how E2f3a versus E2f3b contributes to E2f3's requirement in either proliferation or development. To address this, we use E2f3a- and E2f3b-specific knockouts. We show that inactivation of E2f3a results in a low penetrance proliferation defect in vitro whereas loss of E2f3b has no effect. This proliferation defect appears insufficient to disrupt normal development as E2f3a and E2f3b mutant mice are both fully viable and have no detectable defects. However, when combined with E2f1 mutation, inactivation of E2f3a, but not E2f3b, causes significant proliferation defects in vitro, neonatal lethality and also a striking cartilage defect. Thus, we conclude that E2f3a and E2f3b have largely overlapping functions in vivo and that E2f3a can fully substitute for E2f1 and E2f3 in most murine tissues.


Assuntos
Fator de Transcrição E2F3/metabolismo , Fator de Transcrição E2F3/fisiologia , Transdução de Sinais/fisiologia , Fatores de Ribosilação do ADP/genética , Animais , Ciclo Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Regulação para Baixo , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Transdução de Sinais/genética
18.
Oncogene ; 27(36): 4954-61, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18469863

RESUMO

Many early stage human tumors display markers of a DNA-damage response (DDR), including ataxia telangiectasia mutated (ATM) kinase activation. This suggests that DNA damage accumulates during the process of carcinogenesis and that the ATM-dependent response to this damage may function to suppress cancer progression. The E2F3a transcription factor plays an important role in regulating cell proliferation and is amplified in a subset of human cancers. Similar to human premalignant lesions, we find activated ATM and other markers of the DDR in the hyperplastic epidermis of transgenic mice expressing E2F3a through a keratin 5 (K5) promoter. Primary keratinocytes from K5 E2F3a transgenic mice contain increased levels of DNA breaks compared to wild-type cells. E2F3a overexpression also induced DNA damage in primary human fibroblasts that was inhibited by blocking DNA replication. The absence of ATM impaired apoptosis induced by E2F3a and treating K5 E2F3a transgenic mice with caffeine, an inhibitor of ATM and Rad3-related (ATR), promoted skin tumor development. These findings demonstrate that the deregulated expression of E2F3a causes DNA damage under physiological conditions and indicate that the ATM-dependent response to this damage is important for the induction of apoptosis and tumor suppression.


Assuntos
Apoptose/genética , Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Ensaio Cometa , Fator de Transcrição E2F3/genética , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos
19.
Cell Cycle ; 7(3): 391-400, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18235226

RESUMO

Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.


Assuntos
Proteínas E1A de Adenovirus/fisiologia , Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/fisiologia , Fator de Transcrição E2F3/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas E1A de Adenovirus/genética , Proteínas E1A de Adenovirus/metabolismo , Animais , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia , Células Cultivadas , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F3/genética , Fator de Transcrição E2F3/metabolismo , Ativação Enzimática/fisiologia , Humanos , Camundongos
20.
Oncogene ; 26(7): 1028-37, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16909110

RESUMO

Amplification and overexpression of the E2F3 gene at 6p22 in human bladder cancer is associated with increased tumour stage, grade and proliferation index, and in prostate cancer E2F3 overexpression is linked to tumour aggressiveness. We first used small interfering RNA technology to confirm the potential importance of E2F3 overexpression in bladder cancer development. Knockdown of E2F3 expression in bladder cells containing the 6p22 amplicon strongly reduced the extent of bromodeoxyuridine (BrdU) incorporation and the rate of cellular proliferation. In contrast, knockdown of CDKAL1/FLJ20342, another proposed oncogene, from this amplicon had no effect. Expression cDNA microarray analysis on bladder cancer cells following E2F3 knockdown was then used to identify genes regulated by E2F3, leading to the identification of known E2F3 targets such as Cyclin A and CDC2 and novel targets including pituitary tumour transforming gene 1, Polo-like kinase 1 (PLK1) and Caveolin-2. For both bladder and prostate cancer, we have proposed that E2F3 protein overexpression may cooperate with removal of the E2F inhibitor retinoblastoma tumor suppressor protein (pRB) to drive cellular proliferation. In support of this model, we found that ectopic expression of E2F3a enhanced the BrdU incorporation, a marker of cellular proliferation rate, of prostate cancer DU145 cells, which lack pRB, but had no effect on the proliferation rate of PC3 prostate cancer cells that express wild-type pRB. BrdU incorporation in PC3 cells could, however, be increased by overexpressing E2F3a in cells depleted of pRB. When taken together, these observations indicate that E2F3 levels have a critical role in modifying cellular proliferation rate in human bladder and prostate cancer.


Assuntos
Proliferação de Células , Fator de Transcrição E2F3/fisiologia , Neoplasias da Próstata/patologia , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Fator de Transcrição E2F3/antagonistas & inibidores , Fator de Transcrição E2F3/biossíntese , Fator de Transcrição E2F3/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA