Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Brain ; 14(1): 134, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488822

RESUMO

Growth differentiation factor 11 (GDF11) is a transforming factor-ß superfamily member that functions as a negative regulator of neurogenesis during embryonic development. However, when recombinant GDF11 (rGDF11) is administered systemically in aged mice, it promotes neurogenesis, the opposite of its role during development. The goal of the present study was to reconcile this apparent discrepancy by performing the first detailed investigation into the expression of endogenous GDF11 in the adult brain and its effects on neurogenesis. Using quantitative histological analysis, we observed that Gdf11 is most highly expressed in adult neurogenic niches and non-neurogenic regions within the hippocampus, choroid plexus, thalamus, habenula, and cerebellum. To investigate the role of endogenous GDF11 during adult hippocampal neurogenesis, we generated a tamoxifen inducible mouse that allowed us to reduce GDF11 levels. Depletion of Gdf11 during adulthood increased proliferation of neural progenitors and decreased the number of newborn neurons in the hippocampus, suggesting that endogenous GDF11 remains a negative regulator of hippocampal neurogenesis in adult mice. These findings further support the idea that circulating systemic GDF11 and endogenously expressed GDF11 in the adult brain have different target cells or mechanisms of action. Our data describe a role for GDF11-dependent signaling in adult neurogenesis that has implications for how GDF11 may be used to treat CNS disease.


Assuntos
Proteínas Morfogenéticas Ósseas/fisiologia , Fatores de Diferenciação de Crescimento/fisiologia , Hipocampo/citologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Envelhecimento/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/deficiência , Proteínas Morfogenéticas Ósseas/genética , Divisão Celular , Cruzamentos Genéticos , Feminino , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/deficiência , Fatores de Diferenciação de Crescimento/genética , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Especificidade de Órgãos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Nicho de Células-Tronco
2.
Br J Haematol ; 188(2): 321-331, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31418854

RESUMO

Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of ß-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and ß-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Hepcidinas/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/farmacologia , Eritropoese/fisiologia , Eritropoetina/farmacologia , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/farmacologia , Células Hep G2 , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Hormônios Peptídicos/biossíntese , Hormônios Peptídicos/genética , Proteínas Recombinantes/farmacologia , Proteínas Smad/metabolismo
3.
PLoS One ; 14(3): e0214073, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883611

RESUMO

Growth differentiation factor 11 (GDF11), is a member of the transforming growth factor-beta (TGF-ß) superfamily and bone morphogenetic protein (BMP) subfamily. In this study, we aimed to assess the expression profile of GDF11, its prognostic value in terms of OS, as well as the potential mechanisms leading to its dysregulation in uveal melanoma. A retrospective study was conducted using our primary data and genetic, clinicopathological and overall survival (OS) data from the Cancer Genome Atlas-Uveal Melanoma (TCGA-UVM). Results showed that GDF11 expression was significantly higher in tumor tissues compared with that in adjacent normal tissues. High GDF11 expression was associated with uveal melanoma in advanced stages (IV), epithelioid cell dominant subtype, as well as extrascleral extension. Univariate analysis showed that older age, epithelioid cell dominant, with extrascleral extension and increased GDF11 expression were associated with unfavorable OS. Multivariate analysis confirmed that GDF11 expression was an independent prognostic indicator of unfavorable OS (HR: 1.704, 95%CI: 1.143-2.540, p = 0.009), after adjustment of age, histological subtypes and extrascleral extension. Among the 80 cases of uveal melanoma, only 3 cases had low-level copy gain (+1) and 2 cases had heterozygous loss (-1). No somatic mutations, including SNPs and small INDELs were observed in GDF11 DNA. The methylation of these four CpG sites had weakly (cg22950598 and cg23689080), moderately (cg09890930), or strongly (cg05511733) negative correlation with GDF11 expression. In addition, the patients with high methylation of these four sites had significantly better OS compared to the group with low methylation. Based on these findings, we infer that methylation modulated GDF11 expression might be a valuable prognostic biomarker regarding OS in uveal melanoma.


Assuntos
Biomarcadores Tumorais , Proteínas Morfogenéticas Ósseas , Metilação de DNA , DNA de Neoplasias , Regulação Neoplásica da Expressão Gênica , Fatores de Diferenciação de Crescimento , Melanoma , Regulação para Cima , Neoplasias Uveais , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Ilhas de CpG , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Intervalo Livre de Doença , Feminino , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Humanos , Mutação INDEL , Masculino , Melanoma/genética , Melanoma/metabolismo , Melanoma/mortalidade , Pessoa de Meia-Idade , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Taxa de Sobrevida , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/mortalidade
4.
Arterioscler Thromb Vasc Biol ; 38(8): 1821-1836, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880487

RESUMO

Objective- Diabetic macular edema is a major cause of visual impairment. It is caused by blood-retinal barrier breakdown that leads to vascular hyperpermeability. Current therapeutic approaches consist of retinal photocoagulation or targeting VEGF (vascular endothelial growth factor) to limit vascular leakage. However, long-term intravitreal use of anti-VEGFs is associated with potential safety issues, and the identification of alternative regulators of vascular permeability may provide safer therapeutic options. The vascular specific BMP (bone morphogenetic protein) receptor ALK1 (activin-like kinase receptor type I) and its circulating ligand BMP9 have been shown to be potent vascular quiescence factors, but their role in the context of microvascular permeability associated with hyperglycemia has not been evaluated. Approach and Results- We investigated Alk1 signaling in hyperglycemic endothelial cells and assessed whether BMP9/Alk1 signaling could modulate vascular permeability. We show that high glucose concentrations impair Alk1 signaling, both in cultured endothelial cells and in a streptozotocin model of mouse diabetes mellitus. We observed that Alk1 signaling participates in the maintenance of vascular barrier function, as Alk1 haploinsufficiency worsens the vascular leakage observed in diabetic mice. Conversely, sustained delivery of BMP9 by adenoviral vectors significantly decreased the loss of retinal barrier function in diabetic mice. Mechanistically, we demonstrate that Alk1 signaling prevents VEGF-induced phosphorylation of VE-cadherin and induces the expression of occludin, thus strengthening vascular barrier functions. Conclusions- From these data, we suggest that by preventing retinal vascular permeability, BMP9 could serve as a novel therapeutic agent for diabetic macular edema.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Terapia Genética/métodos , Fatores de Diferenciação de Crescimento , Hiperglicemia/terapia , Edema Macular/prevenção & controle , Receptores de Ativinas Tipo I/deficiência , Receptores de Ativinas Tipo I/genética , Receptores de Activinas Tipo II/genética , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/induzido quimicamente , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/farmacologia , Haploinsuficiência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/genética , Hiperglicemia/metabolismo , Edema Macular/induzido quimicamente , Edema Macular/genética , Edema Macular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Estreptozocina , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Biomed Pharmacother ; 103: 691-698, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29680737

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung disease, which is associated with significant mortality and costs. The molecular mechanisms underlying the roles of cigarette smoke (an accepted risk factor for COPD) and growth differentiation factor 11 (GDF11), which is reduced in patients with COPD, in the occurrence of COPD are unclear. The aim of the present study was to explore the function of GDF11 in the progression of COPD. Western blotting analysis was used to determine the expression levels of GDF11 in serum and primary lung mesenchymal cells from patients with COPD and the healthy people, and the effect of cigarette smoke extract (CSE) on the expression of AKT, p-AKT (Ser473), p-AKT (Thr308) and GDF11 was examined. The correlations between the expression level of GDF11 and the ratio of forced expiratory volume in one second (FEV1) and forced vital capacity (FVC), as well as GDF11 and p-AKT (Ser473 and Thr308) in vivo and in vitro were examined. GDF11 expression was decreased in COPD patients' serum and cells when compared with that from the healthy people, and it was positively correlated with the FEV1/FVC ratio. Exposure to CSE reduced the expression of GDF11 but increased the expression of p-AKT (Ser473 and Thr308). Together, the results suggested that CSE promoted the progression of COPD by downregulating the expression of GDF11, which then activated the AKT signaling pathway. This study suggests that GDF11 may be a novel target for the diagnosis and treatment of COPD.


Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Progressão da Doença , Fatores de Diferenciação de Crescimento/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/fisiologia , Idoso , Animais , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Feminino , Expressão Gênica , Fatores de Diferenciação de Crescimento/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia , Fumar/metabolismo , Fumar/patologia
6.
J Chem Neuroanat ; 89: 21-36, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29448002

RESUMO

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), is a member of the transforming growth factor ß (TGF-ß) superfamily. Although GDF11 plays pivotal roles during development, including anterior/posterior patterning, formation of the kidney, stomach, spleen and endocrine pancreas, little information is available for GDF11 expression in the adult central nervous system (CNS). We, thus, investigated GDF11 expression in the adult rat CNS using immunohistochemistry. GDF11 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express GDF11 protein. These data indicate that GDF11 is widely expressed throughout the adult CNS, and its abundant expression in the adult brain strongly supports the idea that GDF11 plays important roles in the adult brain.


Assuntos
Encéfalo/metabolismo , Fatores de Diferenciação de Crescimento/biossíntese , Animais , Astrócitos/metabolismo , Fatores de Diferenciação de Crescimento/análise , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar
7.
Biotechnol Lett ; 40(1): 47-55, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28956179

RESUMO

OBJECTIVES: To investigate the roles of miR-149 in the progression of human osteosarcoma (OS). RESULTS: miR-149 level was upregulated in tissues from OS patients more than in normal subjects. Cell proliferation and apoptosis assays revealed that miR-149 increased cell proliferation and inhibited cell apoptosis in OS cell line (MG63). An increase of Bcl-2 gene expression and a decrease of cleaved-caspase-3, and cleaved-PARP expression were observed in MG63 cells with transfection of miR-149. Additionally, bone morphogenetic protein 9 (BMP9) was identified as a target of miR-149 in MG63 cells, and BMP9 expression was negatively correlated with miR149 level in OS clinical samples. Co-overexpression of BMP9 with miR-149 in MG63 cells prohibited miR-149-mediated promotive effects on OS progression. Importantly, overexpression of miR-149 conferred chemoresistance in MG63 cells. CONCLUSIONS: miR-149 promotes OS progression via targeting BMP9.


Assuntos
Fatores de Diferenciação de Crescimento/biossíntese , MicroRNAs/metabolismo , Osteossarcoma/fisiopatologia , ADP Ribose Transferases/análise , Apoptose , Caspase 3/análise , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Fator 2 de Diferenciação de Crescimento , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
8.
Biochemistry ; 56(33): 4405-4418, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28715204

RESUMO

Growth differentiation factor 11 (GDF11), a member of the transforming growth factor ß (TGF-ß) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP60-114, remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP60-114 had no impact on activity. The specific activity of the GDF11/PDP60-114 complex (EC50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC50 = 2 nM) by protease treatment. Complex formation with PDP60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-ß family that form latent pro/mature domain complexes.


Assuntos
Proteínas Morfogenéticas Ósseas , Fatores de Diferenciação de Crescimento , Multimerização Proteica , Proteólise , Animais , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/genética , Células CHO , Cricetinae , Cricetulus , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/química , Fatores de Diferenciação de Crescimento/genética , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Domínios Proteicos , Solubilidade
9.
PLoS One ; 12(3): e0172327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28249039

RESUMO

Large skeletal defects caused by trauma, congenital malformations, and post-oncologic resections of the calvarium present major challenges to the reconstructive surgeon. We previously identified BMP-9 as the most osteogenic BMP in vitro and in vivo. Here we sought to investigate the bone regenerative capacity of murine-derived calvarial mesenchymal progenitor cells (iCALs) transduced by BMP-9 in the context of healing critical-sized calvarial defects. To accomplish this, the transduced cells were delivered to the defect site within a thermoresponsive biodegradable scaffold consisting of poly(polyethylene glycol citrate-co-N-isopropylacrylamide mixed with gelatin (PPCN-g). A total of three treatment arms were evaluated: PPCN-g alone, PPCN-g seeded with iCALs expressing GFP, and PPCN-g seeded with iCALs expressing BMP-9. Defects treated only with PPCN-g scaffold did not statistically change in size when evaluated at eight weeks postoperatively (p = 0.72). Conversely, both animal groups treated with iCALs showed significant reductions in defect size after 12 weeks of follow-up (BMP9-treated: p = 0.0025; GFP-treated: p = 0.0042). However, H&E and trichrome staining revealed more complete osseointegration and mature bone formation only in the BMP9-treated group. These results suggest that BMP9-transduced iCALs seeded in a PPCN-g thermoresponsive scaffold is capable of inducing bone formation in vivo and is an effective means of creating tissue engineered bone for critical sized defects.


Assuntos
Consolidação da Fratura , Fatores de Diferenciação de Crescimento , Células-Tronco Mesenquimais/metabolismo , Osseointegração , Crânio/lesões , Alicerces Teciduais/química , Transdução Genética , Animais , Linhagem Celular , Gelatina/química , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Humanos , Camundongos , Polietilenoglicóis/química
10.
EMBO Mol Med ; 9(4): 531-544, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270449

RESUMO

Growth and differentiation factor (GDF) 11 is a member of the transforming growth factor ß superfamily recently identified as a potential therapeutic for age-related cardiac and skeletal muscle decrements, despite high homology to myostatin (Mstn), a potent negative regulator of muscle mass. Though several reports have refuted these data, the in vivo effects of GDF11 on skeletal muscle mass have not been addressed. Using in vitro myoblast culture assays, we first demonstrate that GDF11 and Mstn have similar activities/potencies on activating p-SMAD2/3 and induce comparable levels of differentiated myotube atrophy. We further demonstrate that adeno-associated virus-mediated systemic overexpression of GDF11 in C57BL/6 mice results in substantial atrophy of skeletal and cardiac muscle, inducing a cachexic phenotype not seen in mice expressing similar levels of Mstn. Greater cardiac expression of Tgfbr1 may explain this GDF11-specific cardiac phenotype. These data indicate that bioactive GDF11 at supraphysiological levels cause wasting of both skeletal and cardiac muscle. Rather than a therapeutic agent, GDF11 should be viewed as a potential deleterious biomarker in muscle wasting diseases.


Assuntos
Atrofia , Proteínas Morfogenéticas Ósseas/biossíntese , Fatores de Diferenciação de Crescimento/biossíntese , Músculo Estriado/patologia , Animais , Dependovirus/genética , Expressão Gênica , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efeitos dos fármacos , Miostatina , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transdução Genética
11.
Genet Mol Res ; 15(3)2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27706722

RESUMO

Osteosarcoma (OS) causes millions of death worldwide and, since there is no effective therapy, it is necessary to identify the molecular mechanism of OS, which can direct the development of new therapies. This study investigated the role of bone morphogenetic protein 9 (BMP9), a member of the transforming growth factor (TGF)-ß family, in OS development. This study first examined BMP9 expression in tissue from OS patients and normal subjects. The OS cell line (MG63) and tumor cells from OS patients were then transfected with BMP9 and cell proliferation and apoptosis were assessed. Western blot and reverse transcription-polymerase chain reaction were used to study the expression of cancer-related genes [B cell lymphoma (Bcl)-2, cleaved Caspase-3, Caspase-9, and poly ADP-ribose polymerase]. To confirm the in vivo impact of BMP9, mice were transplanted with OS tumor cells and then treated with BMP9 carried in attenuated Salmonella enterica serovar Typhimurium. Our study found that the OS tumor tissue had a lower expression of BMP9 compared to normal tissue. Transfection of BMP9 in OS and MG63 cells inhibited cell growth and promoted apoptosis. In vitro studies showed a decrease in Bcl-2 gene expression and an increase in Cyto-c, Caspase-3, and Caspase-9 expression. In vivo studies indicated that consistent treatment with BMP9 in OS mice results in inhibition of tumor growth. This study shows that BMP9 inhibition is associated with OS development and that enhanced expression of BMP9 may be a potential treatment method for OS.


Assuntos
Neoplasias Ósseas/genética , Fatores de Diferenciação de Crescimento/biossíntese , Osteossarcoma/genética , Animais , Apoptose/genética , Neoplasias Ósseas/patologia , Caspase 3/biossíntese , Caspase 3/genética , Caspase 9/biossíntese , Caspase 9/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/genética , Humanos , Camundongos , Osteossarcoma/patologia , Poli(ADP-Ribose) Polimerases/genética , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/genética , Salmonella enterica/patogenicidade , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Connect Tissue Res ; 56(4): 288-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25748814

RESUMO

Previous study showed that high-density culture supported phenotype maintenance of in vitro expanded tenocytes. This study explored the possibility of inducing the tenogenic phenotype of dermal fibroblasts by high-density monolayer culture. Human fibroblasts were seeded either in high-density (2.5 × 10(6) per 10 cm dish) or at low-density (0.36 × 10(6) per 10 cm dish). A preliminary tenogenic phenotype was observed in high-density cultured cells after one passage with significantly enhanced tenogenic gene expression. With continued cultivation to passage 3, scleraxis (SCX), tenomodulin (TNMD), collagen I, III, VI, decorin and tenascin-c were all significantly upregulated in high-density cultured dermal fibroblasts as opposed to low-density cells. High-density culture also led to relatively elongated cell shape, whereas cells appeared in spread shape in low-density culture. In addition, cytochalasin D treatment disrupted the cellular cytoskeleton and resulted in inhibition of density-induced tenogenic gene expression. However, high-density cultured fibroblasts failed to induce other lineage differentiations (osteogenic, chondrogenic and adipogenic). It also failed to induce tenogenic phenotype in high-density cultured chondrocytes. Mechanism studies revealed enhanced gene expression of growth and differentiation factors (GDF) 5, 6, 7 and 8 and transforming growth factor-ß (TGF-ß)1 in the high-density group and enhanced protein production of both GDF8 and TGF-ß1. Moreover, BMP/GDF signaling inhibitor (LDN193189) and TGF-ß signaling inhibitor (LY2109761) could both abrogate the density induced phenotype. In conclusion, high-density culture was able to induce transient tenogenic phenotype of dermal fibroblasts likely via cell morphology change and production of pro-tenogenic factors.


Assuntos
Derme/metabolismo , Fibroblastos/metabolismo , Tendões/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Regulação da Expressão Gênica/fisiologia , Fatores de Diferenciação de Crescimento/biossíntese , Humanos , Tendões/citologia , Fator de Crescimento Transformador beta1/biossíntese
13.
Mol Cell Biochem ; 390(1-2): 9-18, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24378996

RESUMO

The growth and differentiation factor-11 (GDF-11) gene is thought to code for a single protein that plays a crucial role in regulating the development of multiple tissues. In this study, we aimed to investigate if the GDF-11 gene has another transcript and, if so, to characterise this transcript and determine its tissue-specific and developmental expression. We have identified a novel transcript of GDF-11 in mouse muscle, which contains the 3' region of intron 1, exon 2, exon 3 and 3'UTR, and has two transcription initiation sites and a single termination site. We named the novel transcript GDF-11ΔEx1 because it does not contain exon 1 of canonical GDF-11. The GDF-11ΔEx1 transcript was expressed in the skeletal muscles, heart, brain and kidney, but was undetectable in the liver and gut. The concentration of the GDF-11ΔEx1 transcript was increased in gastrocnemius muscles from three to 6 weeks of age, a period of accelerated muscle growth, steadily declined thereafter and was higher in male than female mice (P < 0.001 for age and sex). GDF-11ΔEx1 cDNA was predicted to code for a putative N-terminal-truncated propeptide and the canonical ligand for GDF-11. However, propeptide-specific antibodies could not identify proteins of the expected size in skeletal muscle. Interestingly, in silico analysis of the GDF-11ΔEx1 RNA predicted a secondary structure with the potential to coordinate multiple protein interactions as a molecular scaffold. Therefore, we postulate that GDF-11ΔEx1 may act as a long non-coding RNA to regulate the transcription of canonical GDF-11 and/or other genes in skeletal muscle and other tissues.


Assuntos
Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Isoformas de Proteínas/genética , RNA Longo não Codificante/genética , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/isolamento & purificação , Clonagem Molecular , DNA Complementar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Diferenciação de Crescimento/isolamento & purificação , Masculino , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/isolamento & purificação , Homologia de Sequência
14.
Oncol Rep ; 31(2): 989-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337584

RESUMO

Bone morphogenetic protein 9 (BMP9) is a member of the transforming growth factor-ß (TGF-ß) family, which has been shown to regulate the progression of several tumors. Recent studies indicated that BMP9 affects osteosarcoma (OS) processes, but its specific roles and molecular mechanisms have yet to be fully elucidated. The human OS cell lines 143B and MG63 were used for the present study. We found that BMP9 overexpression suppressed the growth of OS cells, whereas inhibition of BMP9 reversed this effect. Our results also showed that BMP9 overexpression induced G0/G1 phase arrest and apoptosis in OS cells. We further investigated the possible molecular mechanisms mediating the biological role of BMP9. We observed that BMP9 overexpression reduced ß-catenin mRNA and protein levels, and also downregulated its downstream proteins c-Myc and osteoprotegerin (OPG) and inhibited the phosphorylation levels of GSK-3ß (Ser 9) in OS cells, whereas inhibition of BMP9 reversed these effects. Moreover, the suppressive effects of BMP9 overexpression on OS cells was reversed by exogenous ß-catenin expression, but augmented by ß-catenin silencing. In conclusion, our results revealed that BMP9 can regulate tumor growth of OS cells through the Wnt/ß-catenin pathway. Therefore, BMP9 may be a new therapeutic target in OS.


Assuntos
Neoplasias Ósseas/patologia , Fatores de Diferenciação de Crescimento/genética , Osteossarcoma/patologia , Via de Sinalização Wnt/genética , beta Catenina/genética , Actinas/imunologia , Anticorpos/imunologia , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Meios de Cultivo Condicionados , Regulação para Baixo , Pontos de Checagem da Fase G1 do Ciclo Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Quinase 3 da Glicogênio Sintase/imunologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/antagonistas & inibidores , Fatores de Diferenciação de Crescimento/biossíntese , Células HEK293 , Humanos , Osteoprotegerina/biossíntese , Osteossarcoma/genética , Osteossarcoma/imunologia , Fosforilação , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/imunologia , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Interferente Pequeno , beta Catenina/biossíntese , beta Catenina/imunologia
15.
Cell Mol Life Sci ; 69(2): 313-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21710321

RESUMO

Bone Morphogenetic Protein 9 (BMP9) has been recently found to be the physiological ligand for the activin receptor-like kinase 1 (ALK1), and to be a major circulating vascular quiescence factor. Moreover, a soluble chimeric ALK1 protein (ALK1-Fc) has recently been developed and showed powerful anti-tumor growth and anti-angiogenic effects. However, not much is known concerning BMP9. This prompted us to investigate the human endogenous sources of this cytokine and to further characterize its circulating form(s) and its function. Analysis of BMP9 expression reveals that BMP9 is produced by hepatocytes and intrahepatic biliary epithelial cells. Gel filtration analysis combined with ELISA and biological assays demonstrate that BMP9 circulates in plasma (1) as an unprocessed inactive form that can be further activated by furin a serine endoprotease, and (2) as a mature and fully active form (composed of the mature form associated with its prodomain). Analysis of BMP9 circulating levels during mouse development demonstrates that BMP9 peaks during the first 3 weeks after birth and then decreases to 2 ng/mL in adulthood. We also show that circulating BMP9 physiologically induces a constitutive Smad1/5/8 phosphorylation in endothelial cells. Taken together, our results argue for the role of BMP9 as a hepatocyte-derived factor, circulating in inactive (40%) and active (60%) forms, the latter constantly activating endothelial cells to maintain them in a resting state.


Assuntos
Fator 2 de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/biossíntese , Hepatócitos/metabolismo , Adulto , Animais , Aorta/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Células Epiteliais/metabolismo , Feminino , Fatores de Diferenciação de Crescimento/sangue , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Pró-Proteína Convertases/metabolismo , Ratos , Ratos Wistar , Serina Endopeptidases/metabolismo , Proteínas Smad/metabolismo
16.
Cancer ; 117(24): 5601-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21692070

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) signaling is a target for antiangiogenic cancer therapy. The authors have previously observed that up to 40% of vessels in colorectal carcinoma (CRC) tumors are negative for VEGF receptor 2 (VEGFR2) expression. Differential activity of transforming growth factor beta (TGF-ß) is a potential contributor to this receptor heterogeneity because TGF-ß contributes to both angiogenesis and CRC tumor progression. METHODS: The authors analyzed VEGFR2 expression by Western blotting, and TGF-ß expression in endothelial and CRC cell lines, respectively. In addition, they immunostained endothelial cells in CRC xenografts to find an association between VEGFR2 and TGF-ß levels or activity. RESULTS: In bovine aortic endothelial cells (BAECs), TGF-ß1 significantly repressed VEGFR2 protein in a time-dependent and dose-dependent fashion (P < .05). Serum-free conditioned media from various malignant human CRC cell lines (HCT116, 379.2, Dks8, and DLD1) induced down-regulation of VEGFR2 in BAECs. This effect was proportional to the total levels of TGF-ß1 and TGF-ß2 and was blocked by SB-431542 and SD-208, TGF-ß receptor I inhibitors. Immunofluorescence staining of subcutaneous mouse xenografts of HCT116, 379.2, Dks8, and SW480 cells revealed vessels with an inverse relationship between TGF-ß activity and VEGFR2 expression. Oxygen and bone morphogenetic protein 9 levels were shown to modulate TGF-ß-induced VEGFR2 down-regulation. CONCLUSIONS: In combination with other factors, TGF-ß may contribute to the vascular heterogeneity in human colorectal tumors.


Assuntos
Neoplasias Colorretais/metabolismo , Fator de Crescimento Transformador beta/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Animais , Células CACO-2 , Bovinos , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/irrigação sanguínea , Neoplasias Colorretais/genética , Células Endoteliais/citologia , Feminino , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Células HCT116 , Humanos , Masculino , Camundongos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Fosforilação , Proteínas Recombinantes/farmacologia , Transdução de Sinais , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta1/farmacologia , Transplante Heterólogo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Mol Oral Microbiol ; 25(4): 275-92, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20618701

RESUMO

There is mounting evidence that innate and adaptive immunity are critical for periodontal disease-mediated bone resorption. These studies examined the role of B and CD4 T cells in adaptive immunity of rats infected with Aggregatibacter actinomycetemcomitans (Aa). Sprague-Dawley male rats were fed Aa-containing mash or control-mash for 2 weeks. B and CD4 T cells were obtained from draining lymph nodes at 2, 4 and 12 weeks, postinoculation. Quantitative polymerase chain reaction-based messenger RNA expression was conducted for 89 cytokine family genes. Disease-relevance of the differentially expressed genes was assessed using a biological interaction pathway analysis software. B and CD4 T cells of Aa-infected rats increased and were activated, resulting in enhanced isotype-switched serum immunoglobulin G by 2 weeks postinoculation. Bone resorption was evident 12 weeks after Aa-feeding. In B cells, interleukin-2 (IL-2), macrophage-inhibiting factor, IL-19, IL-21, tumor necrosis factor (TNF), CD40 ligand (CD40L), CD70, bone morphogenetic protein 2 (BMP2), BMP3, and BMP10 were upregulated early; while IL-7, Fas ligand (FasL), small inducible cytokine subfamily E1, and growth differentiation factor 11 (GDF11; BMP11) were upregulated late (12 weeks). BMP10 was sustained throughout. In CD4 T cells, IL-10, IL-16, TNF, lymphotoxin-beta (LTbeta), APRIL, CD40L, FasL, RANKL and osteoprotegerin were upregulated early, whereas IL-1beta, IL-1RN, IL-1F8, IL-24, interferon-alpha1, GDF11 (BMP11), and GDF15 were upregulated late (12 weeks). Adaptive immunity appears crucial for bone resorption. Several of the deregulated genes are, for the first time, shown to be associated with bone resorption, and the results indicate that activated B cells produce BMP10. The study provides a rationale for a link between periodontal disease and other systemic diseases.


Assuntos
Imunidade Adaptativa/genética , Aggregatibacter actinomycetemcomitans/fisiologia , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/microbiologia , Linfócitos T CD4-Positivos/metabolismo , Perda do Osso Alveolar/genética , Animais , Anticorpos Antibacterianos/biossíntese , Linfócitos B/metabolismo , Proteínas Morfogenéticas Ósseas/biossíntese , Proteínas Morfogenéticas Ósseas/genética , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/genética , Ativação Linfocitária , Masculino , Osteoclastos/imunologia , Ratos , Ratos Sprague-Dawley
18.
Cancer Res ; 69(24): 9254-62, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19996292

RESUMO

Bone morphogenetic proteins (BMPs) act as central regulators of ovarian physiology and may be involved in ovarian cancer development. In an effort to understand these processes, we characterized transforming growth factor beta/BMP receptor and Smad expression in immortalized ovarian surface epithelial cells and a panel of ovarian cancer cell lines. These studies prompted us to evaluate the potential role of BMP9 signaling in ovarian cancer. Using small interfering RNA, ligand trap, inhibitor, and ligand stimulation approaches, we show that BMP9 acts as a proliferative factor for immortalized ovarian surface epithelial cells and ovarian cancer cell lines, signaling predominantly through an ALK2/Smad1/Smad4 pathway rather than through ALK1, the major BMP9 receptor in endothelial cells. Importantly, we find that some ovarian cancer cell lines have gained autocrine BMP9 signaling that is required for proliferation. Furthermore, immunohistochemistry analysis of an ovarian cancer tissue microarray reveals that approximately 25% of epithelial ovarian cancers express BMP9, whereas normal human ovarian surface epithelial specimens do not. Our data indicate that BMP9 signaling through ALK2 may be a novel therapeutic target in ovarian cancer.


Assuntos
Receptores de Ativinas Tipo I/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteína Smad1/metabolismo , Proteína Smad4/metabolismo , Receptores de Activinas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Fator 2 de Diferenciação de Crescimento , Fatores de Diferenciação de Crescimento/biossíntese , Fatores de Diferenciação de Crescimento/sangue , Fatores de Diferenciação de Crescimento/genética , Humanos , Neoplasias Ovarianas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Transfecção , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA