Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Nature ; 614(7947): 367-374, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697824

RESUMO

Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Fatores de Transcrição , Terminação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , RNA/química , RNA/genética , RNA/metabolismo , RNA/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
2.
Genes (Basel) ; 12(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946951

RESUMO

The tumor suppressor protein partner and localizer of BRCA2 (PALB2) orchestrates the interactions between breast cancer susceptibility proteins 1 and 2 (BRCA1, -2) that are critical for genome stability, homologous recombination (HR) and DNA repair. PALB2 mutations predispose patients to a spectrum of cancers, including breast and ovarian cancers. PALB2 localizes HR machinery to chromatin and links it with transcription through multiple DNA and protein interactions. This includes its interaction with MRG15 (Morf-related gene on chromosome 15), which is part of many transcription complexes, including the HAT-associated and the HDAC-associated complexes. This interaction is critical for PALB2 localization in actively transcribed genes, where transcription/replication conflicts lead to frequent replication stress and DNA breaks. We solved the crystal structure of the MRG15 MRG domain bound to the PALB2 peptide and investigated the effect of several PALB2 mutations, including patient-derived variants. PALB2 interacts with an extended surface of the MRG that is known to interact with other proteins. This, together with a nanomolar affinity, suggests that the binding of MRG15 partners, including PALB2, to this region is mutually exclusive. Breast cancer-related mutations of PALB2 cause only minor attenuation of the binding affinity. New data reveal the mechanism of PALB2-MRG15 binding, advancing our understanding of PALB2 function in chromosome maintenance and tumorigenesis.


Assuntos
Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Fatores de Transcrição/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Cromatina , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Proteína do Grupo de Complementação N da Anemia de Fanconi/ultraestrutura , Instabilidade Genômica , Humanos , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
3.
Nat Commun ; 12(1): 5707, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588455

RESUMO

Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Geobacillus/fisiologia , Fatores de Transcrição/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/ultraestrutura , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/ultraestrutura
4.
Nature ; 598(7880): 368-372, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526721

RESUMO

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Assuntos
Microscopia Crioeletrônica , Reparo do DNA , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
5.
Nucleic Acids Res ; 49(16): 9280-9293, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387667

RESUMO

Activator proteins 1 (AP-1) comprise one of the largest families of eukaryotic basic leucine zipper transcription factors. Despite advances in the characterization of AP-1 DNA-binding sites, our ability to predict new binding sites and explain how the proteins achieve different gene expression levels remains limited. Here we address the role of sequence-specific DNA flexibility for stability and specific binding of AP-1 factors, using microsecond-long molecular dynamics simulations. As a model system, we employ yeast AP-1 factor Yap1 binding to three different response elements from two genetic environments. Our data show that Yap1 actively exploits the sequence-specific flexibility of DNA within the response element to form stable protein-DNA complexes. The stability also depends on the four to six flanking nucleotides, adjacent to the response elements. The flanking sequences modulate the conformational adaptability of the response element, making it more shape-efficient to form specific contacts with the protein. Bioinformatics analysis of differential expression of the studied genes supports our conclusions: the stability of Yap1-DNA complexes, modulated by the flanking environment, influences the gene expression levels. Our results provide new insights into mechanisms of protein-DNA recognition and the biological regulation of gene expression levels in eukaryotes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Sequência de Bases/genética , Sítios de Ligação/genética , DNA/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Regulação da Expressão Gênica/genética , Substâncias Macromoleculares/ultraestrutura , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Elementos de Resposta/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fator de Transcrição AP-1/ultraestrutura , Fatores de Transcrição/ultraestrutura , Proteínas de Sinalização YAP
6.
Mol Cell ; 81(16): 3386-3399.e10, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34265249

RESUMO

The super elongation complex (SEC) contains the positive transcription elongation factor b (P-TEFb) and the subcomplex ELL2-EAF1, which stimulates RNA polymerase II (RNA Pol II) elongation. Here, we report the cryoelectron microscopy (cryo-EM) structure of ELL2-EAF1 bound to a RNA Pol II elongation complex at 2.8 Å resolution. The ELL2-EAF1 dimerization module directly binds the RNA Pol II lobe domain, explaining how SEC delivers P-TEFb to RNA Pol II. The same site on the lobe also binds the initiation factor TFIIF, consistent with SEC binding only after the transition from transcription initiation to elongation. Structure-guided functional analysis shows that the stimulation of RNA elongation requires the dimerization module and the ELL2 linker that tethers the module to the RNA Pol II protrusion. Our results show that SEC stimulates elongation allosterically and indicate that this stimulation involves stabilization of a closed conformation of the RNA Pol II active center cleft.


Assuntos
Fator B de Elongação Transcricional Positiva/ultraestrutura , RNA Polimerase II/genética , Fatores de Transcrição/genética , Fatores de Elongação da Transcrição/genética , Regulação Alostérica/genética , Núcleo Celular/genética , Núcleo Celular/ultraestrutura , Microscopia Crioeletrônica , Humanos , Estrutura Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Fator B de Elongação Transcricional Positiva/genética , Ligação Proteica/genética , Conformação Proteica , RNA Polimerase II/ultraestrutura , Elongação da Transcrição Genética , Fatores de Transcrição/ultraestrutura , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/ultraestrutura
7.
Nat Commun ; 12(1): 4176, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234134

RESUMO

Mammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor µ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase µ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


Assuntos
Proteínas do Capsídeo/metabolismo , Nucleosídeo-Trifosfatase/metabolismo , Orthoreovirus/ultraestrutura , RNA Viral/metabolismo , Fatores de Transcrição/metabolismo , Regulação Alostérica , Animais , Proteínas do Capsídeo/ultraestrutura , Linhagem Celular , Microscopia Crioeletrônica , Regulação Viral da Expressão Gênica , Genoma Viral , Macaca mulatta , Nucleosídeo-Trifosfatase/ultraestrutura , Orthoreovirus/genética , Orthoreovirus/metabolismo , Multimerização Proteica , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Mensageiro/metabolismo , RNA Viral/ultraestrutura , RNA Polimerase Dependente de RNA/metabolismo , Fatores de Transcrição/ultraestrutura , Ativação Transcricional , Montagem de Vírus/genética
8.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329466

RESUMO

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Transcrição/ultraestrutura , Difração de Raios X
9.
PLoS Genet ; 17(4): e1009492, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33882063

RESUMO

Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors.


Assuntos
Desenvolvimento Embrionário/genética , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Receptores X de Retinoides/genética , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Dimerização , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Humanos , Ligantes , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores X de Retinoides/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/genética
10.
STAR Protoc ; 2(2): 100431, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870232

RESUMO

In yeast mitochondria, transcription initiation requires assembly of mitochondrial RNA polymerase and transcription initiation factor MTF1 at the DNA promoter initiation site. This protocol describes the purification of the component proteins and assembly of partially melted and fully melted initiation complex states. Both states co-exist in equilibrium in the same sample as seen by cryoelectron microscopy (cryo-EM) and allow elucidation of MTF1's structural roles in controlling the transition into elongation. We further outline how analysis of the complex by light scattering, thermal shift assay, and ultrafiltration assay exhibits reproducible results. For complete details on the use and execution of this protocol, please refer to De Wijngaert et al. (2021).


Assuntos
Microscopia Crioeletrônica/métodos , RNA Polimerases Dirigidas por DNA , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura
11.
Biochim Biophys Acta Proteins Proteom ; 1869(7): 140644, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33716191

RESUMO

Microbacterium hydrocarbonoxydans has been isolated using an unnatural acylhydrazide compound as the sole carbon source. The compound is hydrolyzed by bacterial hydrazidase, and the gene expression of the enzyme is considered to be controlled by a transcription factor of the Isocitrate lyase Regulator (IclR) family, belonging to the one-component signaling systems. Recently, we reported the crystal structure of an unliganded IclR homolog from M. hydrocarbonoxydans, named putative 4-hydroxybenzoate response regulator (pHbrR), which has a unique homotetramer conformation. In this study, we report the crystal structure of pHbrR complexed with 4-hydroxybenzoic acid, the catalytic product of hydrazidase, at 2.0 Å resolution. pHbrR forms a homodimer with multimeric rearrangement in the unliganded state. Gel filtration column chromatography results suggested dimer-tetramer rearrangement. We observed conformational change in the loop region covering the ligand-binding site, and domain rearrangements in the monomer. This study reports the first liganded IclR family protein structure that demonstrates large structural rearrangements between liganded and unliganded proteins, which may represent a general model for IclRs.


Assuntos
Isocitrato Liase/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Isocitrato Liase/ultraestrutura , Isocitratos , Ligantes , Microbacterium/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/ultraestrutura , Fatores de Transcrição/ultraestrutura
12.
Curr Genet ; 67(3): 487-499, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33635403

RESUMO

Transcription factors are inextricably linked with histone deacetylases leading to compact chromatin. The Forkhead transcription factor Fkh1 is mainly a negative transcriptional regulator which affects cell cycle control, silencing of mating-type cassettes and induction of pseudohyphal growth in the yeast Saccharomyces cerevisiae. Markedly, Fkh1 impinges chromatin architecture by recruiting large regulatory complexes. Implication of Fkh1 with transcriptional corepressor complexes remains largely unexplored. In this work we show that Fkh1 directly recruits corepressors Sin3 and Tup1 (but not Cyc8), providing evidence for its influence on epigenetic regulation. We also identified the specific domain of Fkh1 mediating Sin3 recruitment and substantiated that amino acids 51-125 of Fkh1 bind PAH2 of Sin3. Importantly, this part of Fkh1 overlaps with its Forkhead-associated domain (FHA). To analyse this domain in more detail, selected amino acids were replaced by alanine, revealing that hydrophobic amino acids L74 and I78 are important for Fkh1-Sin3 binding. In addition, we could prove Fkh1 recruitment to promoters of cell cycle genes CLB2 and SWI5. Notably, Sin3 is also recruited to these promoters but only in the presence of functional Fkh1. Our results disclose that recruitment of Sin3 to Fkh1 requires precisely positioned Fkh1/Sin3 binding sites which provide an extended view on the genetic control of cell cycle genes CLB2 and SWI5 and the mechanism of transcriptional repression by modulation of chromatin architecture at the G2/M transition.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestrutura , Cromatina/ultraestrutura , Ciclina B/genética , Fatores de Transcrição Forkhead/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Complexo Correpressor Histona Desacetilase e Sin3/ultraestrutura , Fatores de Transcrição/genética , Sítios de Ligação/genética , Cromatina/genética , Ciclina B/ultraestrutura , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Regulação Fúngica da Expressão Gênica/genética , Histona Desacetilases/genética , Histona Desacetilases/ultraestrutura , Regiões Promotoras Genéticas , Ligação Proteica/genética , Saccharomyces cerevisiae/genética , Complexo Correpressor Histona Desacetilase e Sin3/genética , Fatores de Transcrição/ultraestrutura , Transcrição Gênica
13.
Nat Commun ; 12(1): 384, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452263

RESUMO

Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8-SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Difosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfatos de Inositol/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/ultraestrutura , Cristalografia por Raios X , Mutação , Proteínas Nucleares/genética , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/ultraestrutura
14.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194629, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32890768

RESUMO

Histone post-translational modifications are essential for the regulation of gene expression in eukaryotes. Gcn5 (KAT2A) is a histone acetyltransferase that catalyzes the post-translational modification at multiple positions of histone H3 through the transfer of acetyl groups to the free amino group of lysine residues. Gcn5 catalyzes histone acetylation in the context of a HAT module containing the Ada2, Ada3 and Sgf29 subunits of the parent megadalton SAGA transcriptional coactivator complex. Biochemical and structural studies have elucidated mechanisms for Gcn5's acetyl- and other acyltransferase activities on histone substrates, for histone H3 phosphorylation and histone H3 methylation crosstalks with histone H3 acetylation, and for how Ada2 increases Gcn5's histone acetyltransferase activity. Other studies have identified Ada2 isoforms in SAGA-related complexes and characterized variant Gcn5 HAT modules containing these Ada2 isoforms. In this review, we highlight biochemical and structural studies of Gcn5 and its functional interactions with Ada2, Ada3 and Sgf29.


Assuntos
Histona Acetiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Microscopia Crioeletrônica , Histona Acetiltransferases/ultraestrutura , Histonas/metabolismo , Isoenzimas/metabolismo , Isoenzimas/ultraestrutura , Metilação , Complexos Multienzimáticos/ultraestrutura , Fosforilação , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/ultraestrutura
15.
FEBS J ; 288(9): 2956-2969, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124131

RESUMO

The eukaryotic translation elongation factor 1Bγ (eEF1Bγ) is an atypical member of the glutathione transferase (GST) superfamily. Contrary to more classical GSTs having a role in toxic compound detoxification, eEF1Bγ is suggested to act as a scaffold protein, anchoring the elongation factor complex EF1B to the endoplasmic reticulum. In this study, we show that eEF1Bγ from the basidiomycete Phanerochaete chrysosporium is fully active as a glutathione transferase in vitro and undergoes conformational changes upon binding of oxidized glutathione. Using real-time analyses of biomolecular interactions, we show that GSSG allows eEF1Bγ to physically interact with other GSTs from the Ure2p class, opening new perspectives for a better understanding of the role of eEF1Bγ in cellular oxidative stress response.


Assuntos
Glutationa Peroxidase/genética , Estresse Oxidativo/genética , Fator 1 de Elongação de Peptídeos/ultraestrutura , Phanerochaete/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Sequência de Aminoácidos/genética , Animais , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Glutationa/genética , Dissulfeto de Glutationa/genética , Glutationa Peroxidase/ultraestrutura , Glutationa Transferase/genética , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos/genética , Phanerochaete/ultraestrutura , Príons/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura
16.
Nucleic Acids Res ; 48(15): 8332-8348, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633757

RESUMO

Negative cofactor 2 (NC2), including two subunits NC2α and NC2ß, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α-NC2ß interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2ß is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.


Assuntos
Catalase/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica , Núcleo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Genes MHC da Classe II/genética , Histonas/genética , Neurospora crassa/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Fosfoproteínas/ultraestrutura , Ligação Proteica/genética , Fatores de Transcrição/ultraestrutura , Ativação Transcricional/genética
17.
Nat Commun ; 11(1): 1667, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245994

RESUMO

The XPD helicase is a central component of the general transcription factor TFIIH which plays major roles in transcription and nucleotide excision repair (NER). Here we present the high-resolution crystal structure of the Arch domain of XPD with its interaction partner MAT1, a central component of the CDK activating kinase complex. The analysis of the interface led to the identification of amino acid residues that are crucial for the MAT1-XPD interaction. More importantly, mutagenesis of the Arch domain revealed that these residues are essential for the regulation of (i) NER activity by either impairing XPD helicase activity or the interaction of XPD with XPG; (ii) the phosphorylation of the RNA polymerase II and RNA synthesis. Our results reveal how MAT1 shields these functionally important residues thereby providing insights into how XPD is regulated by MAT1 and defining the Arch domain as a major mechanistic player within the XPD scaffold.


Assuntos
Proteínas de Ciclo Celular/ultraestrutura , Domínios Proteicos/fisiologia , Fatores de Transcrição/ultraestrutura , Proteína Grupo D do Xeroderma Pigmentoso/ultraestrutura , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Reparo do DNA , Mutagênese Sítio-Dirigida , Fosforilação , Ligação Proteica/genética , RNA Polimerase II/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
18.
Nat Struct Mol Biol ; 27(4): 319-322, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251415

RESUMO

Thalidomide-dependent degradation of the embryonic transcription factor SALL4 by the CRL4CRBN E3 ubiquitin ligase is a plausible major driver of thalidomide teratogenicity. The structure of the second zinc finger of SALL4 in complex with pomalidomide, cereblon and DDB1 reveals the molecular details of recruitment. Sequence differences and a shifted binding position relative to Ikaros offer a path to the rational design of cereblon-binding drugs with reduced teratogenic risk.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Fatores de Transcrição/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Ligação Proteica , Conformação Proteica , Proteólise/efeitos dos fármacos , Especificidade por Substrato , Talidomida/análogos & derivados , Talidomida/química , Talidomida/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
19.
Cell ; 181(3): 665-673.e10, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32289252

RESUMO

A growing number of bacteria are recognized to conduct electrons across their cell envelope, and yet molecular details of the mechanisms supporting this process remain unknown. Here, we report the atomic structure of an outer membrane spanning protein complex, MtrAB, that is representative of a protein family known to transport electrons between the interior and exterior environments of phylogenetically and metabolically diverse microorganisms. The structure is revealed as a naturally insulated biomolecular wire possessing a 10-heme cytochrome, MtrA, insulated from the membrane lipidic environment by embedding within a 26 strand ß-barrel formed by MtrB. MtrAB forms an intimate connection with an extracellular 10-heme cytochrome, MtrC, which presents its hemes across a large surface area for electrical contact with extracellular redox partners, including transition metals and electrodes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Fatores de Transcrição/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons/fisiologia , Elétrons , Heme/metabolismo , Complexos Multiproteicos/ultraestrutura , Oxirredução , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
20.
J Mol Biol ; 432(14): 4010-4022, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32305460

RESUMO

Auxin is a plant hormone that is central to plant growth and development from embryogenesis to senescence. Auxin signaling is mediated by auxin response transcription factors (ARFs) and Aux/IAA repressors that regulate the expression of a multitude of auxin response genes. ARF and Aux/IAA proteins assemble into homomeric and heteromeric complexes via their conserved PB1 domains. Here we report the first crystal structure of the PB1 complex between ARF5 and IAA17 of Arabidopsis thaliana, which represents the transcriptionally repressed state at low auxin levels. The PB1 domains assemble in a head-to-tail manner with a backbone arrangement similar to that of the ARF5:ARF5 PB1 complex. The ARF5:IAA17 complex, however, reveals distinct points of contact that promote the ARF5:IAA17 interaction over the ARF5:ARF5 interaction. Specifically, surface charges at the interface form salt-bridges that distinguish the homomeric and heteromeric complexes, revealing common and specific interfaces between transcriptionally repressed and derepressed states. Further, the salt-bridges can be reconfigured to switch the affinity between homomeric and heteromeric complexes in an incremental manner. The complex structure combined with quantitative binding analyses would be essential for deciphering the PB1 interaction code underlying the transcriptional regulation of auxin signaling.


Assuntos
Proteínas de Arabidopsis/ultraestrutura , Arabidopsis/genética , Proteínas de Ligação a DNA/ultraestrutura , Sementes/genética , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Domínios Proteicos/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA