Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(16): E3837-E3845, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610335

RESUMO

DNA damage poses a serious threat to genome integrity and greatly affects growth and development. To maintain genome stability, all organisms have evolved elaborate DNA damage response mechanisms including activation of cell cycle checkpoints and DNA repair. Here, we show that the DNA repair protein SNI1, a subunit of the evolutionally conserved SMC5/6 complex, directly links these two processes in Arabidopsis SNI1 binds to the activation domains of E2F transcription factors, the key regulators of cell cycle progression, and represses their transcriptional activities. In turn, E2Fs activate the expression of SNI1, suggesting that E2Fs and SNI1 form a negative feedback loop. Genetically, overexpression of SNI1 suppresses the phenotypes of E2F-overexpressing plants, and loss of E2F function fully suppresses the sni1 mutant, indicating that SNI1 is necessary and sufficient to inhibit E2Fs. Altogether, our study revealed that SNI1 is a negative regulator of E2Fs and plays dual roles in DNA damage responses by linking cell cycle checkpoint and DNA repair.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA/genética , Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/fisiologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Fatores de Transcrição E2F/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Domínios Proteicos
2.
Proc Natl Acad Sci U S A ; 114(19): 4942-4947, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439018

RESUMO

The retinoblastoma protein (Rb) and the homologous pocket proteins p107 and p130 negatively regulate cell proliferation by binding and inhibiting members of the E2F transcription factor family. The structural features that distinguish Rb from other pocket proteins have been unclear but are critical for understanding their functional diversity and determining why Rb has unique tumor suppressor activities. We describe here important differences in how the Rb and p107 C-terminal domains (CTDs) associate with the coiled-coil and marked-box domains (CMs) of E2Fs. We find that although CTD-CM binding is conserved across protein families, Rb and p107 CTDs show clear preferences for different E2Fs. A crystal structure of the p107 CTD bound to E2F5 and its dimer partner DP1 reveals the molecular basis for pocket protein-E2F binding specificity and how cyclin-dependent kinases differentially regulate pocket proteins through CTD phosphorylation. Our structural and biochemical data together with phylogenetic analyses of Rb and E2F proteins support the conclusion that Rb evolved specific structural motifs that confer its unique capacity to bind with high affinity those E2Fs that are the most potent activators of the cell cycle.


Assuntos
Fatores de Transcrição E2F/química , Proteína do Retinoblastoma/química , Proteína p107 Retinoblastoma-Like/química , Cristalografia por Raios X , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Domínios Proteicos , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo
3.
Nat Commun ; 6: 10050, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632596

RESUMO

The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression.


Assuntos
Proteínas de Ligação a DNA/química , DNA/metabolismo , Fatores de Transcrição E2F/química , Família Multigênica , Cristalografia por Raios X , DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Especificidade da Espécie
4.
Cell Cycle ; 13(19): 3037-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25486564

RESUMO

The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.


Assuntos
Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Células HCT116 , Humanos , Metanálise como Assunto , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
5.
Cell Signal ; 26(5): 1075-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440307

RESUMO

In mammalian cells, E2F family of transcription factors (E2Fs) traditionally modulates assorted cellular functions related to cell cycle progression, proliferation, apoptosis and differentiation. Eight members, E2F1 E2F8 have been recognized of this family so far, and the members of this family are generally divided into activator E2F (E2F1--E2F3a), repressor E2F (E2F3b--E2F5) and inhibitor E2F (E2F6--E2F8) subclasses based on their structur-e and function. Studies have showed that the mammalian E2F family members represent a recent evolutionary adaptation to malignancies besides hepatocellular carcinoma (HCC), and a growing body of evidence has validated that the individual members of the family develop a close relationship with HCC. E2F1 was identified to play overlapping roles in HCC, while E2F2--E2F8 (except E2F6 and E2F7) showed to be tumor-promoter in HCC. However, the mechanism underlying the mammalian E2Fs associated with HCC is still unknown and needs further research. The aim of this review is to sum up the collective knowledge of E2F family and the roles of each member of this family in HCC. Moreover, we will discuss some novel therapeutic target for HCC based on the complicated functions of mammalian E2Fs.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fatores de Transcrição E2F/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Repressoras/metabolismo , Carcinoma Hepatocelular/patologia , Ciclina D/metabolismo , Fatores de Transcrição E2F/química , Regulação Neoplásica da Expressão Gênica , Humanos , Interfase , Neoplasias Hepáticas/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
J Biol Chem ; 288(26): 18923-38, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23632018

RESUMO

The retinoblastoma tumor suppressor (Rb) controls the proliferation, differentiation, and survival of cells in most eukaryotes with a role in the fate of stem cells. Its inactivation by mutation or oncogenic viruses is required for cellular transformation and eventually carcinogenesis. The high conservation of the Rb cyclin fold prompted us to investigate the link between conformational stability and ligand binding properties of the RbAB pocket domain. RbAB unfolding presents a three-state transition involving cooperative secondary and tertiary structure changes and a partially folded intermediate that can oligomerize. The first transition corresponds to unfolding of the metastable B subdomain containing the binding site for the LXCXE motif present in cellular and viral targets, and the second transition corresponds to the stable A subdomain. The low thermodynamic stability of RbAB translates into a propensity to rapidly oligomerize and aggregate at 37 °C (T50 = 28 min) that is suppressed by human papillomavirus E7 and E2F peptide ligands, suggesting that Rb is likely stabilized in vivo through binding to target proteins. We propose that marginal stability and associated oligomerization may be conserved for function as a "hub" protein, allowing the formation of multiprotein complexes, which could constitute a robust mechanism to retain its cell cycle regulatory role throughout evolution. Decreased stability and oligomerization are shared with the p53 tumor suppressor, suggesting a link between folding and function in these two essential cell regulators that are inactivated in most cancers and operate within multitarget signaling pathways.


Assuntos
Ciclinas/química , Dobramento de Proteína , Proteína do Retinoblastoma/química , Sítios de Ligação , Diferenciação Celular , Dicroísmo Circular , Proteínas de Ligação a DNA/química , Fatores de Transcrição E2F/química , Humanos , Ligantes , Modelos Moleculares , Proteínas Oncogênicas Virais/química , Proteínas E7 de Papillomavirus/química , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Temperatura , Proteína Supressora de Tumor p53/química
7.
J Biomol Struct Dyn ; 31(11): 1277-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23157310

RESUMO

Tumor suppressor proteins play a crucial role in cell cycle regulation. Retinoblastoma protein (pRB) is one among them which regulates G1-S transition by binding with transcription factors. The activity of pRB is deregulated by cyclin dependent kinases-mediated hyper-phosphorylation and also due to cancer-derived mutations. In addition, it is also deactivated by binding of viral onco-proteins such as large T antigen, E1A, and E7. These viral proteins initially recognize pRB through their conserved LxCxE motif and facilitate dissociation of preexisting pRB-E2F complex. Based on these features, molecular dynamics (MD) simulation is performed for four different states of pRB for which the crystal structure is available. The unliganded/apo form and complex forms with E2F and E7 peptides reveal the molecular mechanism behind the activation and inactivation of pRB. In addition, the ternary complex of pRB with both E7 and E2F (for which no crystal structure is available) is modeled and simulated to understand the influence of binding of one ligand on the other. The variations in the three major factors such as conformational changes, inter- and intra-molecular interactions, and binding free energies between the apo and complex forms confirm the possibility for designing a small molecule inhibitor to inhibit pRB-E7 interactions without altering the prebound E2F. The present study deals with the molecular modeling and MD simulations of pRB in free and ligand-bound forms and confirms that pRB could be a valid target for the anticancer drug design when the cancer is induced by the viral onco-proteins and forms a clear base for designing E7 antagonists.


Assuntos
Fatores de Transcrição E2F/química , Proteínas E7 de Papillomavirus/química , Proteína do Retinoblastoma/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Termodinâmica
8.
New Phytol ; 194(2): 353-363, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22339405

RESUMO

Cellular responses to DNA double-strand breaks (DSBs) are linked in mammals and yeasts to the phosphorylated histones H2AX (γH2AX) repair foci which are multiproteic nuclear complexes responsible for DSB sensing and signalling. However, neither the components of these foci nor their role are yet known in plants. In this paper, we describe the effects of γH2AX deficiency in Arabidopsis thaliana plants challenged with DSBs in terms of genotoxic sensitivity and E2F-mediated transcriptional responses. We further establish the existence, restrictive to the G1/S transition, of specific DSB-induced foci containing tobacco E2F transcription factors, in both A. thaliana roots and BY-2 tobacco cells. These E2F foci partially colocalize with γH2AX foci while their formation is ataxia telangiectasia mutated (ATM)-dependent, requires the E2F transactivation domain with its retinoblastoma-binding site and is optimal in the presence of functional H2AXs. Overall, our results unveil a new interplay between plant H2AX and E2F transcriptional activators during the DSB response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Plantas/metabolismo , Fatores de Transcrição E2F/metabolismo , Histonas/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Mutadas de Ataxia Telangiectasia , Bleomicina/farmacologia , Ciclo Celular/efeitos dos fármacos , Cruzamentos Genéticos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Fatores de Transcrição E2F/química , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , MicroRNAs/metabolismo , Fenótipo , Transporte Proteico/efeitos dos fármacos , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo , Transcrição Gênica/efeitos dos fármacos
9.
Int J Mol Sci ; 12(12): 8947-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22272113

RESUMO

The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.


Assuntos
Apoptose , Fatores de Transcrição E2F/metabolismo , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/genética , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinócitos/fisiologia , Neoplasias Cutâneas/etiologia
10.
J Biol Chem ; 285(21): 16286-93, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20223825

RESUMO

Inactivation of the retinoblastoma protein (Rb) through phosphorylation is an important step in promoting cell cycle progression, and hyperphosphorylated Rb is commonly found in tumors. Rb phosphorylation prevents its association with the E2F transcription factor; however, the molecular basis for complex inhibition has not been established. We identify here the key phosphorylation events and conformational changes that occur in Rb to inhibit the specific association between the E2F transactivation domain (E2F(TD)) and the Rb pocket domain. Calorimetry assays demonstrate that phosphorylation of Rb reduces the affinity of E2F(TD) binding approximately 250-fold and that phosphorylation at Ser(608)/Ser(612) and Thr(356)/Thr(373) is necessary and sufficient for this effect. An NMR assay identifies phosphorylation-driven conformational changes in Rb that directly inhibit E2F(TD) binding. We find that phosphorylation at Ser(608)/Ser(612) promotes an intramolecular association between a conserved sequence in the flexible pocket linker and the pocket domain of Rb that occludes the E2F(TD) binding site. We also find that phosphorylation of Thr(356)/Thr(373) inhibits E2F(TD) binding in a manner that requires the Rb N-terminal domain. Taken together, our results suggest two distinct mechanisms for how phosphorylation of Rb modulates association between E2F(TD) and the Rb pocket and describe for the first time a function for the structured N-terminal domain in Rb inactivation.


Assuntos
Fatores de Transcrição E2F/química , Proteína do Retinoblastoma/química , Sítios de Ligação , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Humanos , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
11.
Mol Cell Biol ; 30(9): 2293-304, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20176812

RESUMO

The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) coordinates proliferation arrest and the differentiation of myeloid progenitors, adipocytes, hepatocytes, keratinocytes, and cells of the lung and placenta. C/EBPalpha transactivates lineage-specific differentiation genes and inhibits proliferation by repressing E2F-regulated genes. The myeloproliferative C/EBPalpha BRM2 mutant serves as a paradigm for recurrent human C-terminal bZIP C/EBPalpha mutations that are involved in acute myeloid leukemogenesis. BRM2 fails to repress E2F and to induce adipogenesis and granulopoiesis. The data presented here show that, independently of pocket proteins, C/EBPalpha interacts with the dimerization partner (DP) of E2F and that C/EBPalpha-E2F/DP interaction prevents both binding of C/EBPalpha to its cognate sites on DNA and transactivation of C/EBP target genes. The BRM2 mutant, in addition, exhibits enhanced interaction with E2F-DP and reduced affinity toward DNA and yet retains transactivation potential and differentiation competence that becomes exposed when E2F/DP levels are low. Our data suggest a tripartite balance between C/EBPalpha, E2F/DP, and pocket proteins in the control of proliferation, differentiation, and tumorigenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/genética , Fatores de Transcrição E2F/metabolismo , Multimerização Proteica , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Diferenciação Celular , Linhagem Celular , Sequência Consenso , DNA/metabolismo , Fatores de Transcrição E2F/química , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína do Retinoblastoma/metabolismo
12.
Mutat Res ; 665(1-2): 20-8, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19427507

RESUMO

Long interspersed nuclear elements (LINEs or L1 elements) are targeted for epigenetic silencing during early embryonic development and remain inactive in most cells and tissues. Here we show that E2F-Rb family complexes participate in L1 elements epigenetic regulation via nucleosomal histone modifications and recruitment of histone deacetylases (HDACs) HDAC1 and HDAC2. Our experiments demonstrated that (i) Rb and E2F interact with human and mouse L1 elements, (ii) L1 elements are deficient in both heterochromatin-associated histone marks H3 tri methyl K9 and H4 tri methyl K20 in Rb family triple knock out (Rb, p107, and p130) fibroblasts (TKO), (iii) L1 promoter exhibits increased histone H3 acetylation in the absence of HDAC1 and HDAC2 recruitment, (iv) L1 expression in TKO fibroblasts is upregulated compared to wild type counterparts, (v) L1 expression increases in the presence of the HDAC inhibitor TSA. On the basis of these findings we propose a model in which L1 sequences throughout the genome serve as centers for heterochromatin formation in an Rb family-dependent manner. As such, Rb proteins and L1 elements may play key roles in heterochromatin formation beyond pericentromeric chromosomal regions. These findings describe a novel mechanism of L1 reactivation in mammalian cells mediated by failure of corepressor protein recruitment by Rb, loss of histone epigenetic marks, heterochromatin formation, and increased histone H3 acetylation.


Assuntos
Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos , Proteína do Retinoblastoma/metabolismo , Acetilação , Animais , Linhagem Celular , Células Cultivadas , DNA/genética , Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/metabolismo , Células HeLa , Heterocromatina/genética , Heterocromatina/metabolismo , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/deficiência , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Proteína p130 Retinoblastoma-Like/deficiência , Proteína p130 Retinoblastoma-Like/genética , Proteína p130 Retinoblastoma-Like/metabolismo
13.
Trends Cell Biol ; 19(3): 111-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19201609

RESUMO

As major regulators of the cell cycle, apoptosis and differentiation, E2F transcription factors have been studied extensively in a broad range of organisms. The recent identification of atypical E2F family members further expands our structural, functional and molecular view of the cellular E2F activity. Unlike other family members, atypical E2Fs have a duplicated DNA-binding domain and control gene expression without heterodimerization with dimerization partner proteins. Recently, knockout strategies in plants and mammals have pinpointed that atypical E2Fs have a crucial role in plant cell size control, endocycle regulation, proliferation and apoptotic response upon DNA stress. Their position at the crossroads of proliferation and DNA stress response marks these novel E2F proteins as interesting study objects in the field of tumor biology.


Assuntos
Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/fisiologia , Família Multigênica/fisiologia , Animais , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Fatores de Transcrição E2F/deficiência , Fatores de Transcrição E2F/genética , Fator de Transcrição E2F7/química , Fator de Transcrição E2F7/deficiência , Fator de Transcrição E2F7/fisiologia , Humanos , Família Multigênica/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia
14.
Genome Res ; 18(11): 1763-77, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18836037

RESUMO

We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif.


Assuntos
Fatores de Transcrição E2F/metabolismo , Células 3T3 , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Imunoprecipitação da Cromatina/métodos , Sequência Consenso , DNA/genética , DNA/metabolismo , Fatores de Transcrição E2F/química , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F4/metabolismo , Células HeLa , Humanos , Camundongos , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína
15.
PLoS One ; 3(7): e2831, 2008 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-18665226

RESUMO

BACKGROUND: The retinoblastoma (Rb) tumor suppressor protein can function as a DNA replication inhibitor as well as a transcription factor. Regulation of DNA replication may occur through interaction of Rb with the origin recognition complex (ORC). PRINCIPAL FINDINGS: We characterized the interaction of Drosophila Rb, Rbf1, with ORC. Using expression of proteins in Drosophila S2 cells, we found that an N-terminal Rbf1 fragment (amino acids 1-345) is sufficient for Rbf1 association with ORC but does not bind to dE2F1. We also found that the C-terminal half of Rbf1 (amino acids 345-845) interacts with ORC. We observed that the amino-terminal domain of Rbf1 localizes to chromatin in vivo and associates with chromosomal regions implicated in replication initiation, including colocalization with Orc2 and acetylated histone H4. CONCLUSIONS/SIGNIFICANCE: Our results suggest that Rbf1 can associate with ORC and chromatin through domains independent of the E2F binding site. We infer that Rbf1 may play a role in regulating replication directly through its association with ORC and/or chromatin factors other than E2F. Our data suggest an important role for retinoblastoma family proteins in cell proliferation and tumor suppression through interaction with the replication initiation machinery.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Fatores de Transcrição E2F/química , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Núcleo Celular/metabolismo , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Histonas/química , Modelos Biológicos , Complexo de Reconhecimento de Origem , Fotodegradação , Ligação Proteica , Estrutura Terciária de Proteína , Proteína do Retinoblastoma
16.
Proc Natl Acad Sci U S A ; 104(39): 15472-7, 2007 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17875987

RESUMO

Accumulating evidence suggests a role for microRNAs in human carcinogenesis as novel types of tumor suppressors or oncogenes. However, their precise biological role remains largely elusive. In the present study, we aimed to identify microRNA species involved in the regulation of cell proliferation. Using quantitative RT-PCR analysis, we demonstrated that miR-34a was highly up-regulated in a human colon cancer cell line, HCT 116, treated with a DNA-damaging agent, adriamycin. Transient introduction of miR-34a into two human colon cancer cell lines, HCT 116 and RKO, caused complete suppression of cell proliferation and induced senescence-like phenotypes. Moreover, miR-34a also suppressed in vivo growth of HCT 116 and RKO cells in tumors in mice when complexed and administered with atelocollagen for drug delivery. Gene-expression microarray and immunoblot analyses revealed down-regulation of the E2F pathway by miR-34a introduction. Up-regulation of the p53 pathway was also observed. Furthermore, 9 of 25 human colon cancers (36%) showed decreased expression of miR-34a compared with counterpart normal tissues. Our results provide evidence that miR-34a functions as a potent suppressor of cell proliferation through modulation of the E2F signaling pathway. Abrogation of miR-34a function could contribute to aberrant cell proliferation, leading to colon cancer development.


Assuntos
Senescência Celular , Doxorrubicina/farmacologia , Fatores de Transcrição E2F/química , Regulação Neoplásica da Expressão Gênica , MicroRNAs/fisiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/química , Colágeno/metabolismo , Fatores de Transcrição E2F/genética , Humanos , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Fenótipo , Proteína Supressora de Tumor p53/metabolismo
17.
Mol Cell ; 27(1): 107-19, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17612494

RESUMO

E2F transcriptional regulators control human-cell proliferation by repressing and activating the transcription of genes required for cell-cycle progression, particularly the S phase. E2F proteins repress transcription in association with retinoblastoma pocket proteins, but less is known about how they activate transcription. Here, we show that the human G1 phase regulator HCF-1 associates with both activator (E2F1 and E2F3a) and repressor (E2F4) E2F proteins, properties that are conserved in insect cells. Human HCF-1-E2F interactions are versatile: their associations and binding to E2F-responsive promoters are cell-cycle selective, and HCF-1 displays coactivator properties when bound to the E2F1 activator and corepressor properties when bound to the E2F4 repressor. During the G1-to-S phase transition, HCF-1 recruits the mixed-lineage leukemia (MLL) and Set-1 histone H3 lysine 4 methyltransferases to E2F-responsive promoters and induces histone methylation and transcriptional activation. These results suggest that HCF-1 induces cell-cycle-specific transcriptional activation by E2F proteins to promote cell proliferation.


Assuntos
Fatores de Transcrição E2F/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fator C1 de Célula Hospedeira/metabolismo , Lisina/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Regiões Promotoras Genéticas/genética , Fase S/genética , Sequência de Aminoácidos , Sequência Conservada , Fatores de Transcrição E2F/química , Evolução Molecular , Fase G1 , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Técnicas do Sistema de Duplo-Híbrido
18.
Plant Mol Biol ; 64(4): 349-60, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17443292

RESUMO

Cyclins, cyclin-dependent kinases, and a number of other proteins control the progression of plant cell cycle. Although extensive studies have revealed the roles of some cell cycle regulators and the underlying mechanisms in Arabidopsis, relatively a small number of cell cycle regulators were functionally analyzed in rice. In this study, we describe 41 regulators in the rice genome. Our results indicate that the rice genome contains a less number of the core cell cycle regulators than the Arabidopsis one does, although the rice genome is much larger than the Arabidopsis one. Eight groups of CDKs similar to those in Arabidopsis were identified in the rice genome through phylogenetic analysis, and the corresponding members in the different groups include E2F, CKI, Rb, CKS and Wee. The structures of the core cell regulators were relatively conserved between the rice and Arabidopsis genomes. Furthermore, the expression of the majority of the core cell cycle genes was spatially regulated, and the most closely related ones showed very similar patterns of expression, suggesting functional redundancy and conservation between the highly similar core cell cycle genes in rice and Arabidopsis. Following auxin or cytokinin treatment, the expression of the core cell cycle genes was either upregulated or downregulated, suggesting that auxin and/or cytokinin may directly regulate the expression of the core cell cycle genes. Our results provide basic information to understand the mechanism of cell cycle regulation and the functions of the rice cell cycle genes.


Assuntos
Proteínas de Ciclo Celular/genética , Genoma de Planta , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/química , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/química , Ciclinas/genética , Ciclinas/metabolismo , Citocininas/farmacologia , Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Oryza/anatomia & histologia , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Análise de Sequência de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
PLoS One ; 1: e82, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17183714

RESUMO

BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression.


Assuntos
Apoptose/fisiologia , Proliferação de Células , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/genética , Substituição de Aminoácidos , Apoptose/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Fatores de Transcrição E2F/química , Fatores de Transcrição E2F/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína do Retinoblastoma/fisiologia
20.
Cell ; 127(5): 871-4, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17129771

RESUMO

Activation of E2F transcription factors is thought to drive the expression of genes essential for the transition of cells from G1 to S phase and for the initiation of DNA replication. However, this textbook view of E2Fs is increasingly under challenge. Here we discuss an alternative model for how E2Fs may work.


Assuntos
Ciclo Celular , Fatores de Transcrição E2F/metabolismo , Animais , Fatores de Transcrição E2F/química , Modelos Genéticos , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA