Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
1.
Stem Cell Res Ther ; 15(1): 235, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075526

RESUMO

BACKGROUND: Hematopoiesis in mammal is a complex and highly regulated process in which hematopoietic stem cells (HSCs) give rise to all types of differentiated blood cells. Previous studies have shown that hairy and enhancer of split (HES) repressors are essential regulators of adult HSC development downstream of Notch signaling. METHODS: In this study, we investigated the role of HES1, a member of HES family, in fetal hematopoiesis using an embryonic hematopoietic specific Hes1 conditional knockout mouse model by using phenotypic flow cytometry, histopathology analysis, and functional in vitro colony forming unit (CFU) assay and in vivo bone marrow transplant (BMT) assay. RESULTS: We found that loss of Hes1 in early embryonic stage leads to smaller embryos and fetal livers, decreases hematopoietic stem progenitor cell (HSPC) pool, results in defective multi-lineage differentiation. Functionally, fetal hematopoietic cells deficient for Hes1 exhibit reduced in vitro progenitor activity and compromised in vivo repopulation capacity in the transplanted recipients. Further analysis shows that fetal hematopoiesis defects in Hes1fl/flFlt3Cre embryos are resulted from decreased proliferation and elevated apoptosis, associated with de-repressed HES1 targets, p27 and PTEN in Hes1-KO fetal HSPCs. Finally, pharmacological inhibition of p27 or PTEN improves fetal HSPCs function both in vitro and in vivo. CONCLUSION: Together, our findings reveal a previously unappreciated role for HES1 in regulating fetal hematopoiesis, and provide new insight into the differences between fetal and adult HSC maintenance.


Assuntos
Feto , Hematopoese , Células-Tronco Hematopoéticas , Camundongos Knockout , Fatores de Transcrição HES-1 , Animais , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Camundongos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Feto/citologia , Feto/metabolismo , Diferenciação Celular , Apoptose , Proliferação de Células , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética
2.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38958606

RESUMO

Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.


Assuntos
Restrição Calórica , Proteína Forkhead Box O1 , Grelina , Receptores Notch , Transdução de Sinais , Animais , Grelina/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Camundongos , Diferenciação Celular , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proliferação de Células , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células-Tronco/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Mucosa Gástrica/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Masculino , Estômago
3.
J Comp Neurol ; 532(7): e25648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38958676

RESUMO

In this study, we investigated recurrent copy number variations (CNVs) in the 19p12 locus, which are associated with neurodevelopmental disorders. The two genes in this locus, ZNF675 and ZNF681, arose via gene duplication in primates, and their presence in several pathological CNVs in the human population suggests that either or both of these genes are required for normal human brain development. ZNF675 and ZNF681 are members of the Krüppel-associated box zinc finger (KZNF) protein family, a class of transcriptional repressors important for epigenetic silencing of specific genomic regions. About 170 primate-specific KZNFs are present in the human genome. Although KZNFs are primarily associated with repressing retrotransposon-derived DNA, evidence is emerging that they can be co-opted for other gene regulatory processes. We show that genetic deletion of ZNF675 causes developmental defects in cortical organoids, and our data suggest that part of the observed neurodevelopmental phenotype is mediated by a gene regulatory role of ZNF675 on the promoter of the neurodevelopmental gene Hes family BHLH transcription factor 1 (HES1). We also find evidence for the recently evolved regulation of genes involved in neurological disorders, microcephalin 1 and sestrin 3. We show that ZNF675 interferes with HES1 auto-inhibition, a process essential for the maintenance of neural progenitors. As a striking example of how some KZNFs have integrated into preexisting gene expression networks, these findings suggest the emergence of ZNF675 has caused a change in the balance of HES1 autoregulation. The association of ZNF675 CNV with human developmental disorders and ZNF675-mediated regulation of neurodevelopmental genes suggests that it evolved into an important factor for human brain development.


Assuntos
Primatas , Fatores de Transcrição HES-1 , Humanos , Animais , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Primatas/genética , Homeostase/fisiologia , Homeostase/genética , Variações do Número de Cópias de DNA/genética , Camundongos , Evolução Biológica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
4.
Int Heart J ; 65(3): 475-486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825493

RESUMO

This study aimed to investigate the molecular mechanisms underlying the protective effects of cyclooxygenase (cox) inhibitors against myocardial hypertrophy.Rat H9c2 cardiomyocytes were induced by mechanical stretching. SD rats underwent transverse aortic constriction to induce pressure overload myocardial hypertrophy. Rats were subjected to echocardiography and tail arterial pressure in 12W. qPCR and western blot were used to detect the expression of Notch-related signaling. The inflammatory factors were tested by ELISA in serum, heart tissue, and cell culture supernatant.Compared with control, levels of pro-inflammatory cytokines IL-6, TNF-α, and IL-1ß were increased and anti-inflammatory cytokine IL-10 was reduced in myocardial tissues and serum of rat models. Levels of Notch1 and Hes1 were reduced in myocardial tissues. However, cox inhibitor treatment (aspirin and celecoxib), the improvement of exacerbated myocardial hypertrophy, fibrosis, dysfunction, and inflammation was parallel to the activation of Notch1/Hes1 pathway. Moreover, in vitro experiments showed that, in cardiomyocyte H9c2 cells, application of ~20% mechanical stretching activated inflammatory mediators (IL-6, TNF-α, and IL-1ß) and hypertrophic markers (ANP and BNP). Moreover, expression levels of Notch1 and Hes1 were decreased. These changes were effectively alleviated by aspirin and celecoxib.Cox inhibitors may protect heart from hypertrophy and inflammation possibly via the Notch1/Hes1 signaling pathway.


Assuntos
Aspirina , Celecoxib , Miócitos Cardíacos , Ratos Sprague-Dawley , Receptor Notch1 , Transdução de Sinais , Fatores de Transcrição HES-1 , Animais , Receptor Notch1/metabolismo , Ratos , Fatores de Transcrição HES-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Celecoxib/farmacologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Masculino , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Cardiomegalia/etiologia , Modelos Animais de Doenças
5.
Food Chem Toxicol ; 189: 114724, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734200

RESUMO

Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.


Assuntos
Condrócitos , Matriz Extracelular , Células-Tronco Pluripotentes Induzidas , Receptores Notch , Transdução de Sinais , Toxina T-2 , Humanos , Transdução de Sinais/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Toxina T-2/toxicidade , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Receptores Notch/metabolismo , Receptores Notch/genética , Doença de Kashin-Bek/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Células Cultivadas
6.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791273

RESUMO

The HMG-domain containing transcription factor Sox10 plays a crucial role in regulating Schwann cell survival and differentiation and is expressed throughout the entire Schwann cell lineage. While its importance in peripheral myelination is well established, little is known about its role in the early stages of Schwann cell development. In a search for direct target genes of Sox10 in Schwann cell precursors, the transcriptional co-repressor Tle4 was identified. At least two regions upstream of the Tle4 gene appear involved in mediating the Sox10-dependent activation. Once induced, Tle4 works in tandem with the bHLH transcriptional repressor Hes1 and exerts a dual inhibitory effect on Sox10 by preventing the Sox10 protein from transcriptionally activating maturation genes and by suppressing Sox10 expression through known enhancers of the gene. This mechanism establishes a regulatory barrier that prevents premature activation of factors involved in differentiation and myelin formation by Sox10 in immature Schwann cells. The identification of Tle4 as a critical downstream target of Sox10 sheds light on the gene regulatory network in the early phases of Schwann cell development. It unravels an elaborate regulatory circuitry that fine-tunes the timing and extent of Schwann cell differentiation and myelin gene expression.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Fatores de Transcrição SOXE , Células de Schwann , Animais , Humanos , Camundongos , Ratos , Diferenciação Celular/genética , Proteínas Correpressoras/metabolismo , Proteínas Correpressoras/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Células de Schwann/citologia , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Proteínas de Ligação a DNA/metabolismo
7.
Pflugers Arch ; 476(8): 1279-1288, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38772920

RESUMO

Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with ß-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos , Glicerofosfatos , Espécies Reativas de Oxigênio , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Glicerofosfatos/farmacologia , Glicerofosfatos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Fator de Crescimento de Fibroblastos 23/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Linhagem Celular , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Carbazóis/farmacologia
8.
Dev Cell ; 59(15): 1913-1923.e6, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38772376

RESUMO

Neural stem cells (NSCs) differentiate into neuron-fated intermediate progenitor cells (IPCs) via cell division. Although differentiation from NSCs to IPCs is a discrete process, recent transcriptome analyses identified a continuous transcriptional trajectory during this process, raising the question of how to reconcile these contradictory observations. In mouse NSCs, Hes1 expression oscillates, regulating the oscillatory expression of the proneural gene Neurog2, while Hes1 expression disappears in IPCs. Thus, the transition from Hes1 oscillation to suppression is involved in the differentiation of NSCs to IPCs. Here, we found that Neurog2 oscillations induce the accumulation of Tbr2, which suppresses Hes1 expression, generating an IPC-like gene expression state in NSCs. In the absence of Tbr2, Hes1 expression is up-regulated, decreasing the formation of IPCs. These results indicate that the Neurog2-Tbr2 axis forms a continuous transcriptional trajectory to an IPC-like neurogenic state in NSCs, which then differentiate into IPCs via cell division.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Neurogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Neurônios/metabolismo , Neurônios/citologia , Proteínas com Domínio T
9.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691303

RESUMO

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Assuntos
Proteína ADAM10 , Secretases da Proteína Precursora do Amiloide , Lesões das Artérias Carótidas , Movimento Celular , Proliferação de Células , Diabetes Mellitus Experimental , Proteínas de Membrana , Músculo Liso Vascular , Miócitos de Músculo Liso , Neointima , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Proteína ADAM10/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Músculo Liso Vascular/enzimologia , Movimento Celular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/enzimologia , Proliferação de Células/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Cultivadas , Lesões das Artérias Carótidas/patologia , Lesões das Artérias Carótidas/metabolismo , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/enzimologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Hiperplasia , Receptores Notch/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética , Modelos Animais de Doenças , Ratos , Reestenose Coronária/patologia , Reestenose Coronária/etiologia , Reestenose Coronária/metabolismo , Reestenose Coronária/prevenção & controle
10.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
11.
Mol Oncol ; 18(6): 1510-1530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459621

RESUMO

The transcription factor receptor-interacting protein 140 (RIP140) regulates intestinal homeostasis and tumorigenesis through Wnt signaling. In this study, we investigated its effect on the Notch/HES1 signaling pathway. In colorectal cancer (CRC) cell lines, RIP140 positively regulated HES1 gene expression at the transcriptional level via a recombining binding protein suppressor of hairless (RBPJ)/neurogenic locus notch homolog protein 1 (NICD)-mediated mechanism. In support of these in vitro data, RIP140 and HES1 expression significantly correlated in mouse intestine and in a cohort of CRC samples, thus supporting the positive regulation of HES1 gene expression by RIP140. Interestingly, when the Notch pathway is fully activated, RIP140 exerted a strong inhibition of HES1 gene transcription controlled by the level of HES1 itself. Moreover, RIP140 directly interacts with HES1 and reversed its mitogenic activity in human CRC cells. In line with this observation, HES1 levels were associated with a better patient survival only when tumors expressed high levels of RIP140. Our data identify RIP140 as a key regulator of the Notch/HES1 signaling pathway, with a dual effect on HES1 gene expression at the transcriptional level and a strong impact on colon cancer cell proliferation.


Assuntos
Proliferação de Células , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Proteína 1 de Interação com Receptor Nuclear , Fatores de Transcrição HES-1 , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteína 1 de Interação com Receptor Nuclear/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
12.
Animal Model Exp Med ; 7(1): 24-35, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38369683

RESUMO

BACKGROUND: Our previous study found that mouse embryonic neural stem cell (NSC)-derived exosomes (EXOs) regulated NSC differentiation via the miR-9/Hes1 axis. However, the effects of EXOs on brain microvascular endothelial cell (BMEC) dysfunction via the miR-9/Hes1 axis remain unknown. Therefore, the current study aimed to determine the effects of EXOs on BMEC proliferation, migration, and death via the miR-9/Hes1 axis. METHODS: Immunofluorescence, quantitative real-time polymerase chain reaction, cell counting kit-8 assay, wound healing assay, calcein-acetoxymethyl/propidium iodide staining, and hematoxylin and eosin staining were used to determine the role and mechanism of EXOs on BMECs. RESULTS: EXOs promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions. The overexpression of miR-9 promoted BMEC proliferation and migration and reduced cell death under hypoxic conditions. Moreover, miR-9 downregulation inhibited BMEC proliferation and migration and also promoted cell death. Hes1 silencing ameliorated the effect of amtagomiR-9 on BMEC proliferation and migration and cell death. Hyperemic structures were observed in the regions of the hippocampus and cortex in hypoxia-induced mice. Meanwhile, EXO treatment improved cerebrovascular alterations. CONCLUSION: NSC-derived EXOs can promote BMEC proliferation and migration and reduce cell death via the miR-9/Hes1 axis under hypoxic conditions. Therefore, EXO therapeutic strategies could be considered for hypoxia-induced vascular injury.


Assuntos
Exossomos , MicroRNAs , Células-Tronco Neurais , Animais , Camundongos , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , Hipóxia/metabolismo , Proliferação de Células/genética , Morte Celular , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição HES-1/metabolismo
13.
Adv Sci (Weinh) ; 11(13): e2305631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243869

RESUMO

Stem cell-derived pancreatic progenitors (SC-PPs), as an unlimited source of SC-derived ß (SC-ß) cells, offers a robust tool for diabetes treatment in stem cell-based transplantation, disease modeling, and drug screening. Whereas, PDX1+/NKX6.1+ PPs enhances the subsequent endocrine lineage specification and gives rise to glucose-responsive SC-ß cells in vivo and in vitro. To identify the regulators that promote induction efficiency and cellular function maturation, single-cell RNA-sequencing is performed to decipher the transcriptional landscape during PPs differentiation. The comprehensive evaluation of functionality demonstrated that manipulating LINC MIR503HG using CRISPR in PP cell fate decision can improve insulin synthesis and secretion in mature SC-ß cells, without effects on liver lineage specification. Importantly, transplantation of MIR503HG-/- SC-ß cells in recipients significantly restored blood glucose homeostasis, accompanied by serum C-peptide release and an increase in body weight. Mechanistically, by releasing CtBP1 occupying the CDH1 and HES1 promoters, the decrease in MIR503HG expression levels provided an excellent extracellular niche and appropriate Notch signaling activation for PPs following differentiation. Furthermore, this exhibited higher crucial transcription factors and mature epithelial markers in CDH1High expressed clusters. Altogether, these findings highlighted MIR503HG as an essential and exclusive PP cell fate specification regulator with promising therapeutic potential for patients with diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Insulina , RNA Longo não Codificante , Humanos , Antígenos CD , Caderinas/genética , Caderinas/metabolismo , Diferenciação Celular/genética , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Transativadores/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Secretoras de Insulina/metabolismo
14.
J Pediatr Hematol Oncol ; 46(1): 15-20, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882055

RESUMO

BACKGROUND: Long noncoding RNA (LncRNA) play a vital role in the development and pathophysiology of osteosarcoma (OS). However, the LncRNA activated by HES1-10 in OS has not been furthered investigated. This present study aims to show the possible function of Lnc-HES1-10 in OS. METHODS: Cell proliferation in vitro were assessed by the MTT assay, whereas the migration and invasion abilities of OS cell lines were measured by wound-healing migration assay and transwell invasion assay, respectively. Quantitative reverse transcriptase polymerase chain reaction and western blot analysis was used to detected the expression level of HES1-10. RESULTS: The present study demonstrated that the Lnc-HES1-10 is overexpressed in OS and associated with poor prognosis of patients. In addition, the results revealed that Lnc-HES1-10 is overexpressed in MG63 and 143B OS cell lines and promote proliferation on both cell lines in vitro. Furthermore, migration and invasion abilities of MG63 and 143B cells are suppressed after silencing Lnc-HES1-10. CONCLUSION: Our finding demonstrates that HES1-10 plays a crucial role in regulating OS growth and metastasis.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Osteossarcoma/patologia , Proliferação de Células/genética , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
15.
J Biol Chem ; 300(2): 105613, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159855

RESUMO

Notch signaling plays a key regulatory role in bone remodeling and NOTCH2 enhances osteoclastogenesis, an effect that is mostly mediated by its target gene Hes1. In the present study, we explored mechanisms responsible for the enhanced osteoclastogenesis in bone marrow-derived macrophages (BMM) from Notch2tm1.1Ecan, harboring a NOTCH2 gain-of-function mutation, and control mice. Notch2tm1.1Ecan mice are osteopenic and have enhanced osteoclastogenesis. Bulk RNA-Seq and gene set enrichment analysis of Notch2tm1.1Ecan BMMs cultured in the presence of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand revealed enrichment of genes associated with enhanced cell metabolism, aerobic respiration, and mitochondrial function, all associated with osteoclastogenesis. These pathways were not enhanced in the context of a Hes1 inactivation. Analysis of single cell RNA-Seq data of pooled control and Notch2tm1.1Ecan BMMs treated with M-CSF or M-CSF and receptor activator of NF-κB ligand for 3 days identified 11 well-defined cellular clusters. Pseudotime trajectory analysis indicated a trajectory of clusters expressing genes associated with osteoclast progenitors, osteoclast precursors, and mature cells. There were an increased number of cells expressing gene markers associated with the osteoclast and with an unknown, albeit related, cluster in Notch2tm1.1Ecan than in control BMMs as well as enhanced expression of genes associated with osteoclast progenitors and precursors in Notch2tm1.1Ecan cells. In conclusion, BMM cultures display cellular heterogeneity, and NOTCH2 enhances osteoclastogenesis, increases mitochondrial and metabolic activity of osteoclasts, and affects cell cluster allocation in BMMs.


Assuntos
Osteoclastos , Osteogênese , Receptor Notch2 , Transcriptoma , Animais , Camundongos , Células da Medula Óssea/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mutação , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Fatores de Transcrição HES-1/metabolismo , Transcriptoma/genética
16.
Int J Oral Sci ; 15(1): 48, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37852994

RESUMO

Mesenchymal stem cell (MSC)-based therapy has emerged as a promising treatment for spinal cord injury (SCI), but improving the neurogenic potential of MSCs remains a challenge. Mixed lineage leukemia 1 (MLL1), an H3K4me3 methyltransferases, plays a critical role in regulating lineage-specific gene expression and influences neurogenesis. In this study, we investigated the role and mechanism of MLL1 in the neurogenesis of stem cells from apical papilla (SCAPs). We examined the expression of neural markers, and the nerve repair and regeneration ability of SCAPs using dynamic changes in neuron-like cells, immunofluorescence staining, and a SCI model. We employed a coimmunoprecipitation (Co-IP) assay, real-time RT-PCR, microarray analysis, and chromatin immunoprecipitation (ChIP) assay to investigate the molecular mechanism. The results showed that MLL1 knock-down increased the expression of neural markers, including neurogenic differentiation factor (NeuroD), neural cell adhesion molecule (NCAM), tyrosine hydroxylase (TH), ßIII-tubulin and Nestin, and promoted neuron-like cell formation in SCAPs. In vivo, a transplantation experiment showed that depletion of MLL 1 in SCAPs can restore motor function in a rat SCI model. MLL1 can combine with WD repeat domain 5 (WDR5) and WDR5 inhibit the expression of neural markers in SCAPs. MLL1 regulates Hairy and enhancer of split 1 (HES1) expression by directly binds to HES1 promoters via regulating H3K4me3 methylation by interacting with WDR5. Additionally, HES1 enhances the expression of neural markers in SCAPs. Our findings demonstrate that MLL1 inhibits the neurogenic potential of SCAPs by interacting with WDR5 and repressing HES1. These results provide a potential therapeutic target for promoting the recovery of motor function in SCI patients.


Assuntos
Leucemia , Células-Tronco Mesenquimais , Animais , Humanos , Ratos , Diferenciação Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/uso terapêutico , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Neurogênese , Células-Tronco , Fatores de Transcrição HES-1/metabolismo
17.
J Cell Biochem ; 124(9): 1366-1378, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37565579

RESUMO

Bone morphogenic protein 9 (BMP9) is one of the most potent inducers of osteogenic differentiation among the 14 BMP members, but its mechanism of action has not been fully demonstrated. Hes1 is a transcriptional regulator with basic helix-loop-helix (bHLH) domain and is a well-known Notch effector. In this study, we investigated the functional roles of early induction of Hes1 by BMP9 in a mouse mesenchymal stem cell line, ST2. Hes1 mRNA was transiently and periodically induced by BMP9 in ST2, which was inhibited by BMP signal inhibitors but not by Notch inhibitor. Interestingly, Hes1 knockdown in ST2 by siRNA increased the expression of osteogenic differentiation markers such as Sp7 and Ibsp and matrix mineralization in comparison with control siRNA transfected ST2. In contrast, forced expression of Hes1 by using the Tet-On system suppressed the expression of osteogenic markers and matrix mineralization by BMP9. We also found that the early induction of Hes1 by BMP9 suppressed the expression of Alk1, an essential receptor for BMP9. In conclusion, BMP9 rapidly induces the expression of Hes1 via the SMAD pathway in ST2 cells, which plays a negative regulatory role in osteogenic differentiation of mesenchymal stem cells induced by BMP9.


Assuntos
Fator 2 de Diferenciação de Crescimento , Células-Tronco Mesenquimais , Animais , Camundongos , Diferenciação Celular/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
18.
Neuropharmacology ; 239: 109682, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37543138

RESUMO

As a pervasive neurodevelopmental disease, autism spectrum disorder (ASD) is caused by both hereditary and environmental elements. Research has demonstrated the functions of the Notch pathway and DNA methylation in the etiology of ASD. DNA methyltransferases DNMT3 and DNMT1 are responsible for methylation establishment and maintenance, respectively. In this study, we aimed to explore the association of DNA methyltransferases with the Notch pathway in ASD. Our results showed Notch1 and Hes1 were upregulated, while DNMT3A and DNMT3B were downregulated at the protein level in the prefrontal cortex (PFC), hippocampus (HC) and cerebellum (CB) of VPA-induced ASD rats compared with Control (Con) group. However, the protein levels of DNMT3A and DNMT3B were augmented after treatment with 3,5-difluorophenacetyl-L-alanyl-S-phenylglycine-2-butyl ester (DAPT), suggesting that abnormal Notch pathway activation may affect the expression of DNMT3A and DNMT3B. Besides, our previous findings revealed that the Notch pathway may participate in development of ASD by influencing autophagy. Therefore, we hypothesized the Notch pathway adjusts autophagy and contributes to ASD by affecting DNA methyltransferases. Our current results showed that after receiving the DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-2'dc), the VPA + DAPT+5-Aza-2'dc (V + D + Aza) group exhibited reduced social interaction ability and increased stereotyped behaviors, and decreased expression of DNMT3A, DNMT3B and autophagy-related proteins, but did not show changes in Notch1 and Hes1 protein levels. Our results indicated that the Notch1/Hes1 pathway may adjust DNMT3A and DNMT3B expression and subsequently affect autophagy in the occurrence of ASD, providing new insight into the pathogenesis of ASD.


Assuntos
Transtorno do Espectro Autista , Ácido Valproico , Ratos , Animais , Ácido Valproico/farmacologia , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Metilação de DNA , Transdução de Sinais , Metilases de Modificação do DNA/metabolismo , DNA/metabolismo , Autofagia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
19.
Cell Signal ; 109: 110800, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442513

RESUMO

Expression of key transcriptional regulators is altered in chondrocytes in osteoarthritis (OA). This contributes to an increase in production of cartilage-catabolizing enzymes such as MMP13 and ADAMTS5. RCOR1 and RCOR2, binding partners for the transcriptional repressor REST, have previously been found to be downregulated in OA chondrocytes although their function in chondrocytes is unclear. HES1 is a known REST/RCOR1 target gene and HES1 has been shown to promote MMP13 and ADAMTS5 expression in murine OA chondrocytes. The purpose of this study was to determine whether reduced REST/RCOR levels leads to increased HES1 expression in human OA chondrocytes and whether HES1 also promotes ADAMTS5 and MMP13 expression in these cells. Chondrocytes were isolated from osteoarthritic and adjacent macroscopically normal cartilage obtained from patients undergoing total knee arthroplasty. RNA and protein levels of REST, RCOR1 and RCOR2 were lower, but levels of HES1 higher, in chondrocytes isolated from osteoarthritic compared to macroscopically normal cartilage. Over-expression of either REST, RCOR1 or RCOR2 resulted in reduced HES1 levels in OA chondrocytes whereas knockdown of REST, RCOR1 or RCOR2 led to increased HES1 expression in chondrocytes from macroscopically normal cartilage. In OA chondrocytes, ADAMTS5 and MMP13 expression were reduced following HES1 knockdown, but further enhanced following HES1 over-expression. Levels of phosphorylated CaMKII were higher in chondrocytes from OA cartilage consistent with previous findings that HES1 only promotes gene transcription in the presence of active CaMKII. These findings identify the REST/RCOR/HES1 pathway as a contributing factor leading to increased ADAMTS5 and MMP13 expression in OA chondrocytes.


Assuntos
Condrócitos , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Osteoartrite/metabolismo , RNA/metabolismo , Células Cultivadas , Fatores de Transcrição HES-1/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Correpressoras/metabolismo
20.
Cell Signal ; 109: 110795, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406788

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease and a severe form of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is induced in response to epithelial injury, which leads to the accumulation of extracellular matrix in the lung parenchyma and contributes to pulmonary fibrosis. NPAS2 (neuronal PAS domain protein 2) is significantly increased in the lung tissues of IPF patients according to microarray dataset GSE10667 and NPAS2 is downregulated in differentiated human pulmonary type 2 epithelial cells in vitro based on microarray dataset GSE3306 from Gene Expression Omnibus (GEO). In this study, we demonstrated that NPAS2 was increased in bleomycin (BLM)- induced fibrotic lungs in mice. Knockdown of NPAS2 inhibited EMT in primary mouse lung alveolar type 2 epithelial (pmATII) cells and human lung alveolar type 2 epithelial cell line A549 cells under BLM challenge in vitro. Moreover, the silence of NPAS2 alleviated the BLM-induced pulmonary fibrosis in a murine model. Mechanistically, NPAS2 promotes EMT through positively regulating hairy and enhancer of split 1 (HES1) expression. In this study, we present novel findings that have not been previously reported, emphasizing that p53 transcriptionally activates NPAS2 in ATII cells and overexpression of NPAS2 weakens the effects of TP53 knockdown on EMT of pmATII and A549 cells. Our results suggest NPAS2 is a novel target gene of p53 in regulating BLM-mediated EMT in ATII cells and pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Regulação para Baixo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA