Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Blood ; 143(19): 1953-1964, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38774451

RESUMO

The sterile alpha motif and histidine-aspartate (HD) domain containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several haematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Co-immunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
2.
Commun Biol ; 7(1): 565, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745044

RESUMO

Circular RNAs (circRNAs) have recently been suggested as potential functional modulators of cellular physiology processes in gastric cancer (GC). In this study, we demonstrated that circFOXP1 was more highly expressed in GC tissues. High circFOXP1 expression was positively associated with tumor size, lymph node metastasis, TNM stage, and poor prognosis in patients with GC. Cox multivariate analysis revealed that higher circFOXP1 expression was an independent risk factor for disease-free survival (DFS) and overall survival (OS) in GC patients. Functional studies showed that increased circFOXP1 expression promoted cell proliferation, cell invasion, and cell cycle progression in GC in vitro. In vivo, the knockdown of circFOXP1 inhibited tumor growth. Mechanistically, we observed ALKBH5-mediated m6A modification of circFOXP1 and circFOXP1 promoted GC progression by regulating SOX4 expression and sponging miR-338-3p in GC cells. Thus, our findings highlight that circFOXP1 could serve as a novel diagnostic and prognostic biomarker and potential therapeutic target for GC.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Progressão da Doença , Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , MicroRNAs , RNA Circular , Fatores de Transcrição SOXC , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Animais , Camundongos , Proliferação de Células/genética , Camundongos Nus , Prognóstico , Camundongos Endogâmicos BALB C
3.
J Diabetes ; 16(6): e13565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751373

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a diabetic complication. LncRNAs are reported to participate in the pathophysiology of DN. Here, the function and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in DN were explored. METHODS: Streptozotocin (STZ)-induced DN mouse models and high glucose (HG)-treated human mesangial cells (MCs) were used to detect SNHG14 expression. SNHG14 silencing plasmids were applied to examine the function of SNHG14 on proliferation and fibrosis in HG-treated MCs. Potential targets of SNHG14 were predicted using bioinformatics tools and verified by luciferase reporter, RNA pulldown, and northern blotting assays. The functional role of SNHG14 in DN in vivo was detected by injection with adenoviral vector carrying sh-SNHG14 into DN mice. Serum creatinine, blood urea nitrogen, blood glucose, 24-h proteinuria, relative kidney weight, and renal pathological changes were examined in DN mice. RESULTS: SNHG14 expression was elevated in the kidneys of DN mice and HG-treated MCs. SNHG14 silencing inhibited proliferation and fibrosis of HG-stimulated MCs. SNHG14 bound to miR-30e-5p to upregulate SOX4 expression. In rescue assays, SOX4 elevation diminished the effects of SNHG14 silencing in HG-treated MCs, and SOX4 silencing reversed the effects of SNHG14 overexpression. In in vivo studies, SNHG14 downregulation significantly ameliorated renal injuries and renal interstitial fibrosis in DN mice. CONCLUSIONS: SNHG14 silencing attenuates kidney injury in DN mice and reduces proliferation and fibrotic phenotype of HG-stimulated MCs via the miR-30e-5p/SOX4 axis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Fatores de Transcrição SOXC , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Camundongos , MicroRNAs/genética , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Masculino , Inativação Gênica , Fibrose , Proliferação de Células , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos Endogâmicos C57BL
4.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653778

RESUMO

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Assuntos
Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Neuroblastoma , Fatores de Transcrição SOXC , Tretinoína , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Tretinoína/farmacologia , Tretinoína/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Humanos , Animais , Linhagem Celular Tumoral , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Linhagem da Célula/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética
5.
Nat Commun ; 15(1): 2956, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580651

RESUMO

Pivotal in many ways for human health, the control of adult bone mass is governed by complex, incompletely understood crosstalk namely between mesenchymal stem cells, osteoblasts and osteoclasts. The SOX4, SOX11 and SOX12 (SOXC) transcription factors were previously shown to control many developmental processes, including skeletogenesis, and SOX4 was linked to osteoporosis, but how SOXC control adult bone mass remains unknown. Using SOXC loss- and gain-of-function mouse models, we show here that SOXC redundantly promote prepubertal cortical bone mass strengthening whereas only SOX4 mitigates adult trabecular bone mass accrual in early adulthood and subsequent maintenance. SOX4 favors bone resorption over formation by lowering osteoblastogenesis and increasing osteoclastogenesis. Single-cell transcriptomics reveals its prevalent expression in Lepr+ mesenchymal cells and ability to upregulate genes for prominent anti-osteoblastogenic and pro-osteoclastogenic factors, including interferon signaling-related chemokines, contributing to these adult stem cells' secretome. SOXC, with SOX4 predominantly, are thus key regulators of adult bone mass.


Assuntos
Células-Tronco Mesenquimais , Camundongos , Animais , Humanos , Adulto , Células-Tronco Mesenquimais/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
6.
J Biochem Mol Toxicol ; 38(4): e23703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605439

RESUMO

Acute renal failure (ARF) is a huge threat to the lives of most patients in intensive care units, and there is currently no satisfactory treatment strategy. SRY-box transcription factor 4 (SOX4) plays a key role in the development of various diseases, but its effect on ARF is unknown. Therefore, this study aimed to explore the relationship between SOX4 and ARF. Blood samples were collected from 20 ARF patients and 20 healthy volunteers. We also established an ARF rat model by excising the right kidney and ligating the left renal artery, and SOX4 knockdown in ARF rats was achieved down by means of lentiviral infection. Subsequently, we used quantitative polymerase chain reaction and western bolt assays to detect the expression levels of SOX4 and nuclear factor-κB (NF-κB) signaling pathway-related proteins in human blood or rat renal tissue and hematoxylin and eosin and terminal deoxynucleotidyl transferase (TdT) 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling staining to observe the pathological changes and apoptosis of renal tissue. Enzyme-linked immunosorbent assay and biochemical kits were used to measure the levels of renal function-related indicators (blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin) and inflammatory factors (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-alpha), as well as changes in oxidative stress-related indicators (malondialdehyde [MDA], superoxide dismutase [SOD], and reactive oxygen species [ROS]) in rat serum. SOX4 expression levels in blood samples from ARF patients and renal tissue from ARF rats were significantly higher compared with those in healthy volunteers and control rats, respectively. ARF model rats displayed the typical ARF phenotype, while SOX4 silencing significantly improved pathological injury and apoptosis of renal tissue in ARF rats. Moreover, SOX4 silencing significantly inhibited increased levels of renal function-related indicators and inflammatory factors and reduced the level of excessive oxidative stress (MDA and ROS were upregulated, and SOD was downregulated) in ARF rats. SOX4 also reduced the activity of the NF-κB signaling pathway in ARF samples. Thus, SOX4 knockdown may reduce oxidative stress, the inflammatory response, and apoptosis by reducing the activity of the NF-κB signaling pathway, thereby improving renal injury in ARF rats.


Assuntos
Injúria Renal Aguda , Apoptose , NF-kappa B , Estresse Oxidativo , Fatores de Transcrição SOXC , Transdução de Sinais , Animais , Humanos , Ratos , Injúria Renal Aguda/metabolismo , Rim , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Superóxido Dismutase/metabolismo
7.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 90-94, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678622

RESUMO

Breast cancer (BC) is one of the most common fatal cancers. Recent studies have identified the vital role of long noncoding RNA (lncRNAs) in the development and progression of BC. In this research, lncRNA PCAT-1 was studied to identify how it functioned in the metastasis of BC. PCAT-1 expression of tissues was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in 50 BC patients. Cell proliferation, wound healing assay and transwell assay were used to observe the biological behavior changes of BC cells through knockdown or overexpression of PCAT-1. In addition, RT-qPCR and Western blot assay were performed to discover the potential target protein of PCAT-1 in BC. PCAT-1 expression level in BC samples was higher than that of adjacent ones. Besides, cell proliferation, migrated ability and cell invaded ability of BC cells were inhibited after PCAT-1 was silenced. Cell proliferation, migration and invasion of BC cells were promoted after PCAT-1 was overexpressed. In addition, SOX4 was downregulated after silence of PCAT-1 in BC cells, while SOX4 was upregulated after overexpression of PCAT-1 in BC cells. Furthermore, SOX4 was upregulated in BC tissues and was positively associated with PCAT-1. Our study uncovers a new oncogene in BC and suggests that PCAT-1 could enhance BC cell proliferation, migration and invasion via targeting SOX4, which provided a novel therapeutic target for BC patients.


Assuntos
Neoplasias da Mama , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica , RNA Longo não Codificante , Fatores de Transcrição SOXC , Humanos , Proliferação de Células/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Pessoa de Meia-Idade
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 204-211, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650133

RESUMO

Circular RNAs (circRNAs) are engaged in various types of cancers. This study aimed to investigate the roles of circ_0006743 (circ_JMJD1C) in breast cancer. The downstream of circ_JMJD1C and their interaction network was determined by bioinformatic analyses. Gene expression were analyzed through western blot and qRT-PCR assays. Functional assays were conducted in vitro and in vivo to verify circ_JMJD1C role in BC. FISH and confocal analysis indicated the cellular distribution of circ_JMJD1C. Luciferase reporter, RNA immune-precipitation (RIP) assays, as well as Pearson's correlation analysis, were implemented to test the relation of miR-182-5p, JMJD1C and circ_JMJD1C. Circ_JMJD1C and JMJD1C expression were both elevated, and their expression was positively correlated in BC. Circ_ JMJD1C knockdown hindered BC cell proliferation, invasion, and migration, along with epithelial-mesenchymal transition (EMT) in vitro and in vivo. Circ_JMJD1C facilitated BC progression by the miR-182-5p-JMJD1C axis. Circ_JMJD1C epigenetically upregulated SOX4. Circ_JMJD1C promotes the aggressiveness of BC via regulating miR-182-5p/JMJD1C/SOX4 axis. This may provide a novel and promising therapy targeting BC.


Assuntos
Neoplasias da Mama , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Oxirredutases N-Desmetilantes , RNA Circular , Fatores de Transcrição SOXC , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Masculino
9.
Sci Rep ; 14(1): 7863, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570586

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell neoplasm characterized by an aggressive behavior, short responses to conventional therapies and SOX11 overexpression, which is associated with aggressive disease features and inferior clinical outcome of patients. Oxidative stress is known to induce tumorigenesis and tumor progression, whereas high expression levels of antioxidant genes have been associated with chemoresistance in different cancers. However, the role of oxidative stress in MCL pathogenesis and the involvement of SOX11 regulating redox homeostasis in MCL cells are largely unknown. Here, by integrating gene set enrichment analysis of two independent series of MCL, we observed that SOX11+ MCL had higher reactive oxygen species (ROS) levels compared to SOX11- MCL primary tumors and increased expression of Peredoxine2 (PRDX2), which upregulation significantly correlated with SOX11 overexpression, higher ROS production and worse overall survival of patients. SOX11 knockout (SOX11KO) significantly reduced PRDX2 expression, and SOX11KO and PRDX2 knockdown (PRDX2KD) had increased ROS levels and ROS-mediated tumor cell death upon treatment with drugs, compared to control MCL cell lines. Our results suggest an aberrant redox homeostasis associated with chemoresistance in aggressive MCL through SOX11-mediated PRDX2 upregulation, highlighting PRDX2 as promising target for new therapeutic strategies to overcome chemoresistance in aggressive MCLs.


Assuntos
Linfoma de Célula do Manto , Humanos , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Oxirredução , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
10.
Lab Invest ; 104(5): 102042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431117

RESUMO

Esophageal squamous cell carcinoma stands as a notably aggressive malignancy within the digestive system. In cases of early esophageal cancer without lymph node metastasis, endoscopic surgical resection offers a viable alternative, often resulting in improved patient quality of life. However, the paucity of methods to preoperatively ascertain lymph node involvement complicates surgical planning. SOX4 gene was previously found to be highly associated with invasive metastasis in our work through single-cell RNA sequencing on 5 paired tumor/peritumor tissues. This research included the collection of 124 tissue samples from 106 patients (106 tumor and 18 lymph node specimens). Samples were methodically arranged into a tissue microarray and treated with immunohistochemical staining. Statistical analysis was conducted to assess the relationship between them. In the univariate analysis, 3 factors were identified as statistically significant in relation to lymph node metastasis: T category (P = .014), vascular invasion (P < .001), and SOX4 intensity (P = .001). Additionally, when evaluating SOX4 intensity alongside other clinical indicators, SOX4 was shown to independently influence lymph node metastasis. Further, the multivariate analysis revealed that vascular invasion (P < .001) and SOX4 intensity (P = .003) were significantly associated with lymph node metastasis, exhibiting hazard ratios of 10.174 and 7.142, respectively. The results of our study indicate that both SOX4 expression and vascular invasion serve as predictors of lymph node metastasis in patients diagnosed with category T1 esophageal squamous cell carcinoma, underscoring the potential utility of SOX4 in prognostic evaluations.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Metástase Linfática , Fatores de Transcrição SOXC , Humanos , Masculino , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Feminino , Pessoa de Meia-Idade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/secundário , Carcinoma de Células Escamosas do Esôfago/cirurgia , Idoso , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Linfonodos/patologia , Linfonodos/metabolismo , Adulto , Prognóstico
11.
Biochem Biophys Res Commun ; 705: 149738, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38447391

RESUMO

The proliferation and apoptosis of ovarian granulosa cells are important for folliculogenesis. As a transcription factor, SRY-box transcription factor 4 (SOX4) has important roles in regulating cellular proliferation and apoptosis. Nonetheless, the regulatory mechanisms of SOX4 on proliferation and apoptosis of granulosa cells remain elusive. Therefore, a stably overexpressed SOX4 ovarian granulosa cell line KGN was generated by lentivirus encapsulation. We observed that overexpression of SOX4 inhibits apoptosis, promotes proliferation and migration of KGN cells. Comparative analysis of the transcriptome revealed 868 upregulated and 696 downregulated DEGs in LV-SOX4 in comparison with LV-CON KGN cell lines. Afterward, further assessments were performed to explore the possible functions about these DEGs. The data showed their involvement in many biological processes, particularly the Hippo signaling pathway. Moreover, the expression levels of YAP1, WWTR1, WTIP, DLG3, CCN2, and AMOT, which were associated with the Hippo signaling pathway, were further validated by qRT-PCR. In addition, the protein expression levels of YAP1 were markedly elevated, while p-YAP1 were notably reduced after overexpression of SOX4 in KGN cells. Thus, these results suggested that SOX4 regulates apoptosis, proliferation and migration of KGN cells, at least partly, through activation of the Hippo signaling pathway, which might be implicated in mammalian follicle development.


Assuntos
Células da Granulosa , Via de Sinalização Hippo , Feminino , Animais , Humanos , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Proliferação de Células , Apoptose , Mamíferos/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/metabolismo
12.
Biochem Pharmacol ; 222: 116079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402910

RESUMO

Breast cancer is one of the main causes of malignancy-related deaths globally and has a significant impact on women's quality of life. Despite significant therapeutic advances, there is a medical need for targeted therapies in breast cancer. Aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor mediates responses to environment stimuli, is emerging as a unique pleiotropic target. Herein, a combined molecular simulation and in vitro investigations identified 3-(3-fluorophenyl)-1H-pyrazolo[3,4-b]pyridine (3FPP) as a novel AhR ligand in T47D and MDA-MB-231 breast cancer cells. Its agonistic effects induced formation of the AhR-AhR nuclear translocator (Arnt) heterodimer and prompted its binding to the penta-nucleotide sequence, called xenobiotic-responsive element (XRE) motif. Moreover, 3FPP augmented the promoter-driven luciferase activities and expression of AhR-regulated genes encoding cytochrome P450 1A1 (CYP1A1) and microRNA (miR)-212/132 cluster. It reduced cell viability, migration, and invasion of both cell lines through AhR signaling. These anticancer properties were concomitant with reduced levels of B-cell lymphoma 2 (BCL-2), SRY-related HMG-box4 (SOX4), snail family zinc finger 2 (SNAI2), and cadherin 2 (CDH2). In vivo, 3FPP suppressed tumor growth and activated AhR signaling in an orthotopic mouse model. In conclusion, our results introduce the fused pyrazolopyridine 3FPP as a novel AhR agonist with AhR-specific anti-breast cancer potential in vitro and in vivo.


Assuntos
Neoplasias da Mama , Pirazóis , Receptores de Hidrocarboneto Arílico , Animais , Camundongos , Feminino , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Ligantes , Qualidade de Vida , Citocromo P-450 CYP1A1/metabolismo , Neoplasias da Mama/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição SOXC/metabolismo
13.
Genes (Basel) ; 15(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38397232

RESUMO

Sox11, a member of the SoxC family of transcription factors, has distinct functions at different times in neural development. Studies in mouse, frog, chick, and zebrafish show that Sox11 promotes neural fate, neural differentiation, and neuron maturation in the central nervous system. These diverse roles are controlled in part by spatial and temporal-specific protein interactions. However, the partner proteins and Sox11-interaction domains underlying these diverse functions are not well defined. Here, we identify partner proteins and the domains of Xenopus laevis Sox11 required for protein interaction and function during neurogenesis. Our data show that Sox11 co-localizes and interacts with Pou3f2 and Neurog2 in the anterior neural plate and in early neurons, respectively. We also demonstrate that Sox11 does not interact with Neurog1, a high-affinity partner of Sox11 in the mouse cortex, suggesting that Sox11 has species-specific partner proteins. Additionally, we determined that the N-terminus including the HMG domain of Sox11 is necessary for interaction with Pou3f2 and Neurog2, and we established a novel role for the N-terminal 46 amino acids in the specification of placodal progenitors. This is the first identification of partner proteins for Sox11 and of domains required for partner-protein interactions and distinct roles in neurogenesis.


Assuntos
Neurogênese , Fatores de Transcrição SOXC , Proteínas de Xenopus , Xenopus laevis , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Xenopus laevis/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Domínios Proteicos
14.
Blood ; 143(19): 1953-1964, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237141

RESUMO

ABSTRACT: Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate triphosphohydrolase with ara-CTPase activity that confers cytarabine (ara-C) resistance in several hematological malignancies. Targeting SAMHD1's ara-CTPase activity has recently been demonstrated to enhance ara-C efficacy in acute myeloid leukemia. Here, we identify the transcription factor SRY-related HMG-box containing protein 11 (SOX11) as a novel direct binding partner and first known endogenous inhibitor of SAMHD1. SOX11 is aberrantly expressed not only in mantle cell lymphoma (MCL), but also in some Burkitt lymphomas. Coimmunoprecipitation of SOX11 followed by mass spectrometry in MCL cell lines identified SAMHD1 as the top SOX11 interaction partner, which was validated by proximity ligation assay. In vitro, SAMHD1 bound to the HMG box of SOX11 with low-micromolar affinity. In situ crosslinking studies further indicated that SOX11-SAMHD1 binding resulted in a reduced tetramerization of SAMHD1. Functionally, expression of SOX11 inhibited SAMHD1 ara-CTPase activity in a dose-dependent manner resulting in ara-C sensitization in cell lines and in a SOX11-inducible mouse model of MCL. In SOX11-negative MCL, SOX11-mediated ara-CTPase inhibition could be mimicked by adding the recently identified SAMHD1 inhibitor hydroxyurea. Taken together, our results identify SOX11 as a novel SAMHD1 interaction partner and its first known endogenous inhibitor with potentially important implications for clinical therapy stratification.


Assuntos
Linfoma de Célula do Manto , Proteína 1 com Domínio SAM e Domínio HD , Fatores de Transcrição SOXC , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Animais , Camundongos , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Ligação Proteica , Linhagem Celular Tumoral , Citarabina/farmacologia
15.
J Transl Med ; 22(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169402

RESUMO

Epigenetic regulation is reported to play a significant role in the pathogenesis of various kidney diseases, including renal cell carcinoma, acute kidney injury, renal fibrosis, diabetic nephropathy, and lupus nephritis. However, the role of epigenetic regulation in calcium oxalate (CaOx) crystal deposition-induced kidney injury remains unclear. Our study demonstrated that the upregulation of enhancer of zeste homolog 2 (EZH2)-mediated ferroptosis facilitates CaOx-induced kidney injury. CaOx crystal deposition promoted ferroptosis in vivo and in vitro. Usage of liproxstatin-1 (Lip-1), a ferroptosis inhibitor, mitigated CaOx-induced kidney damage. Single-nucleus RNA-sequencing, RNA-sequencing, immunohistochemical and western blotting analyses revealed that EZH2 was upregulated in kidney stone patients, kidney stone mice, and oxalate-stimulated HK-2 cells. Experiments involving in vivo EZH2 knockout, in vitro EZH2 knockdown, and in vivo GSK-126 (an EZH2 inhibitor) treatment confirmed the protective effects of EZH2 inhibition on kidney injury and ferroptosis. Mechanistically, the results of RNA-sequencing and chromatin immunoprecipitation assays demonstrated that EZH2 regulates ferroptosis by suppressing solute carrier family 7, member 11 (SLC7A11) expression through trimethylation of histone H3 lysine 27 (H3K27me3) modification. Additionally, SOX4 regulated ferroptosis by directly modulating EZH2 expression. Thus, this study demonstrated that SOX4 facilitates ferroptosis in CaOx-induced kidney injury through EZH2/H3K27me3-mediated suppression of SLC7A11.


Assuntos
Nefropatias Diabéticas , Ferroptose , Cálculos Renais , Humanos , Camundongos , Animais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Oxalato de Cálcio , Histonas/metabolismo , Epigênese Genética , Rim/patologia , Nefropatias Diabéticas/metabolismo , Cálculos Renais/patologia , RNA/metabolismo , Fatores de Transcrição SOXC/metabolismo , Sistema y+ de Transporte de Aminoácidos
16.
Dig Dis Sci ; 69(3): 835-850, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240850

RESUMO

BACKGROUND: Increased SOX4 (SRY-related HMG-box) activity aids cellular transformation and metastasis. However, its specific functions and downstream targets remain to be completely elusive in colorectal cancer (CRC). AIMS: To investigate the role of SOX4 in CRC progression and the underlying mechanism. METHODS: In the current study, online available datasets of CRC patients were explored to check the expression status of SOX4. To investigate the further functions, SOX4 was overexpressed and knocked down in CRC cells. Colony formation assay, flowcytometry analysis, and MTT assay were used to check for proliferation and apoptosis. Acridine orange staining was done to check the role of SOX4 in autophagy induction. Furthermore, western blot, qRT-PCR, and bioinformatic analysis was done to elucidate the downstream molecular mechanism of SOX4. RESULTS: GEPIA database showed enhanced expression of SOX4 mRNA in CRC tumor, and the human protein atlas (HPA) showed strong staining of SOX4 protein in tumor when compared to the normal tissue. Ectopic expression of SOX4 enhanced colony formation ability as well as rescued cells from apoptosis. SOX4 overexpressed cells showed the formation of acidic vesicular organelles (AVOs) which indicated autophagy. Further results revealed the activation of p-AKT/MAPK molecules upon overexpression of SOX4. SOX4 expression was found to be positively correlated with histone deacetylase 2 (HDAC2). Knockdown of SOX4 or HDAC2 inhibition induced apoptosis, revealed by decrease in BCL2 and increase in BAX expression, and inactivated the p-AKT/MAPK signaling. CONCLUSION: The study uncovers that SOX4/HDAC2 axis improves cell survivability and reduces apoptosis via activation of the p-AKT/MAPK pathway.


Assuntos
Neoplasias Colorretais , Histona Desacetilase 2 , Proteínas Proto-Oncogênicas c-akt , Fatores de Transcrição SOXC , Humanos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo
17.
Am J Med Sci ; 367(1): 49-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939881

RESUMO

BACKGROUND: Myocardial ischemia-reperfusion (I/R), a harmful process in the treatment of cardiovascular diseases, can cause secondary damage to the cardiac tissues. Circular RNAs (circRNAs) are important regulators in a number of cardiac disorders. However, the role of circHDAC9 in myocardial I/R injury has not been clarified. METHODS: Human cardiac myocytes (HCMs) were treated with hypoxia/reoxygenation (H/R) and mice were subjected to I/R. Quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to analyze the expression of circHDAC9, miR-671-5p, and SOX4, and western blot was used to detect SOX4 protein. The binding relationship among circHDAC9, miR-671-5p, and SOX4 was confirmed by RNA pull-down, luciferase, and RNA immunoprecipitation (RIP) assays. The effects of circHDAC9/miR-671-5p/SOX4 axis on the apoptosis, oxidative stress and inflammation were evaluated in both myocardial I/R injury models. RESULTS: The expression of circHDAC9 and SOX4 was noticeably elevated, whereas miR-671-5p expression was downregulated in both myocardial I/R injury models. circHDAC9 knockdown significantly reduced the apoptosis, activities of caspase-3 and caspase-9, ROS intensity, MDA activity, and concentrations of TNF-α, IL-1ß, and IL-6, but increased the viability and SOD activity in H/R-treated HCMs. Suppression of circHDAC9 dramatically reduced the levels of circHDAC9 and SOX4, while enhanced miR-671-5p expression in H/R-treated HCMs. CircHDAC9 functioned via sponging miR-671-5p to regulate SOX4 expression in vitro. Additionally, silencing of circHDAC9 improved the pathological abnormalities and cardiac dysfunction, and reduced the apoptosis, oxidative stress and inflammation in mice with myocardial I/R injury. CONCLUSIONS: Inhibition of circHDAC9 significantly improved myocardial I/R injury by regulating miR-671-5p/SOX4 signaling pathway.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , RNA Circular , Animais , Humanos , Camundongos , Apoptose , Inflamação/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Transdução de Sinais , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/farmacologia , RNA Circular/metabolismo
18.
Anticancer Res ; 43(12): 5437-5446, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030167

RESUMO

BACKGROUND/AIM: PHD and RING finger domain-containing protein 1 (PHRF1) ubiquitinates TGIP (TG-interacting protein) and redistributes cPML (cytoplasmic variant of PML) to the cytoplasm to enhance TGF-ß signaling by. It is unclear whether PHRF1 affects invasion and survival when both mutations of the activated oncogene Kras and inactivation of the tumor suppressor p53 are present. MATERIALS AND METHODS: We knockout PHRF1 expression using Crispr-Cas9 editing in HCT116-p53-/- (KrasG13D/p53-/-) cells and analyzed the expression profile in HCT116-p53-/-PHRF1-/- cells. RESULTS: In contrast to lung cancer A549 (KrasG12S/p53wt) cells, the expression of Zeb1, a transcription factor for epidermal-mesenchymal transition (EMT), was not affected in PHRF1-knockout HCT116 p53-/- cells. Instead, SOX4 displayed a significant contribution to the impaired invasion in HCT116-p53-/-PHRF1-/- cells. Mechanistically, the C-terminal SRI domain of PHRF1 was required for both transwell invasion and SOX4 expression. The reintroduction of SOX4 into HCT116-p53-/- PHRF1-/- cells partially restored their invasive capability. CONCLUSION: This study sheds light on the role of PHRF1 in the invasion of colorectal cancer HCT116-p53-/- cells, which harbor the oncogenic KrasG13D mutation and lack p53. These findings provide novel insights regarding the role of PHRF1 in invasion by modulating SOX4 expression in colorectal cancer HCT116-p53-/- cells.


Assuntos
Neoplasias Colorretais , Proteínas de Membrana , Fatores de Transcrição SOXC , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
19.
Tissue Cell ; 85: 102224, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783027

RESUMO

The conditioned medium of mesenchymal stem cells (MSCs) has controversial roles in cancer, either promoting or suppressing tumor growth. Our research on the results of adipose tissue-derived MSC (AD-MSC)-conditioned media on U87 glioma cells was motivated by the disputed role of mesenchymal stem cells (MSCs) in cancer, which may either promote or inhibit tumor growth. Using flow cytometry, AD-MSCs were identified, verified, and their conditioned media was used to treat U87 cells. Through RT-qPCR, scratch assay, and apoptosis analysis, we evaluated gene expression (SOX4, H19, and CCAT1), cell migration, and apoptosis in U87 cells.The conditioned media greatly increased the expression of SOX4 and H19, but not CCAT1. Although there were few differences in migration and apoptosis, both were slightly increased in the treated group.These outcomes have drawn attention to the complexity of the interactions between MSCs and glioma cells. This complexity requires further research to identify the specific mechanisms governing MSC-mediated impacts on the development of glioblastoma multiforme (GBM).


Assuntos
Glioma , Células-Tronco Mesenquimais , Humanos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Linhagem Celular Tumoral , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Células-Tronco Mesenquimais/metabolismo , Apoptose/genética , Movimento Celular/genética , Expressão Gênica , Proliferação de Células/genética , Fatores de Transcrição SOXC/metabolismo
20.
Eur J Pharmacol ; 958: 176071, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37741429

RESUMO

Pathological cardiac hypertrophy can lead to heart failure, making its prevention crucial. SOX4, a SOX transcription factor, regulates tissue growth and development, although its role in pathological cardiac hypertrophy is unclear. We found that the SOX4 expression was elevated in hypertrophic hearts and angiotensin II (Ang II)-treated neonatal rat cardiomyocytes (NRCMs), and knocking down the SOX4 expression in NRCMs and mouse hearts significantly reduced the hypertrophic response. Mechanistically, SOX4 can bind to the SIRT3 promoter, inhibit SIRT3 transcription and expression, and thus affect downstream MnSOD acetylation levels, leading to abnormal increases in ROS and oxidative stress levels and promoting the occurrence of cardiac hypertrophy. In conclusion, this study identified a new role for SOX4 in regulating cardiac hypertrophy, and decreasing SOX4 expression may be a potential treatment for pathological cardiac hypertrophy.


Assuntos
Insuficiência Cardíaca , Fatores de Transcrição SOXC , Sirtuína 3 , Animais , Camundongos , Ratos , Angiotensina II/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/metabolismo , Sirtuína 3/metabolismo , Fatores de Transcrição SOXC/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA