Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.632
Filtrar
1.
Diagn Pathol ; 19(1): 66, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730456

RESUMO

BACKGROUND: TFEB/6p21/VEGFA-amplified renal cell carcinoma (RCC) is rare and difficult to diagnose, with diverse histological patterns and immunohistochemical and poorly defined molecular genetic characteristics. CASE PRESENTATION: We report a case of a 63-year-old male admitted in 2017 with complex histomorphology, three morphological features of clear cell, eosinophilic and papillary RCC and resembling areas of glomerular and tubular formation. The immunophenotype also showed a mixture of CD10 and P504s. RCC with a high suspicion of collision tumors was indicated according to the 2014 WHO classification system; no precise diagnosis was possible. The patient was diagnosed at a different hospital with poorly differentiated lung squamous cell carcinoma one year after RCC surgery. We exploited molecular technology advances to retrospectively investigate the patient's molecular genetic alterations by whole-exome sequencing. The results revealed a 6p21 amplification in VEGFA and TFEB gene acquisition absent in other RCC subtypes. Clear cell, papillary, chromophobe, TFE3-translocation, eosinophilic solid and cystic RCC were excluded. Strong TFEB and Melan-A protein positivity prompted rediagnosis as TFEB/6p21/VEGFA-amplified RCC as per 2022 WHO classification. TMB-L (low tumor mutational load), CCND3 gene acquisition and MRE11A and ATM gene deletion mutations indicated sensitivity to PD-1/PD-L1 inhibitor combinations and the FDA-approved targeted agents Niraparib (Grade C), Olaparib (Grade C), Rucaparib (Grade C) and Talazoparib (Class C). GO (Gene Ontology) and KEGG enrichment analyses revealed major mutations and abnormal CNVs in genes involved in biological processes such as the TGF-ß, Hippo, E-cadherin, lysosomal biogenesis and autophagy signaling pathways, biofilm synthesis cell adhesion substance metabolism regulation and others. We compared TFEB/6p21/VEGFA-amplified with TFEB-translocated RCC; significant differences in disease onset age, histological patterns, pathological stages, clinical prognoses, and genetic characteristics were revealed. CONCLUSION: We clarified the patient's challenging diagnosis and discussed the clinicopathology, immunophenotype, differential diagnosis, and molecular genetic information regarding TFEB/6p21/VEGFA-amplified RCC via exome analysis and a literature review.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Carcinoma de Células Renais , Sequenciamento do Exoma , Neoplasias Renais , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Biomarcadores Tumorais/genética
2.
Respir Res ; 25(1): 182, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664707

RESUMO

OBJECTIVE: Asthma stands as one of the most prevalent chronic respiratory conditions in children, with its pathogenesis tied to the actived antigen presentation by dendritic cells (DCs) and the imbalance within T cell subgroups. This study seeks to investigate the role of the transcription factor EB (TFEB) in modulating the antigen presentation process of DCs and its impact on the differentiation of T cell subgroups. METHODS: Bone marrow dendritic cells (BMDCs) were activated using house dust mites (HDM) and underwent RNA sequencing (RNA-seq) to pinpoint differentially expressed genes. TFEB mRNA expression levels were assessed in the peripheral blood mononuclear cells (PBMCs) of both healthy children and those diagnosed with asthma. In an asthma mouse model induced by HDM, the TFEB expression in lung tissue DCs was evaluated. Further experiments involved LV-shTFEB BMDCs co-cultured with T cells to explore the influence of TFEB on DCs' antigen presentation, T cell subset differentiation, and cytokine production. RESULTS: Transcriptomic sequencing identified TFEB as a significantly differentially expressed gene associated with immune system pathways and antigen presentation. Notably, TFEB expression showed a significant increase in the PBMCs of children diagnosed with asthma compared to healthy counterparts. Moreover, TFEB exhibited heightened expression in lung tissue DCs of HDM-induced asthmatic mice and HDM-stimulated BMDCs. Silencing TFEB resulted in the downregulation of MHC II, CD80, CD86, and CD40 on DCs. This action reinstated the equilibrium among Th1/Th2 and Th17/Treg cell subgroups, suppressed the expression of pro-inflammatory cytokines like IL-4, IL-5, IL-13, and IL-17, while augmenting the expression of the anti-inflammatory cytokine IL-10. CONCLUSION: TFEB might have a vital role in asthma's development by impacting the antigen presentation of DCs, regulating T cell subgroup differentiation, and influencing cytokine secretion. Its involvement could be pivotal in rebalancing the immune system in asthma. These research findings could potentially unveil novel therapeutic avenues for treating asthma.


Assuntos
Apresentação de Antígeno , Asma , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Dendríticas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Asma/imunologia , Asma/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos , Apresentação de Antígeno/imunologia , Humanos , Criança , Feminino , Masculino , Células Cultivadas , Camundongos Endogâmicos BALB C
3.
BMC Genomics ; 25(1): 397, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654166

RESUMO

BACKGROUND: Jasmonate (JA) is the important phytohormone to regulate plant growth and adaption to stress signals. MYC2, an bHLH transcription factor, is the master regulator of JA signaling. Although MYC2 in maize has been identified, its function remains to be clarified. RESULTS: To understand the function and regulatory mechanism of MYC2 in maize, the joint analysis of DAP-seq and RNA-seq is conducted to identify the binding sites and target genes of ZmMYC2. A total of 3183 genes are detected both in DAP-seq and RNA-seq data, potentially as the directly regulating genes of ZmMYC2. These genes are involved in various biological processes including plant growth and stress response. Besides the classic cis-elements like the G-box and E-box that are bound by MYC2, some new motifs are also revealed to be recognized by ZmMYC2, such as nGCATGCAnn, AAAAAAAA, CACGTGCGTGCG. The binding sites of many ZmMYC2 regulating genes are identified by IGV-sRNA. CONCLUSIONS: All together, abundant target genes of ZmMYC2 are characterized with their binding sites, providing the basis to construct the regulatory network of ZmMYC2 and better understanding for JA signaling in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sítios de Ligação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Genoma de Planta , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética
4.
Diagn Pathol ; 19(1): 62, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643139

RESUMO

BACKGROUND: Alveolar soft part sarcoma is a rare tumour of soft tissues, mostly localized in muscles or deep soft tissues of the extremities. In rare occasions, this tumour develops in deep tissues of the abdomen or pelvis. CASE PRESENTATION: In this case report, we described the case of a 46 year old man who developed a primary splenic alveolar soft part sarcoma. The tumour displayed typical morphological alveolar aspect, as well as immunohistochemical profile notably TFE3 nuclear staining. Detection of ASPSCR1 Exon 7::TFE3 Exon 6 fusion transcript in molecular biology and TFE3 rearrangement in FISH confirmed the diagnosis. CONCLUSION: We described the first case of primary splenic alveolar soft part sarcoma, which questions once again the cell of origin of this rare tumour.


Assuntos
Sarcoma Alveolar de Partes Moles , Masculino , Humanos , Pessoa de Meia-Idade , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Éxons
5.
Hepatol Commun ; 8(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668731

RESUMO

BACKGROUND: Common variants of the max-like protein X (MLX)-interacting protein-like (MLXIPL) gene, encoding the transcription factor carbohydrate-responsive element-binding protein, have been shown to be associated with plasma triglyceride levels. However, the role of these variants in steatotic liver disease (SLD) is unclear. METHODS: We used a genome-first approach to analyze a variety of metabolic phenotypes and clinical outcomes associated with a common missense variant in MLXIPL, Gln241His, in 2 large biobanks: the UK Biobank and the Penn Medicine Biobank. RESULTS: Carriers of MLXIPL Gln241His were associated with significantly lower serum levels of triglycerides, apolipoprotein-B, gamma-glutamyl transferase, and alkaline phosphatase. Additionally, MLXIPL Gln241His carriers were associated with significantly higher serum levels of HDL cholesterol and alanine aminotransferase. Carriers homozygous for MLXIPL Gln241His showed a higher risk of SLD in 2 unrelated cohorts. Carriers of MLXIPL Gln241His were especially more likely to be diagnosed with SLD if they were female, obese, and/or also carried the PNPLA3 I148M variant. Furthermore, the heterozygous carriage of MLXIPL Gln241His was associated with significantly higher all-cause, liver-related, and cardiovascular mortality rates. Nuclear magnetic resonance metabolomics data indicated that carriage of MLXIPL Gln241His was significantly associated with lower serum levels of VLDL and increased serum levels of HDL cholesterol. CONCLUSIONS: Analyses of the MLXIPL Gln241His polymorphism showed a significant association with a higher risk of SLD diagnosis and elevated serum alanine aminotransferase as well as significantly lower serum triglycerides and apolipoprotein-B levels. MLXIPL might, therefore, be a potential pharmacological target for the treatment of SLD and hyperlipidemia, notably for patients at risk. More mechanistic studies are needed to better understand the role of MLXIPL Gln241His on lipid metabolism and steatosis development.


Assuntos
Aciltransferases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fígado Gorduroso , Fosfolipases A2 Independentes de Cálcio , Triglicerídeos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alanina Transaminase/sangue , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , HDL-Colesterol/sangue , Fígado Gorduroso/genética , Fígado Gorduroso/sangue , Predisposição Genética para Doença , Lipase/genética , Lipase/sangue , Lipídeos/sangue , Proteínas de Membrana/genética , Proteínas de Membrana/sangue , Mutação de Sentido Incorreto , Triglicerídeos/sangue
6.
Acta Neuropathol ; 147(1): 67, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581586

RESUMO

Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.


Assuntos
Doença por Corpos de Lewy , Humanos , alfa-Sinucleína/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/patologia , Neurônios Dopaminérgicos/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia
7.
Ren Fail ; 46(1): 2338933, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38616177

RESUMO

Thioredoxin-interacting protein (TXNIP) is an important regulatory protein for thioredoxin (TRX) that elicits the generation of reactive oxygen species (ROS) by inhibiting the redox function of TRX. Abundant evidence suggests that TXNIP is involved in the fibrotic process of diabetic kidney disease (DKD). However, the potential mechanism of TXNIP in DKD is not yet well understood. In this study, we found that TXNIP knockout suppressed renal fibrosis and activation of mammalian target of rapamycin complex 1 (mTORC1) and restored transcription factor EB (TFEB) and autophagy activation in diabetic kidneys. Simultaneously, TXNIP interference inhibited epithelial-to-mesenchymal transformation (EMT), collagen I and fibronectin expression, and mTORC1 activation, increased TFEB nuclear translocation, and promoted autophagy restoration in HK-2 cells exposed to high glucose (HG). Rapamycin, an inhibitor of mTORC1, increased TFEB nuclear translocation and autophagy in HK-2 cells under HG conditions. Moreover, the TFEB activators, curcumin analog C1 and trehalose, effectively restored HG-induced autophagy, and abrogated HG-induced EMT and collagen I and fibronectin expression in HK-2 cells. Taken together, these findings suggest that TXNIP deficiency ameliorates renal fibrosis by regulating mTORC1/TFEB-mediated autophagy in diabetic kidney diseases.


Assuntos
Nefropatias Diabéticas , Humanos , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Transporte/genética , Colágeno Tipo I , Nefropatias Diabéticas/etiologia , Fibronectinas , Fibrose , Alvo Mecanístico do Complexo 1 de Rapamicina , Tiorredoxinas
8.
Toxicology ; 504: 153795, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574842

RESUMO

The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.


Assuntos
Arsenitos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dano ao DNA , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Estresse Oxidativo , Compostos de Sódio , Arsenitos/toxicidade , Compostos de Sódio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Brônquios/patologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Complexos Multiproteicos/metabolismo , Malondialdeído/metabolismo
9.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657941

RESUMO

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Assuntos
Hidroxianisol Butilado , Células Endoteliais da Veia Umbilical Humana , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Hidroxianisol Butilado/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ferroptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Movimento Celular/efeitos dos fármacos , Ferritinas/metabolismo , Ferritinas/genética , Cicloexilaminas , Oxirredutases , Fenilenodiaminas
11.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
12.
Hum Cell ; 37(3): 865-873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38478355

RESUMO

Alveolar soft part sarcoma (ASPS) is a rare mesenchymal tumor characterized by rearrangement of the ASPSCR1 and TFE3 genes and a histologically distinctive pseudoalveolar pattern. ASPS progresses slowly, but is prone to late metastasis. As ASPS is refractory to conventional chemotherapy, the only curative treatment is complete surgical resection. The prognosis of advanced and metastatic cases is poor, highlighting the need for preclinical research to develop appropriate treatment options. However, ASPS is extremely rare, accounting for < 1% of all soft tissue sarcomas, and only one patient-derived ASPS cell line is available from public cell banks worldwide for research. This study reports the establishment of a novel ASPS cell line derived from the primary tumor tissue of an ASPS patient, named NCC-ASPS2-C1. This cell line retains the ASPSCR1-TFE3 fusion gene, which is characteristic of ASPS. The characterization of this cell line revealed stable growth, spheroid formation, and invasive properties. By screening a drug library using NCC-ASPS2-C1, we identified several drugs that inhibited the proliferation of ASPS cells. In conclusion, the establishment of NCC-ASPS2-C1 provides a valuable resource for advancing ASPS research and developing novel treatments for this challenging disease.


Assuntos
Antineoplásicos , Sarcoma Alveolar de Partes Moles , Neoplasias de Tecidos Moles , Humanos , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Linhagem Celular Tumoral , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Antineoplásicos/farmacologia
13.
Int J Biol Sci ; 20(5): 1905-1926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481802

RESUMO

Increasing evidence suggests that autophagy plays a major role during renal fibrosis. Transcription factor EB (TFEB) is a critical regulator of autophagy- and lysosome-related gene transcription. However, the pathophysiological roles of TFEB in renal fibrosis and fine-tuned mechanisms by which TFEB regulates fibrosis remain largely unknown. Here, we found that TFEB was downregulated in unilateral ureteral obstruction (UUO)-induced human and mouse fibrotic kidneys, and kidney-specific TFEB overexpression using recombinant AAV serotype 9 (rAAV9)-TFEB in UUO mice alleviated renal fibrosis pathogenesis. Mechanically, we found that TFEB's prevention of extracellular matrix (ECM) deposition depended on autophagic flux integrity and its subsequent blockade of G2/M arrest in tubular cells, rather than the autophagosome synthesis. In addition, we together RNA-seq with CUT&Tag analysis to determine the TFEB targeted gene ATP6V0C, and revealed that TFEB was directly bound to the ATP6V0C promoter only at specific site to promote its expression through CUT&Run-qPCR and luciferase reporter assay. Interestingly, TFEB induced autophagic flux integrity, mainly dependent on scaffold protein ATP6V0C-mediated autophagosome-lysosome fusion by bridging with STX17 and VAMP8 (major SNARE complex) by co-immunoprecipitation analysis, rather than its mediated lysosomal acidification and degradation function. Moreover, we further investigated the underlying mechanism behind the low expression of TEFB in UUO-induced renal fibrosis, and clearly revealed that TFEB suppression in fibrotic kidney was due to DNMT3a-associated TFEB promoter hypermethylation by utilizing methylation specific PCR (MSP) and bisulfite-sequencing PCR (BSP), which could be effectively recovered by 5-Aza-2'-deoxycytidine (5A-za) to alleviate renal fibrosis pathogenesis. These findings reveal for the first time that impaired TFEB-mediated autophagosome-lysosome fusion disorder, tubular cell G2/M arrest and renal fibrosis appear to be sequentially linked in UUO-induced renal fibrosis and suggest that DNMT3a/TFEB/ATP6V0C may serve as potential therapeutic targets to prevent renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Camundongos , Apoptose , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Tumoral , Fibrose , Pontos de Checagem da Fase G2 do Ciclo Celular , Nefropatias/metabolismo , Lisossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Obstrução Ureteral/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/farmacologia
14.
Redox Biol ; 72: 103115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554522

RESUMO

BACKGROUND: Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS: Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS: An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION: The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Displasia Broncopulmonar , Hiperóxia , Succinatos , Succinatos/farmacologia , Animais , Autofagia/efeitos dos fármacos , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/patologia , Ratos , Humanos , Hiperóxia/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Modelos Animais de Doenças , Masculino , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Mitofagia/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Recém-Nascido
15.
Apoptosis ; 29(5-6): 757-767, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38358580

RESUMO

Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.


Assuntos
Apoptose , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Movimento Celular , Endometriose , Endométrio , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Feminino , Autofagia/genética , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Apoptose/genética , Movimento Celular/genética , Animais , Ratos , Endométrio/metabolismo , Endométrio/patologia , Adulto , Células Estromais/metabolismo , Células Estromais/patologia , Ratos Sprague-Dawley , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética
16.
Mol Cell ; 84(4): 727-743.e8, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325378

RESUMO

Lysosomes are central to metabolic homeostasis. The microphthalmia bHLH-LZ transcription factors (MiT/TFEs) family members MITF, TFEB, and TFE3 promote the transcription of lysosomal and autophagic genes and are often deregulated in cancer. Here, we show that the GATOR2 complex, an activator of the metabolic regulator TORC1, maintains lysosomal function by protecting MiT/TFEs from proteasomal degradation independent of TORC1, GATOR1, and the RAG GTPase. We determine that in GATOR2 knockout HeLa cells, members of the MiT/TFEs family are ubiquitylated by a trio of E3 ligases and are degraded, resulting in lysosome dysfunction. Additionally, we demonstrate that GATOR2 protects MiT/TFE proteins in pancreatic ductal adenocarcinoma and Xp11 translocation renal cell carcinoma, two cancers that are driven by MiT/TFE hyperactivation. In summary, we find that the GATOR2 complex has independent roles in TORC1 regulation and MiT/TFE protein protection and thus is central to coordinating cellular metabolism with control of the lysosomal-autophagic system.


Assuntos
Neoplasias Renais , Fator de Transcrição Associado à Microftalmia , Humanos , Células HeLa , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteólise , Autofagia/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas/metabolismo , Neoplasias Renais/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
17.
Nat Commun ; 15(1): 1516, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374070

RESUMO

Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.


Assuntos
Lisossomos , Mitocôndrias , Membranas Mitocondriais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia/genética , alfa-Sinucleína/metabolismo , Transporte Ativo do Núcleo Celular/genética
18.
Eur J Med Chem ; 267: 116194, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38340508

RESUMO

Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteínas Proto-Oncogênicas c-myc , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Oncogenes , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia
19.
Med Oncol ; 41(3): 76, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393424

RESUMO

Alveolar soft-part sarcoma (ASPS) is a rare soft tissue tumor with a broad morphologic differential diagnosis. While histology and immunohistochemistry can be suggestive, diagnosis often requires exclusion of other entities followed by confirmatory molecular analysis for its characteristic ASPSCR1-TFE3 fusion. Current stain-based biomarkers (such as immunohistochemistry for cathepsin K and TFE3) show relatively high sensitivity but may lack specificity, often showing staining in multiple other entities under diagnostic consideration. Given the discovery of RNA in situ hybridization (RNA-ISH) for TRIM63 as a sensitive and specific marker of MiTF-family aberration renal cell carcinomas, we sought to evaluate its utility in the workup of ASPS. TRIM63 RNA-ISH demonstrated high levels (H-score greater than 200) of expression in 19/20 (95%) cases of ASPS (average H-score 330) and was weak or negative in cases of paraganglioma, clear cell sarcoma, rhabdomyosarcoma, malignant epithelioid hemangioendothelioma, as well as hepatocellular and adrenal cortical carcinomas. Staining was also identified in tumors with known subsets characterized by TFE3 alterations such as perivascular epithelioid cell neoplasm (PEComa, average H-score 228), while tumors known to exhibit overexpression of TFE3 protein without cytogenetic alterations, such as melanoma and granular cell tumor, generally showed less TRIM63 ISH staining (average H-scores 147 and 96, respectively). Quantitative assessment of TRIM63 staining by RNA-ISH is potentially a helpful biomarker for tumors with molecular TFE3 alterations such as ASPS.


Assuntos
Carcinoma de Células Renais , RNA , Sarcoma Alveolar de Partes Moles , Proteínas com Motivo Tripartido , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Hibridização In Situ , Proteínas Musculares/genética , Sarcoma Alveolar de Partes Moles/diagnóstico , Sarcoma Alveolar de Partes Moles/genética , Sarcoma Alveolar de Partes Moles/patologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases
20.
J Clin Invest ; 134(7)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386415

RESUMO

Translocation renal cell carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed clear cell RCC driver) disrupted nephrogenesis and glomerular development, causing neonatal death, while the clear cell RCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as alveolar soft part sarcoma) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an epithelial-mesenchymal transition. Electron microscopy of tRCC tumors showed lysosome expansion, and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical pathways (cell cycle, lysosome, and mTORC1) and less established pathways such as Myc, E2F, and inflammation (IL-6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc.). Therapeutic trials (adjusted for human drug exposures) showed antitumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis, including the cell of origin, and characterizes diverse mouse models available for research.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Recém-Nascido , Humanos , Carcinoma de Células Renais/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Fatores de Transcrição/genética , Genômica , Neoplasias Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Translocação Genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA