Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8005): 811-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262590

RESUMO

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Assuntos
Evolução Molecular , Feiticeiras (Peixe) , Vertebrados , Animais , Feiticeiras (Peixe)/anatomia & histologia , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/embriologia , Feiticeiras (Peixe)/genética , Lampreias/genética , Filogenia , Vertebrados/genética , Sintenia , Poliploidia , Linhagem da Célula
2.
J Exp Biol ; 221(Pt 16)2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29941614

RESUMO

Hagfishes use their defensive slime to ward off gill-breathing predators. Slime gland refilling is a surprisingly slow process, and previous research has shown that the composition of the slime exudate changes significantly during refilling, which likely has consequences for the functionality of the slime. This study set out to expand our understanding of slime gland refilling by examining the cellular processes involved in refilling of the glands, as well as determining where in the gland the main slime cells - the gland thread cells and gland mucous cells - arise. Slime glands were electro-stimulated to exhaust their slime stores, left to refill for set periods of time, and harvested for histological and immunohistochemical examination. Whole slime glands, gland thread cell morphometrics and slime cell proportions were examined over the refilling cycle. Slime glands decreased significantly in size after exhaustion, but steadily increased in size over refilling. Gland thread cells were the limiting factor in slime gland refilling, taking longer to replenish and mature than gland mucous cells. Newly produced gland thread cells underwent most of their growth near the edge of the gland, and larger cells were found farthest from the edge of the gland. Immunohistochemical analysis also revealed proliferating cells only within the epithelial lining of the slime gland, suggesting that new slime cells originate from undifferentiated cells lining the gland. Our results provide an in-depth look at the cellular dynamics of slime gland refilling in Pacific hagfish, and provide a model for how slime glands refill at the cellular level.


Assuntos
Glândulas Exócrinas/metabolismo , Feiticeiras (Peixe)/fisiologia , Animais , Glândulas Exócrinas/citologia , Feiticeiras (Peixe)/química , Feiticeiras (Peixe)/citologia , Imuno-Histoquímica , Muco/metabolismo , Fatores de Tempo
3.
Annu Rev Biochem ; 84: 947-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25534639

RESUMO

Hagfishes thwart attacks by fish predators by producing liters of defensive slime. The slime is produced when slime gland exudate is released into the predator's mouth, where it deploys in a fraction of a second and clogs the gills. Slime exudate is composed mainly of secretory products from two cell types, gland mucous cells and gland thread cells, which produce the mucous and fibrous components of the slime, respectively. Here, we review what is known about the composition of the slime, morphology of the slime gland, and physiology of the cells that produce the slime. We also discuss several of the mechanisms involved in the deployment of both mucous and thread cells during the transition from thick glandular exudate to ultradilute material. We review biomechanical aspects of the slime, along with recent efforts to produce biomimetic slime thread analogs, and end with a discussion of how hagfish slime may have evolved.


Assuntos
Feiticeiras (Peixe)/química , Feiticeiras (Peixe)/fisiologia , Muco/metabolismo , Animais , Biomimética , Glândulas Exócrinas/citologia , Glândulas Exócrinas/metabolismo , Feiticeiras (Peixe)/citologia , Muco/química
4.
Nat Commun ; 5: 3534, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24698953

RESUMO

The defensive slime of hagfishes contains thousands of intermediate filament protein threads that are manufactured within specialized gland thread cells. The material properties of these threads rival those of spider dragline silks, which makes them an ideal model for biomimetic efforts to produce sustainable protein materials, yet how the thread is produced and organized within the cell is not well understood. Here we show how changes in nuclear morphology, size and position can explain the three-dimensional pattern of thread coiling in gland thread cells, and how the ultrastructure of the thread changes as very young thread cells develop into large cells with fully mature coiled threads. Our model provides an explanation for the complex process of thread assembly and organization that has fascinated and perplexed biologists for over a century, and provides valuable insights for the quest to manufacture high-performance biomimetic protein materials.


Assuntos
Estruturas Animais/citologia , Proteínas de Peixes/ultraestrutura , Feiticeiras (Peixe)/metabolismo , Proteínas de Filamentos Intermediários/química , Estruturas Animais/metabolismo , Estruturas Animais/ultraestrutura , Animais , Proteínas de Peixes/metabolismo , Feiticeiras (Peixe)/citologia , Feiticeiras (Peixe)/ultraestrutura , Proteínas de Filamentos Intermediários/metabolismo , Proteínas de Filamentos Intermediários/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA