Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biochem Biophys Res Commun ; 549: 21-26, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33652206

RESUMO

Polarity is a feature of life. In higher plants, non-autonomous polarity is largely directed by auxin, the morphogen that drives its own polarized flow, Polar Auxin Transport (PAT), to guide patterning events such as phyllotaxis and tropism. The plasma membrane-localized PIN-FORMED (PIN) auxin efflux carriers are rate-limiting factors in PAT. In yeasts and metazoans, the STE20 kinases are key players in cell polarity. We had previously characterized SIK1 as a STE20/Hippo orthologue in Arabidopsis and confirmed its function in mitotic exit and organ growth. Here we explore the possible link between SIK1, auxin, PIN, and polarity. Abnormal phyllotaxis and gravitropism were observed in sik1. sik1 was more sensitive to exogenous auxin in primary root elongation and lateral root emergence. RNA-Seq revealed reduced expression in auxin biosynthesis genes and induced expression of auxin flux carriers in sik1. However, normal tissue- and sub-cellular localization patterns of PIN1 and PIN2 were observed in sik1. The dark-induced vacuolar degradation of PIN2 also appeared normal in sik1. An additive phenotype was observed in the sik1 pin1 double mutant, indicating that SIK1 does not directly regulate PIN1. The polarity defects of sik1 are hence unlikely mediated by PINs and await future exploration.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Polaridade Celular , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cotilédone/crescimento & desenvolvimento , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitropismo/fisiologia , Ácidos Indolacéticos/farmacologia , Mutação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética
2.
Mol Cell Proteomics ; 19(12): 1936-1952, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32883801

RESUMO

Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.


Assuntos
Citrus/enzimologia , Citrus/microbiologia , Progressão da Doença , Peroxidases/metabolismo , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/metabolismo , Proteômica , Serina Proteases/metabolismo , Citrus/efeitos dos fármacos , Citrus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Peroxidases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/microbiologia , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(32): 16127-16136, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324744

RESUMO

Florigen, a proteinaceous hormone, functions as a universal long-range promoter of flowering and concurrently as a generic growth-attenuating hormone across leaf and stem meristems. In flowering plants, the transition from the vegetative phase to the reproductive phase entails the orchestration of new growth coordinates and a global redistribution of resources, signals, and mechanical loads among organs. However, the ultimate cellular processes governing the adaptation of the shoot system to reproduction remain unknown. We hypothesized that if the mechanism for floral induction is universal, then the cellular metabolic mechanisms underlying the conditioning of the shoot system for reproduction would also be universal and may be best regulated by florigen itself. To understand the cellular basis for the vegetative functions of florigen, we explored the radial expansion of tomato stems. RNA-Seq and complementary genetic and histological studies revealed that florigen of endogenous, mobile, or induced origins accelerates the transcription network navigating secondary cell wall biogenesis as a unit, promoting vascular maturation and thereby adapting the shoot system to the developmental needs of the ensuing reproductive phase it had originally set into motion. We then demonstrated that a remarkably stable and broadly distributed florigen promotes MADS and MIF genes, which in turn regulate the rate of vascular maturation and radial expansion of stems irrespective of flowering or florigen level. The dual acceleration of flowering and vascular maturation by florigen provides a paradigm for coordinated regulation of independent global developmental programs.


Assuntos
Arabidopsis/fisiologia , Parede Celular/metabolismo , Florígeno/farmacologia , Flores/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Feixe Vascular de Plantas/fisiologia , Solanum lycopersicum/fisiologia , Arabidopsis/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Temperatura Alta , Solanum lycopersicum/efeitos dos fármacos , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Feixe Vascular de Plantas/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
4.
Plant Cell ; 31(7): 1539-1562, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31076540

RESUMO

Cellular calcium elevation is an important signal used by plants for recognition and signaling of environmental stress. Perception of the generalist insect, Spodoptera litura, by Arabidopsis (Arabidopsis thaliana) activates cytosolic Ca2+ elevation, which triggers downstream defense. However, not all the Ca2+ channels generating the signal have been identified, nor are their modes of action known. We report on a rapidly activated, leaf vasculature- and plasma membrane-localized, CYCLIC NUCLEOTIDE GATED CHANNEL19 (CNGC19), which activates herbivory-induced Ca2+ flux and plant defense. Loss of CNGC19 function results in decreased herbivory defense. The cngc19 mutant shows aberrant and attenuated intravascular Ca2+ fluxes. CNGC19 is a Ca2+-permeable channel, as hyperpolarization of CNGC19-expressing Xenopus oocytes in the presence of both cyclic adenosine monophosphate and Ca2+ results in Ca2+ influx. Breakdown of Ca2+-based defense in cngc19 mutants leads to a decrease in herbivory-induced jasmonoyl-l-isoleucine biosynthesis and expression of JA responsive genes. The cngc19 mutants are deficient in aliphatic glucosinolate accumulation and hyperaccumulate its precursor, methionine. CNGC19 modulates aliphatic glucosinolate biosynthesis in tandem with BRANCHED-CHAIN AMINO ACID TRANSAMINASE4, which is involved in the chain elongation pathway of Met-derived glucosinolates. Furthermore, CNGC19 interacts with herbivory-induced CALMODULIN2 in planta. Together, our work reveals a key mechanistic role for the Ca2+ channel CNGC19 in the recognition of herbivory and the activation of defense signaling.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Canais de Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Herbivoria/fisiologia , Spodoptera/fisiologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ciclopentanos/farmacologia , Citosol/efeitos dos fármacos , Citosol/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucosinolatos/metabolismo , Herbivoria/efeitos dos fármacos , Metionina/metabolismo , Modelos Biológicos , Mutação/genética , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/parasitologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/genética , Ligação Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Xenopus
5.
Development ; 145(23)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30389856

RESUMO

The thickening of plant organs is supported by secondary growth, a process by which new vascular tissues (xylem and phloem) are produced. Xylem is composed of several cell types, including xylary fibers, parenchyma and vessel elements. In Arabidopsis, it has been shown that fibers are promoted by the class-I KNOX gene KNAT1 and the plant hormones gibberellins, and are repressed by a small set of receptor-like kinases; however, we lack a mechanistic framework to integrate their relative contributions. Here, we show that DELLAs, negative elements of the gibberellin signaling pathway, physically interact with KNAT1 and impair its binding to KNAT1-binding sites. Our analysis also indicates that at least 37% of the transcriptome mobilized by KNAT1 is potentially dependent on this interaction, and includes genes involved in secondary cell wall modifications and phenylpropanoid biosynthesis. Moreover, the promotion by constitutive overexpression of KNAT1 of fiber formation and the expression of genes required for fiber differentiation were still reverted by DELLA accumulation, in agreement with post-translational regulation of KNAT1 by DELLA proteins. These results suggest that gibberellins enhance fiber development by promoting KNAT1 activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Diferenciação Celular , Giberelinas/farmacologia , Proteínas de Homeodomínio/metabolismo , Xilema/citologia , Xilema/metabolismo , Arabidopsis/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Mutação com Ganho de Função/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fenótipo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Xilema/efeitos dos fármacos
6.
Development ; 144(19): 3578-3589, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851711

RESUMO

The plant vascular network consists of specialized phloem and xylem elements that undergo two distinct morphogenetic developmental programs to become transport-functional units. Whereas vacuolar rupture is a determinant step in protoxylem differentiation, protophloem elements never form a big central vacuole. Here, we show that a genetic disturbance of phosphatidylinositol 4,5-bis-phosphate [PtdIns(4,5)P2] homeostasis rewires cell trafficking towards the vacuole in Arabidopsis thaliana roots. Consequently, an enhanced phosphoinositide-mediated vacuolar biogenesis correlates with premature programmed cell death (PCD) and secondary cell wall elaboration in xylem cells. By contrast, vacuolar fusion events in protophloem cells trigger the abnormal formation of big vacuoles, preventing cell clearance and tissue functionality. Removal of the inositol 5' phosphatase COTYLEDON VASCULAR PATTERN 2 from the plasma membrane (PM) by brefeldin A (BFA) treatment increases PtdIns(4,5)P2 content at the PM and disrupts protophloem continuity. Conversely, BFA application abolishes vacuolar fusion events in xylem tissue without preventing PCD, suggesting the existence of additional PtdIns(4,5)P2-dependent cell death mechanisms. Overall, our data indicate that tight PM phosphoinositide homeostasis is required to modulate intracellular trafficking contributing to oppositely regulate vascular differentiation.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Homeostase , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Feixe Vascular de Plantas/citologia , Apoptose/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Estradiol/farmacologia , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Floema/citologia , Floema/efeitos dos fármacos , Floema/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo , Xilema/citologia , Xilema/efeitos dos fármacos , Xilema/metabolismo
7.
New Phytol ; 214(1): 81-96, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27859288

RESUMO

The primary thickening growth of Moso (Phyllostachys edulis) underground shoots largely determines the culm circumference. However, its developmental mechanisms remain largely unknown. Using an integrated anatomy, mathematics and genomics approach, we systematically studied cellular and molecular mechanisms underlying the growth of Moso underground shoots. We discovered that the growth displayed a spiral pattern and pith played an important role in promoting the primary thickening process of Moso underground shoots and driving the evolution of culms with different sizes among different bamboo species. Different with model plants, the shoot apical meristem (SAM) of Moso is composed of six layers of cells. Comparative transcriptome analysis identified a large number of genes related to the vascular tissue formation that were significantly upregulated in a thick wall variant with narrow pith cavity, mildly spiral growth, and flat and enlarged SAM, including those related to plant hormones and those involved in cell wall development. These results provide a systematic perspective on the primary thickening growth of Moso underground shoots, and support a plausible mechanism resulting in the narrow pith cavity, weak spiral growth but increased vascular bundle of the thick wall Moso.


Assuntos
Genes de Plantas , Estudos de Associação Genética , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Poaceae/genética , Evolução Biológica , Diferenciação Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/ultraestrutura , Celulose/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/citologia , Meristema/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/genética , Brotos de Planta/ultraestrutura , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/efeitos dos fármacos , Poaceae/citologia , Poaceae/ultraestrutura , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
J Plant Physiol ; 206: 25-39, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27688091

RESUMO

In this study we exposed variegated leaves of Pelargonium zonale to strong sunlight (>1100µmolm-2s-1 of photosynthetically active radiation) with and without paraquat (Pq), with the aim to elucidate the mechanisms of H2O2 regulation in green and white tissues with respect to the photosynthetically-dependent generation of reactive oxygen species (ROS). Sunlight induced marked accumulation of H2O2 in the apoplast of vascular and (peri)vascular tissues only in green sectors. This effect was enhanced by the addition of Pq. In the presence of diphenyl iodide, an NADPH oxidase inhibitor, H2O2 accumulation was abolished. Distinct light-induced responses were observed: in photosynthetic cells, sunlight rapidly provoked ascorbate (Asc) biosynthesis and an increase of glutathione reductase (GR) and catalase activities, while in non-photosynthetic cells, early up-regulation of soluble ascorbate peroxidase, dehydroascorbate reductase (DHAR) and GR activities was observed. Paraquat addition stimulated DHAR and GR activities in green sectors, while in white sectors activities of monodehydroascorbate reductase, DHAR and class III peroxidases, as well as Asc content rapidly increased. Differential antioxidative responses in the two tissues in the frame of their contrasting metabolisms, and the possible role of (peri)vascular H2O2 in signaling were discussed.


Assuntos
Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Paraquat/toxicidade , Pelargonium/efeitos dos fármacos , Pelargonium/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Luz Solar , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Espaço Extracelular/metabolismo , Glutationa/metabolismo , Pelargonium/efeitos da radiação , Peroxidases/metabolismo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos da radiação
9.
J Exp Bot ; 67(8): 2309-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912800

RESUMO

Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development.


Assuntos
Arabidopsis/genética , Genes de Plantas , Peptídeos/farmacologia , Populus/genética , Motivos de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Família Multigênica , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Fenótipo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência
10.
Small ; 12(5): 623-30, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26662357

RESUMO

Biological responses to photothermal effects of gold nanoparticles (GNPs) have been demonstrated and employed for various applications in diverse systems except for one important class - plants. Here, the uptake of GNPs through Arabidopsis thaliana roots and translocation to leaves are reported. Successful plasmonic nanobubble generation and acoustic signal detection in planta is demonstrated. Furthermore, Arabidopsis leaves harboring GNPs and exposed to continuous laser or noncoherent light show elevated temperatures across the leaf surface and induced expression of heat-shock regulated genes. Overall, these results demonstrate that Arabidopsis can readily take up GNPs through the roots and translocate the particles to leaf tissues. Once within leaves, GNPs can act as photothermal agents for on-demand remote activation of localized biological processes in plants.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Ouro/farmacologia , Luz , Nanopartículas Metálicas/química , Temperatura , Acústica , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Imageamento Tridimensional , Lasers , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos da radiação
11.
Mol Plant Pathol ; 17(6): 890-902, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26609568

RESUMO

The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence.


Assuntos
Biofilmes , Espaço Extracelular/microbiologia , Feixe Vascular de Plantas/microbiologia , Ralstonia solanacearum/patogenicidade , Solanum lycopersicum/microbiologia , Aderência Bacteriana/efeitos dos fármacos , Biopolímeros/metabolismo , Carboidratos/farmacologia , Contagem de Colônia Microbiana , Espaço Extracelular/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/ultraestrutura , Mutação/genética , Feixe Vascular de Plantas/efeitos dos fármacos , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/ultraestrutura , Virulência/efeitos dos fármacos
12.
Planta ; 242(1): 23-37, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26007688

RESUMO

MAIN CONCLUSION: So far, considerable advances have been achieved in understanding the mechanisms of Si uptake and transport in vascular plants. This review presents a comprehensive update about this issue, but also provides the new insights into the role of Si against mineral stresses that occur in acid soils. Such information could be helpful to understand both the differential Si uptake ability as well as the benefits of this mineral element on plants grown under acidic conditions. Silicon (Si) has been widely recognized as a beneficial element for many plant species, especially under stress conditions. In the last few years, great efforts have been made to elucidate the mechanisms involved in uptake and transport of Si by vascular plants and recently, different Si transporters have been identified. Several researches indicate that Si can alleviate various mineral stresses in plants growing under acidic conditions, including aluminium (Al) and manganese (Mn) toxicities as well as phosphorus (P) deficiency all of which are highly detrimental to crop production. This review presents recent findings concerning the influence of uptake and transport of Si on mineral stress under acidic conditions because a knowledge of this interaction provides the basis for understanding the role of Si in mitigating mineral stress in acid soils. Currently, only four Si transporters have been identified and there is little information concerning the response of Si transporters under stress conditions. More investigations are therefore needed to establish whether there is a relationship between Si transporters and the benefits of Si to plants subjected to mineral stress. Evidence presented suggests that Si supply and its subsequent accumulation in plant tissues could be exploited as a strategy to improve crop productivity on acid soils.


Assuntos
Ácidos/farmacologia , Minerais/metabolismo , Feixe Vascular de Plantas/metabolismo , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos dos fármacos
13.
Physiol Plant ; 153(2): 253-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24930426

RESUMO

Verticillium dahliae is a prominent generator of plant vascular wilting disease and sulfur (S)-enhanced defense (SED) mechanisms contribute to its in-planta elimination. The accumulation of S-containing defense compounds (SDCs) including elemental S (S(0) ) has been described based on the comparison of two near-isogenic tomato (Solanum lycopersicum) lines differing in fungal susceptibility. To better understand the effect of S nutrition on V. dahliae resistance both lines were supplied with low, optimal or supraoptimal sulfate-S. An absolute quantification demonstrated a most effective fungal elimination due to luxury plant S nutrition. High-pressure liquid chromatography (HPLC) showed a strong regulation of Cys levels and an S-responsive GSH pool rise in the bulk hypocotyl. High-frequency S peak accumulations were detected in vascular bundles of resistant tomato plants after fungal colonization by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Global transcriptomic analysis suggested that early steps of the primary S metabolism did not promote the SDCs synthesis in the whole hypocotyl as gene expression was downregulated after infection. Enhanced S fertilization mostly alleviated the repressive fungal effect but did not reverse it. Upregulation of glutathione (GSH)-associated genes in bulk hypocotyls but not in vascular bundles indicated a global antioxidative role of GSH. To finally assign the contribution of S metabolism-associated genes to high S(0) accumulations exclusively found in the resistant tomato line, a spatial gene expression approach was applied. Laser microdissection of infected vascular bundles revealed a switch toward transcription of genes connected with cysteine (Cys) synthesis. The upregulation of LeOASTLp1 suggests a role for Cys as key precursor for local S accumulations (possibly S(0) ) in the vascular bundles of the V. dahliae-resistant tomato line.


Assuntos
Cisteína/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Feixe Vascular de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Enxofre/metabolismo , Verticillium/fisiologia , Transporte Biológico/efeitos dos fármacos , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Estudos de Associação Genética , Genótipo , Hipocótilo/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/imunologia , Microdissecção , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/microbiologia , Espectrofotometria Atômica , Sulfatos/farmacologia , Compostos de Sulfidrila/metabolismo , Verticillium/efeitos dos fármacos , Verticillium/crescimento & desenvolvimento , Xilema/microbiologia
14.
Science ; 345(6197): 1255215, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25104393

RESUMO

Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Padronização Corporal/fisiologia , Ácidos Indolacéticos/metabolismo , Feixe Vascular de Plantas/crescimento & desenvolvimento , Aminoidrolases , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/efeitos dos fármacos , Padronização Corporal/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Citocinas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/farmacologia , Proteínas Nucleares/genética , Feixe Vascular de Plantas/efeitos dos fármacos , Transativadores/metabolismo
15.
ACS Appl Mater Interfaces ; 6(15): 13299-307, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25006681

RESUMO

Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the self-replenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectious bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.


Assuntos
Incrustação Biológica , Feixe Vascular de Plantas/fisiologia , Biofilmes/efeitos dos fármacos , Contagem de Células , Dimetilpolisiloxanos/farmacologia , Lubrificantes/toxicidade , Microalgas/citologia , Microalgas/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos dos fármacos , Silicones/farmacologia , Propriedades de Superfície , Testes de Toxicidade
16.
Mol Plant Pathol ; 15(8): 823-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24684632

RESUMO

Trichoderma is a soil-borne fungal genus that includes species with a significant impact on agriculture and industrial processes. Some Trichoderma strains exert beneficial effects in plants through root colonization, although little is known about how this interaction takes place. To better understand this process, the root colonization of wild-type Arabidopsis and the salicylic acid (SA)-impaired mutant sid2 by a green fluorescent protein (GFP)-marked Trichoderma harzianum strain was followed under confocal microscopy. Trichoderma harzianum GFP22 was able to penetrate the vascular tissue of the sid2 mutant because of the absence of callose deposition in the cell wall of root cells. In addition, a higher colonization of sid2 roots by GFP22 compared with that in Arabidopsis wild-type roots was detected by real-time polymerase chain reaction. These results, together with differences in the expression levels of plant defence genes in the roots of both interactions, support a key role for SA in Trichoderma early root colonization stages. We observed that, without the support of SA, plants were unable to prevent the arrival of the fungus in the vascular system and its spread into aerial parts, leading to later collapse.


Assuntos
Arabidopsis/microbiologia , Raízes de Plantas/microbiologia , Feixe Vascular de Plantas/microbiologia , Ácido Salicílico/farmacologia , Trichoderma/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucanos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Feixe Vascular de Plantas/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Trichoderma/efeitos dos fármacos
17.
New Phytol ; 201(4): 1176-1182, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24387138

RESUMO

• The stress-related phytohormones, salicylic acid (SA) and abscisic acid (ABA), and the three jasmonates, jasmonic acid (JA), cis-12-oxo-phytodienoic acid (cis-OPDA), and (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), were investigated in phloem and xylem exudates of Cucurbita maxima. • Phloem and xylem exudates were separately collected and analysed via liquid chromatography-mass spectrometry. • We show direct evidence for all three jasmonates, ABA, and SA in both phloem and xylem exudates of C. maxima. JA and JA-Ile concentrations are higher in xylem (JA: c(xylem) ≈ 199.5 nM, c(phloem) ≈ 43.9 nM; JA-Ile: c(xylem) ≈ 7.9 nM, c(phloem) ≈ 1.6 nM), whereas ABA and SA concentrations are higher in phloem exudates (ABA: c(xylem) ≈ 37.1 nM, c(phloem) ≈ 142.6 nM; SA: c(xylem) ≈ 61.6 nM, c(phloem) ≈ 1319 nM). During bacteria-derived flagellin 22 (flg22)-triggered remote root-to-shoot signalling, phytohormone concentration changed rapidly both in phloem and xylem. • The unequal distribution of phytohormones suggests that phloem and xylem have distinct roles in defence responses. Our data shed light on systemic phytohormone signalling and help explain how plants cope with environmental challenges by lateral exchange between phloem and xylem. Our analysis is a starting point for further investigations of how phytohormones contribute to phloem- and xylem-based defence signalling.


Assuntos
Cucurbita/fisiologia , Flagelina/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Feixe Vascular de Plantas/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Cucurbita/efeitos dos fármacos , Floema/efeitos dos fármacos , Floema/fisiologia , Exsudatos de Plantas/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Xilema/efeitos dos fármacos , Xilema/fisiologia
18.
Plant Cell Physiol ; 55(2): 258-68, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24406628

RESUMO

Elevated CO2 concentrations (eCO2) trigger various plant responses. Despite intensive studies of these responses, the underlying mechanisms remain obscure. In this work, we investigated when and how leaf physiology and anatomy are affected by eCO2 in rice plants. We analyzed the most recently fully expanded leaves that developed successively after transfer of the plant to eCO2. To discriminate between the effects of eCO2 and those of nitrogen deficiency, we used three different levels of N application. We found that a decline in the leaf soluble protein content (on a leaf area basis) at eCO2 was only observed under N deficiency. The length and width of the leaf blade were reduced by both eCO2 and N deficiency, whereas the blade thickness was increased by eCO2 but was not affected by N deficiency. The change in length by eCO2 became detectable in the secondly fully expanded leaf, and those in width and thickness in the thirdly fully expanded leaf, which were at the leaf developmental stages P4 and P3, respectively, at the onset of the eCO2 treatment. The decreased blade length at eCO2 was associated with a decrease in the epidermal cell number on the adaxial side and a reduction in cell length on the abaxial side. The decreased width resulted from decreased numbers of small vascular bundles and epidermal cell files. The increased thickness was ascribed mainly to enhanced development of bundle sheath extensions at the ridges of vascular bundles. These observations enable us to identify the sites of action of eCO2 on rice leaf development.


Assuntos
Dióxido de Carbono/metabolismo , Nitrogênio/deficiência , Oryza/fisiologia , Fotossíntese , Transpiração Vegetal , Nitrogênio/metabolismo , Oryza/citologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/fisiologia
19.
Plant Cell Environ ; 37(5): 1046-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24004447

RESUMO

C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around ribulose bisphosphate carboxylase oxygenase (Rubisco) in the bundle sheath (BS). Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. Maize plants were grown under high and low light regimes (respectively HL, 600 versus LL, 100 µE m(-2) s(-1) ). Short-term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry. Direct measurement of respiration in the light, and ATP production rate (JATP ), allowed us use a novel approach to derive Φ, compared with the conventional fitting of measured and predicted Δ. HL grown plants responded to decreasing light intensities with the well-documented increase in Φ. Conversely, LL plants showed a constant Φ, which has not been observed previously. We explain the pattern by two contrasting acclimation strategies: HL plants maintained a high CCM activity at LL, resulting in high CO2 overcycling and increased Φ; LL plants acclimated by down-regulating the CCM, effectively optimizing scarce ATP supply. This surprising plasticity may limit the impact of Φ-dependent carbon losses in leaves becoming shaded within developing canopies.


Assuntos
Aclimatação/efeitos da radiação , Carbono/metabolismo , Luz , Feixe Vascular de Plantas/fisiologia , Feixe Vascular de Plantas/efeitos da radiação , Zea mays/fisiologia , Zea mays/efeitos da radiação , Aclimatação/efeitos dos fármacos , Isótopos de Carbono , Modelos Biológicos , Oxigênio/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Zea mays/efeitos dos fármacos
20.
Plant Cell Physiol ; 55(4): 764-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24363287

RESUMO

The trans-Golgi network (TGN) is a tubular-vesicular organelle that matures from the trans cisternae of the Golgi apparatus. In plants, the TGN functions as a central hub for three trafficking pathways: the secretory pathway, the vacuolar trafficking pathway and the endocytic pathway. Here, we describe a novel TGN-localized membrane protein, CONTINUOUS VASCULAR RING (COV1), that is crucial for TGN function in Arabidopsis. The COV1 gene was originally identified from the stem vascular patterning mutant of Arabidopsis thaliana. However, the molecular function of COV1 was not identified. Fluorescently tagged COV1 proteins co-localized with the TGN marker proteins, SYNTAXIN OF PLANTS 4 (SYP4) and vacuolar-type H(+)-ATPase subunit a1 (VHA-a1). Consistently, COV1-localized compartments were sensitive to concanamycin A, a specific inhibitor of VHA. Intriguingly, cov1 mutants exhibited abnormal Golgi morphologies, including a reduction in the number of Golgi cisternae and a reduced association between the TGN and the Golgi apparatus. A deficiency in COV1 also resulted in a defect in vacuolar protein sorting, which was characterized by the abnormal accumulation of storage protein precursors in seeds. Moreover, we found that the development of an idioblast, the myrosin cell, was abnormally increased in cov1 leaves. Our results demonstrate that the novel TGN-localized protein COV1 is required for Golgi morphology, vacuolar trafficking and myrosin cell development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo , Diferenciação Celular/efeitos dos fármacos , Concanavalina A/farmacologia , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/efeitos dos fármacos , Feixe Vascular de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas de Armazenamento de Sementes/metabolismo , Vacúolos/efeitos dos fármacos , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/ultraestrutura , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA