Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.790
Filtrar
1.
Environ Health Perspect ; 132(5): 57002, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728218

RESUMO

BACKGROUND: Endocrine-disrupting chemicals may play a role in adiposity development during childhood. Until now literature in this scope suffers from methodologic limitations in exposure assessment using one or few urine samples and missing assessment during the infancy period. OBJECTIVES: We investigated the associations between early-life exposure to quickly metabolized chemicals and post-natal growth, relying on repeated within-subject urine collections over pregnancy and infancy. METHODS: We studied the associations of four phenols, four parabens, seven phthalates, and one nonphthalate plasticizer from weekly pooled urine samples collected from the mother during second and third trimesters (median 18 and 34 gestational weeks, respectively) and infant at 2 and 12 months of age, and child growth until 36 months. We relied on repeated measures of height, weight and head circumference from study visits and the child health booklet to predict growth outcomes at 3 and 36 months using the Jenss-Bayley nonlinear mixed model. We assessed associations with individual chemicals using adjusted linear regression and mixtures of chemicals using a Bayesian kernel machine regression model. RESULTS: The unipollutant analysis revealed few associations. Bisphenol S (BPS) at second trimester was positively associated with all infant growth parameters at 3 and 36 months, with similar patterns between exposure at third trimester and all infant growth parameters at 3 months. Mono-n-butyl phthalate (MnBP) at 12 months was positively associated with body mass index (BMI), weight, and head circumference at 36 months. Mixture analysis revealed positive associations between exposure at 12 months and BMI and weight at 36 months, with MnBP showing the highest effect size within the mixture. CONCLUSIONS: This study suggests that exposure in early infancy may be associated with increased weight and BMI in early childhood, which are risk factors of obesity in later life. Furthermore, this study highlighted the impact of BPS, a compound replacing bisphenol A, which has never been studied in this context. https://doi.org/10.1289/EHP13644.


Assuntos
Disruptores Endócrinos , Parabenos , Fenóis , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ácidos Ftálicos/urina , Fenóis/urina , Fenóis/toxicidade , Feminino , Lactente , Gravidez , Disruptores Endócrinos/urina , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/urina , Masculino , Exposição Materna/estatística & dados numéricos , Exposição Materna/efeitos adversos , Estudos Longitudinais , Pré-Escolar , Antropometria
2.
Food Chem Toxicol ; 188: 114713, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702036

RESUMO

Bisphenol A (BPA) is an endocrine disruptor strongly associated with ovarian dysfunction. BPA is being substituted by structurally similar chemicals, such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, the toxicity of these analogues in female reproduction remains largely unknown. This study evaluated the effects of BPA and its analogues BPS, BPF, and BPAF on the mitochondrial mass and function, oxidative stress, and their potential to induce apoptosis of human granulosa cells (KGN cells). BPA and its analogues, especially BPA and BPAF, significantly decreased mitochondrial activity and cell viability. The potential of bisphenols to reduce mitochondrial mass and function differed in the following order: BPAF > BPA > BPF > BPS. Flow cytometry revealed that exposure to bisphenols significantly increased mitochondrial ROS levels and increased mitochondrial Ca2+ levels. Thus, bisphenols exposure causes mitochondrial stress in KGN cells. At the same time, bisphenols exposure significantly induced apoptosis. These results thus emphasize the toxicity of these bisphenols to cells. Our study suggests the action mechanism of BPA and its analogues in damage caused to ovarian granulosa cells. Additionally, these novel analogues may be regrettable substitutes, and the biological effects and potential risks of BPA alternatives must be evaluated.


Assuntos
Apoptose , Compostos Benzidrílicos , Células da Granulosa , Mitocôndrias , Fenóis , Espécies Reativas de Oxigênio , Humanos , Fenóis/toxicidade , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Feminino , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Sulfonas/toxicidade , Sulfonas/química , Linhagem Celular , Cálcio/metabolismo , Fluorocarbonos
3.
Front Neuroendocrinol ; 73: 101132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561126

RESUMO

In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.


Assuntos
Disruptores Endócrinos , Transtornos do Neurodesenvolvimento , Praguicidas , Disruptores Endócrinos/efeitos adversos , Disruptores Endócrinos/toxicidade , Humanos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/epidemiologia , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/toxicidade , Poluentes Ambientais/efeitos adversos , Fenóis/efeitos adversos , Fenóis/toxicidade , Feminino , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/toxicidade , Animais , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/efeitos adversos , Gravidez
4.
J Hazard Mater ; 471: 134371, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657513

RESUMO

4-NP (4-nonylphenol), a prevalent environmental endocrine disruptor with estrogenic properties, is commonly detected in drinking water and food sources. It poses a significant risk of endocrine disruption, thereby influencing the onset and progression of diverse diseases, including tumorigenesis. However, its specific impact on cervical cancer remains to be fully elucidated. Our study focused on the biological effects of sustained exposure to low-dose 4-NP on human normal cervical epithelial cells (HcerEpic). After a continuous 30-week exposure to 4-NP, the treated cells exhibited a significant malignant transformation, whereas the solvent control group showed limited malignant phenotypes. Subsequent analyses of the metabolomic profiles of the transformed cells unveiled marked irregularities in glutathione metabolism and unsaturated fatty acid metabolism. Analyses of transcriptomic profiles revealed significant activation of the MAPK signaling pathway and suppression of ferroptosis processes in these cells. Furthermore, the expression of MT2A was significantly upregulated following 4-NP exposure. Knockdown of MT2A restored the aberrant activation of the MAPK signaling pathway, elevated antioxidant capacity, ferroptosis inhibition, and ultimately the development of malignant phenotypes that induced by 4-NP in the transformed cells. Mechanistically, MT2A increased cellular antioxidant capabilities and facilitated the removal of toxic iron ions by enhancing the phosphorylation of ERK1/2 and JNK MAPK pathways. The administration of activators and inhibitors of the MAPK pathway confirmed that the MAPK pathway mediated the 4-NP-induced suppression of ferroptosis and, ultimately, the malignant transformation of cervical epithelial cells. Overall, our findings elucidated a dynamic molecular transformation induced by prolonged exposure to 4-NP, and delineated comprehensive biological perspectives underlying 4-NP-induced cervical carcinogenesis. This offers novel theoretical underpinnings for the assessment of the carcinogenic risks associated with 4-NP.


Assuntos
Ferroptose , Fenóis , Neoplasias do Colo do Útero , Ferroptose/efeitos dos fármacos , Humanos , Feminino , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Fenóis/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38609061

RESUMO

Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17ß (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 µg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.


Assuntos
Bass , Compostos Benzidrílicos , Estradiol , Fenóis , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Estradiol/metabolismo , Poluentes Químicos da Água/toxicidade , Bass/crescimento & desenvolvimento , Bass/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Calcificação Fisiológica/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
6.
Sci Total Environ ; 929: 172537, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636855

RESUMO

The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated the following models to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA), independent action (IA), and two deep neural network (DNN) models. One applied mixture molecular descriptors as input variables (DNN-QSAR), while the other applied the ratios of chemicals in the mixtures (DNN-Ratio). Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and - 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and - 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.


Assuntos
Inteligência Artificial , Compostos Benzidrílicos , Fenóis , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Rotíferos/efeitos dos fármacos , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Relação Quantitativa Estrutura-Atividade
7.
Environ Int ; 186: 108643, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615544

RESUMO

Exposure to bisphenol S (BPS) is known to adversely affect neuronal development. As pivotal components of neuronal polarization, axons and dendrites are indispensable structures within neurons, crucial for the maintenance of nervous system function. Here, we investigated the impact of BPS exposure on axonal and dendritic development both in vivo and in vitro. Our results revealed that exposure to BPS during pregnancy and lactation led to a reduction in the complexity, density, and length of axons and dendrites in the prefrontal cortex (PFC) of offspring. Employing RNA sequencing technology to elucidate the underlying mechanisms of axonal and dendritic damage induced by BPS, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted a significant alteration in the oxidative phosphorylation (OXPHOS) pathway, essential for mitochondrial function. Subsequent experiments demonstrate BPS-induced impairment in mitochondrial function, including damaged morphology, decreased adenosine triphosphate (ATP) and superoxide dismutase (SOD) levels, and increased reactive oxygen species and malondialdehyde (MDA). These alterations coincided with the downregulated expression of OXPHOS pathway-related genes (ATP6V1B1, ATP5K, NDUFC1, NDUFC2, NDUFA3, COX6B1) and Myosin 19 (Myo19). Notably, Myo19 overexpression restored the BPS-induced mitochondrial dysfunction by alleviating the inhibition of OXPHOS pathway. Consequently, this amelioration was associated with a reduction in BPS-induced axonal and dendritic injury observed in cultured neurons of the PFC.


Assuntos
Axônios , Dendritos , Mitocôndrias , Fosforilação Oxidativa , Fenóis , Sulfonas , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fenóis/toxicidade , Dendritos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Feminino , Sulfonas/toxicidade , Axônios/efeitos dos fármacos , Gravidez , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Camundongos
8.
Ecotoxicol Environ Saf ; 276: 116312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608383

RESUMO

The use of bisphenol A (BPA) has been restricted due to its endocrine-disrupting effects. As a widely used alternative to BPA today, environmental levels of bisphenol Z (BPZ) continue to rise and accumulate in humans. Oocyte quality is critical for a successful pregnancy. Nevertheless, the toxic impacts of BPZ on the maturation of mammalian oocytes remain unexplored. Therefore, the impacts of BPZ and BPA on oocyte meiotic maturation were compared in an in vitro mouse oocyte culture model. Exposure to 150 µM of both BPZ and BPA disrupted the assembly of the meiotic spindle and the alignment of chromosomes, and BPZ exerted stronger toxicological effects than BPA. Furthermore, BPZ resulted in aberrant expression of F-actin, preventing the formation of the actin cap. Mechanistically, BPZ exposure disrupted the mitochondrial localization pattern, reduced mitochondrial membrane potential and ATP content, leading to impaired mitochondrial function. Further studies revealed that BPZ exposure resulted in oxidative stress and altered expression of genes associated with anti-oxidative stress. Moreover, BPZ induced severe DNA damage and triggered early apoptosis in oocytes, accompanied by impaired lysosomal function. Overall, the data in this study suggest that BPZ is not a safe alternative to BPA. BPZ can trigger early apoptosis by affecting mitochondrial function and causing oxidative stress and DNA damage in oocytes. These processes disrupt cytoskeletal assembly, arrest the cell cycle, and ultimately inhibit oocyte meiotic maturation.


Assuntos
Compostos Benzidrílicos , Dano ao DNA , Disruptores Endócrinos , Meiose , Mitocôndrias , Oócitos , Estresse Oxidativo , Fenóis , Animais , Fenóis/toxicidade , Oócitos/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Meiose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Feminino , Disruptores Endócrinos/toxicidade , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Actinas/metabolismo
9.
J Hazard Mater ; 470: 134129, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565019

RESUMO

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Assuntos
Rim , Parabenos , Transdução de Sinais , Peixe-Zebra , Animais , Humanos , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Glucosídeos/farmacologia , Células HEK293 , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Parabenos/toxicidade , Fenóis/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Sci Total Environ ; 929: 172655, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653419

RESUMO

Bisphenol A (BPA) is related to neurological disorders involving mitochondrial dysfunction, while the mechanism remains elusive. Therefore, we explored it through in vitro and in vivo experiments. In vitro, hippocampal neurons derived from neonatal rats of different genders were exposed to 1-100 nM and 100 µM BPA, autophagy activator Rapa and inhibitor 3-MA for 7 d. The results suggested that even nanomolar BPA (1-100 nM) disturbed Ca2+ homeostasis and damaged the integrity of mitochondrial cristae in neurons (p < 0.05). Furthermore, BPA increased the number of autophagic lysosomes, LC3II/LC3I ratio, and p62 expression, and decreased parkin expression (p < 0.05), suggesting that the entry of damaged mitochondria into autophagic pathway was prompted, while the autophagic degradation pathway was blocked. This further disrupts neuronal energy metabolism and promotes neuronal apoptosis. However, Rapa attenuated the adverse effects caused by BPA, while 3-MA exacerbated these reactions. In vivo, exposure of juvenile rats to 0.5, 50, 5000 µg/kg‧bw/day BPA during PND 7-21 markedly impaired the structure of hippocampal mitochondria, increased the number of autophagosomes, the rate of neuronal apoptosis, and the expression levels of pro-apoptotic proteins Cyt C, Bax, Bak1, and Caspase3, and decreased the expression of anti-apoptotic protein Bcl2 (p < 0.05). Particularly, male rats are more sensitive to low-dose BPA than females. Overall, environmental-doses BPA can induce the imbalance of energy metabolism in hippocampal neurons via PINK1/parkin mitophagy, thereby inducing their apoptosis. Importantly, this study provides a theoretical basis for attenuating BPA-related neurological diseases.


Assuntos
Apoptose , Compostos Benzidrílicos , Metabolismo Energético , Mitofagia , Neurônios , Fenóis , Proteínas Quinases , Ubiquitina-Proteína Ligases , Animais , Mitofagia/efeitos dos fármacos , Fenóis/toxicidade , Ratos , Ubiquitina-Proteína Ligases/metabolismo , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Proteínas Quinases/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino , Feminino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo
11.
Environ Sci Technol ; 58(19): 8194-8206, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683689

RESUMO

Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.


Assuntos
Aerossóis , Biomassa , Fenóis , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Fenóis/toxicidade , Humanos , Oxirredução , Poluentes Atmosféricos/toxicidade
12.
Food Chem Toxicol ; 188: 114652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583502

RESUMO

The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.


Assuntos
Acetilcisteína , Apoptose , Compostos Benzidrílicos , Proliferação de Células , Fenóis , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Masculino , Fenóis/toxicidade , Animais , Compostos Benzidrílicos/toxicidade , Acetilcisteína/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sesquiterpenos/farmacologia , Linhagem Celular , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Serina-Treonina Quinases TOR/metabolismo , NF-kappa B/metabolismo
13.
Sci Total Environ ; 927: 172379, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614345

RESUMO

Bisphenol S (BPS) is an alternative chemical to bisphenol A commonly used in food packaging materials. It raises concerns due to potential adverse effects on human health. However, limited evidence exists regarding reproductive toxicity from BPS exposure, and the mechanism of associated transgenerational toxicity remains unclear. In this study, pregnant SD rats were exposed to two different doses of BPS (0.05 or 20 mg/kg) from GD6 to PND21. The objective was to investigate reproductive and transmissible toxicity induced by BPS, explore endocrine effects, and uncover potential underlying mechanisms in rats. Perinatal exposure to BPS in the F0 generation significantly decreased the rate of body weight, ovarian organ coefficient, and growth and development of the F1 generation. Notably, these changes included abnormal increases in body weight and length, estrous cycle disruption, and embryonic dysplasia in F1. 4D-DIA proteomic and PRM analyses revealed that exposure to 20 mg/kg group significantly altered the expression of proteins, such as Lhcgr and Akr1c3, within the steroid biosynthetic pathway. This led to elevated levels of FSH and LH in the blood. The hypothalamic-pituitary-ovarian (HPO) axis, responsible for promoting fertility through the cyclic secretion of gonadotropins and steroid hormones, was affected. RT-qPCR and Western blot results demonstrated that the expression of GnRH in the hypothalamus was decreased, the GnRHR in the pituitary gland was decreased, and the expression of FSHß and LHß in the pituitary gland was increased. Overall, BPS exposure disrupts the HPO axis, hormone levels, and steroid biosynthesis in the ovaries, affecting offspring development and fertility. This study provides new insights into the potential effects of BPS exposure on the reproductive function of the body and its relevant mechanisms of action.


Assuntos
Disruptores Endócrinos , Fenóis , Ratos Sprague-Dawley , Reprodução , Sulfonas , Animais , Feminino , Fenóis/toxicidade , Ratos , Gravidez , Sulfonas/toxicidade , Reprodução/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Ovário/efeitos dos fármacos
14.
Chem Biol Interact ; 394: 110952, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570061

RESUMO

High throughput transcriptomics (HTTr) profiling has the potential to rapidly and comprehensively identify molecular targets of environmental chemicals that can be linked to adverse outcomes. We describe here the construction and characterization of a 50-gene expression biomarker designed to identify estrogen receptor (ER) active chemicals in HTTr datasets. Using microarray comparisons, the genes in the biomarker were identified as those that exhibited consistent directional changes when ER was activated (4 ER agonists; 4 ESR1 gene constitutively active mutants) and opposite directional changes when ER was suppressed (4 antagonist treatments; 4 ESR1 knockdown experiments). The biomarker was evaluated as a predictive tool using the Running Fisher algorithm by comparison to annotated gene expression microarray datasets including those evaluating the transcriptional effects of hormones and chemicals in MCF-7 cells. Depending on the reference dataset used, the biomarker had a predictive accuracy for activation of up to 96%. To demonstrate applicability for HTTr data analysis, the biomarker was used to identify ER activators in a set of 15 chemicals that are considered potential bisphenol A (BPA) alternatives examined at up to 10 concentrations in MCF-7 cells and analyzed by full-genome TempO-Seq. Using benchmark dose (BMD) modeling, the biomarker genes stratified the ER potency of BPA alternatives consistent with previous studies. These results demonstrate that the ER biomarker can be used to accurately identify ER activators in transcript profile data derived from MCF-7 cells.


Assuntos
Compostos Benzidrílicos , Fenóis , Receptores de Estrogênio , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Compostos Benzidrílicos/toxicidade , Fenóis/farmacologia , Fenóis/toxicidade , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Biomarcadores/metabolismo , Moduladores de Receptor Estrogênico/farmacologia
15.
Ecotoxicol Environ Saf ; 276: 116281, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581907

RESUMO

Bromophenols (BPs) are prominent environmental pollutants extensively utilized in aquaculture, pharmaceuticals, and chemical manufacturing. This study aims to identify UDP- glucuronosyltransferases (UGTs) isoforms involved in the metabolic elimination of BPs. Mono-glucuronides of BPs were detected in human liver microsomes (HLMs) incubated with the co-factor uridine-diphosphate glucuronic acid (UDPGA). The glucuronidation metabolism reactions catalyzed by HLMs followed Michaelis-Menten or substrate inhibition kinetics. Recombinant enzymes and inhibition experiments with chemical reagents were employed to phenotype the principal UGT isoforms participating in BP glucuronidation. UGT1A6 emerged as the major enzyme in the glucuronidation of 4-Bromophenol (4-BP), while UGT1A1, UGT1A6, and UGT1A8 were identified as the most essential isoforms for metabolizing 2,4-dibromophenol (2,4-DBP). UGT1A1, UGT1A8, and UGT2B4 were deemed the most critical isoforms in the catalysis of 2,4,6-tribromophenol (2,4,6-TBP) glucuronidation. Species differences were investigated using the liver microsomes of pig (PLM), rat (RLM), monkey (MyLM), and dog (DLM). Additionally, 2,4,6-TBP effects on the expression of UGT1A1 and UGT2B7 in HepG2 cells were evaluated. The results demonstrated potential induction of UGT1A1 and UGT2B7 upon exposure to 2,4,6-TBP at a concentration of 50 µM. Collectively, these findings contribute to elucidating the metabolic elimination and toxicity of BPs.


Assuntos
Glucuronídeos , Glucuronosiltransferase , Microssomos Hepáticos , Fenóis , Glucuronosiltransferase/metabolismo , Humanos , Animais , Fenóis/toxicidade , Fenóis/metabolismo , Glucuronídeos/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Cães , Ratos , Isoenzimas/metabolismo , Especificidade da Espécie
16.
Ecotoxicol Environ Saf ; 276: 116300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583312

RESUMO

Bisphenol AF (BPAF), an analogue of bisphenol A (BPA), is commonly found in manufacturing industries and known for its endocrine-disrupting properties. Despite potential similarities in adverse effects with BPA, limited toxicological data exist specifically for BPAF and its impact on male reproductive physiology. This mini-review aims to elucidate the influence of BPAF on the male reproductive system, focusing on estrogenic effects, effects on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, spermatogenesis, and transgenerational reproductive toxicity. Additionally, we outline the current insights into the potential mechanisms underlying BPAF-induced male reproductive disorders. BPAF exposure, either directly or maternally, has been associated with detrimental effects on male reproductive functions, including damage to the blood-testis barrier (BTB) structure, disruptions in steroidogenesis, testis dysfunction, decreased anogenital distance (AGD), and defects in sperm and semen quality. Mechanistically, altered gene expression in the HPG axis, deficits in the steroidogenesis pathway, activation of the aromatase pathway, cascade effects induced by reactive oxygen species (ROS), activation of ERK signaling, and immunological responses collectively contribute to the adverse effects of BPAF on the male reproductive system. Given the high prevalence of male reproductive issues and infertility, along with the widespread environmental distribution of bisphenols, this study provides valuable insights into the negative effects of BPAF. The findings underscore the importance of considering the safe use of this compound, urging further exploration and regulatory attention to decrease potential risks associated with BPAF exposure.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Fluorocarbonos , Fenóis , Masculino , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Humanos , Animais , Saúde Reprodutiva , Reprodução/efeitos dos fármacos , Genitália Masculina/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Testículo/efeitos dos fármacos
17.
Chemosphere ; 357: 141957, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641296

RESUMO

The current study aimed to explore whether bisphenol A (BPA) exposure aggravated the decrease in Tregs induced by ovalbumin (OVA) in adolescent female mouse models of asthma, and whether the process was associated with mTOR-mediated signaling pathways and DNA methylation levels. A total of 40 female C57BL/6 mice at the age of four weeks were used and divided into five groups after 1 week of domestication. Each group consisted of eight mice: the control group, OVA group, OVA + BPA (0.1 µg mL-1) group, OVA + BPA (0.2 µg mL-1) group, and OVA + BPA (0.4 µg mL-1) group. Results revealed that Foxp3 protein levels decreased in the spleens of mice exposed to BPA compared to those in the OVA group. After an elevation in BPA dose, the mRNAs of methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) were gradually upregulated. The mechanism was related to the activity of TLR4/NF-κB and PI3K/Akt/mTOR signaling pathways and the enhancement of Foxp3 DNA methylation. Our results, collectively, provided a new view for studying the mechanisms underlying BPA exposure-induced immune dysfunction. Investigation of the regulatory mechanisms of DNA methylation in the abnormal Th immune response caused by BPA exposure could help reveal the causes and molecular mechanisms underlying the high incidence of allergic diseases in children in recent years.


Assuntos
Compostos Benzidrílicos , Metilação de DNA , Fatores de Transcrição Forkhead , Camundongos Endogâmicos C57BL , Fenóis , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Baço , Linfócitos T Reguladores , Serina-Treonina Quinases TOR , Animais , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Metilação de DNA/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Feminino , Baço/efeitos dos fármacos , Baço/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima/efeitos dos fármacos , Asma/induzido quimicamente , Ovalbumina
18.
Chemosphere ; 357: 142103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653400

RESUMO

Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psµ, 15 psµ, and 30 psµ) for 70days to investigate the toxic effects. At 0 psµ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psµ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Oryzias , Fenóis , Reprodução , Salinidade , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/toxicidade , Feminino , Reprodução/efeitos dos fármacos , Masculino , Disruptores Endócrinos/toxicidade , Comportamento Animal/efeitos dos fármacos , Ovário/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos
19.
J Ethnopharmacol ; 330: 118111, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38653394

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schima wallichii (D.C.) Korth is traditionally used in Manipur, India for treatment of diabetes and hypertension. However, there is no data reported regarding safety profile of this medicinal plant upon repeated per oral administration over a period of time. AIM OF THE STUDY: In the current study phytochemical profile, toxicological profile and total phenolic and flavonoid compound content of Schima wallichii leaves extract were evaluated. MATERIALS AND METHODS: Gas chromatography coupled to mass spectrometry was performed for chemical profiling by using Gas Chromatography-Mass Spectrometry/Mass Spectrometry (GC-MS/MS), Shimadzu, TQ8040 system. A 28 days sub-acute toxicity study was carried out using albino Wistar rats by administering 3 different doses (200, 400 and 800 mg/kg body weight per oral) of methanol leaves extract. Changes in body weights were recorded weekly. Serum biochemical parameters were estimated as well as blood-cell count was done to check the effect of extract on haematopoietic system. Histopathology of vital organs viz. kidney, heart, brain, liver was performed to find any pathological indications. Since, liver is main the site for xenobiotic metabolism, estimation of the level of glutathione, catalase and lipid peroxidation were done. Further, total phenolic and flavonoid compound content estimation was performed for the leaves extract. RESULTS: GC-MS revealed 14 major compounds with area percentage >1% of which quinic acid, n-Hexadecanoic acid, 9,12,15-Octadecatrienoic acid, (Z,Z,Z)-, Octatriacontyl trifluoroacetate, are three major compounds. No mortality was observed after the treatment with extract. Blood-cell count and biochemical parameters didn't show significant deviation as compared to control group. Histopathology study of vital organs viz. (liver, kidney, heart and brain) showed normal cellular construction comparing to control group. There was no sign of membrane lipid peroxidation, depletion of catalase level and glutathione level in liver. The result demonstrates that NOAEL (no-observed-adverse-effect levels) in the sub-acute toxicity was above 800 mg/kg. The leaves extract showed significant total phenol and flavonoid content. CONCLUSION: The present study revealed that Schima wallichii possessed important bioactive compounds with therapeutic values. The plant was safe for consumption after repeated high doses administration in rats and possesses significant amount of total phenol and flavonoid content.


Assuntos
Flavonoides , Cromatografia Gasosa-Espectrometria de Massas , Hipoglicemiantes , Fenóis , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Flavonoides/toxicidade , Flavonoides/análise , Folhas de Planta/química , Fenóis/toxicidade , Fenóis/análise , Masculino , Hipoglicemiantes/toxicidade , Ratos , Plantas Medicinais/química , Metanol/química , Feminino , Medicina Tradicional , Peroxidação de Lipídeos/efeitos dos fármacos
20.
Ecotoxicol Environ Saf ; 277: 116348, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669872

RESUMO

Alkylphenols, such as nonylphenol and 4-tert-octylphenol (OP), are byproducts of the biodegradation of alkylphenol ethoxylates and present substantial ecological and health risks in aquatic environments and higher life forms. In this context, our study aimed to explore the effect of OP on reproductive endocrine function in both female and male zebrafish. Over a period of 21 days, the zebrafish were subjected to varying concentrations of OP (0, 0.02, 0.1, and 0.5 µg/L), based on the lowest effective concentration (EC10 = 0.48 µg/L) identified for zebrafish embryos. OP exposure led to a pronounced increase in hepatic vitellogenin (vtg) mRNA expression and 17ß-estradiol biosynthesis in both sexes. Conversely, OP exhibits anti-androgenic properties, significantly diminishes gonadal androgen receptor (ar) mRNA expression, and reduces endogenous androgen (testosterone and 11-ketotestosterone) levels in male zebrafish. Notably, cortisol and thyroid hormone (TH) levels demonstrated concentration-dependent elevations in zebrafish, influencing the regulation of gonadal steroid hormones (GSHs). These findings suggest that prolonged OP exposure may result in sustained reproductive dysfunction in adult zebrafish, which is largely attributable to the intricate reciprocal relationship between hormone levels and the associated gene expression. Our comprehensive biological response analysis of adult zebrafish offers vital insights into the reproductive toxicological effects of OP, thereby enriching future ecological studies on aquatic systems.


Assuntos
Disruptores Endócrinos , Estrogênios , Fenóis , Receptores Androgênicos , Hormônios Tireóideos , Vitelogeninas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fenóis/toxicidade , Masculino , Poluentes Químicos da Água/toxicidade , Feminino , Vitelogeninas/metabolismo , Disruptores Endócrinos/toxicidade , Hormônios Tireóideos/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Estrogênios/toxicidade , Estradiol/toxicidade , Antagonistas de Androgênios/toxicidade , Testosterona/metabolismo , Testosterona/análogos & derivados , Hidrocortisona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA