Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Aging (Albany NY) ; 16(9): 7523-7534, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38696307

RESUMO

Electrolyzed-reduced water has powerful antioxidant properties with constituents that scavenge reactive oxygen species (ROS), which are known to be produced by several intrinsic and extrinsic processes. When there is an imbalance between ROS production and antioxidant defenses, oxidative stress occurs. Persistent oxidative stress leads to cellular senescence, an important hallmark of aging, and is involved in several age-related conditions and illnesses. This study aims to investigate whether Weo electrolyzed water (WEW) could modulate the phenotype of senescent cells. We compared normal human lung fibroblasts (BJ) and breast cancer cells (T47D) treated with hydrogen peroxide (H2O2) to induce senescence. We assessed the molecular impact of WEW on markers of cellular senescence, senescence-associated secretory phenotype (SASP) factors, and stress response genes. Treatment with WEW modulated markers of cellular senescence, such as the senescence-associated ß-galactosidase (SA-ß-gal) activity, EdU incorporation and p21 expression, similarly in both cell types. However, WEW modulated the expression of SASP factors and stress response genes in a cell type-dependent and opposite fashion, significantly decreasing them in BJ cells, while stimulating their expression in T47D cells. Reduction in the expression of SASP factors and stress-related genes in BJ cells suggests that WEW acts as a protective factor, thereby reducing oxidative stress in normal cells, while making cancer cells more sensitive to the effects of cellular stress, thus increasing their elimination and consequently reducing their deleterious effects. These findings suggest that, due to its differential effects as a senomorphic factor, WEW could have a positive impact on longevity and age-related diseases.


Assuntos
Senescência Celular , Peróxido de Hidrogênio , Estresse Oxidativo , Água , Humanos , Senescência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Feminino , Eletrólise
2.
Cell Mol Life Sci ; 81(1): 200, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684535

RESUMO

BACKGROUND AND AIM: Cellular senescence of hepatocytes involves permanent cell cycle arrest, disrupted cellular bioenergetics, resistance to cell death, and the release of pro-inflammatory cytokines. This 'zombie-like' state perpetuates harmful effects on tissues and holds potential implications for liver disease progression. Remarkably, senescence exhibits heterogeneity, stemming from two crucial factors: the inducing stressor and the cell type. As such, our present study endeavors to characterize stressor-specific changes in senescence phenotype, its related molecular patterns, and cellular bioenergetics in primary mouse hepatocytes (PMH) and hepatocyte-derived liver organoids (HepOrgs). METHODS: PMH, isolated by collagenase-perfused mouse liver (C57B6/J; 18-23 weeks), were cultured overnight in William's E-medium supplemented with 2% FBS, L-glutamine, and hepatocyte growth supplements. HepOrgs were developed by culturing cells in a 3D matrix for two weeks. The senescence was induced by DNA damage (doxorubicin, cisplatin, and etoposide), oxidative stress (H2O2, and ethanol), and telomere inhibition (BIBR-1532), p53 activation (nutlin-3a), DNA methyl transferase inhibition (5-azacitidine), and metabolism inhibitors (galactosamine and hydroxyurea). SA-ß galactosidase activity, immunofluorescence, immunoblotting, and senescence-associated secretory phenotype (SASP), and cellular bioenergetics were used to assess the senescence phenotype. RESULTS: Each senescence inducer triggers a unique combination of senescence markers in hepatocytes. All senescence inducers, except hydroxyurea and ethanol, increased SA-ß galactosidase activity, the most commonly used marker for cellular senescence. Among the SASP factors, CCL2 and IL-10 were consistently upregulated, while Plasminogen activator inhibitor-1 exhibited global downregulation across all modes of senescence. Notably, DNA damage response was activated by DNA damage inducers. Cell cycle markers were most significantly reduced by doxorubicin, cisplatin, and galactosamine. Additionally, DNA damage-induced senescence shifted cellular bioenergetics capacity from glycolysis to oxidative phosphorylation. In HepOrgs exposed to senescence inducers, there was a notable increase in γH2A.X, p53, and p21 levels. Interestingly, while showing a similar trend, SASP gene expression in HepOrgs was significantly higher compared to PMH, demonstrating a several-fold increase. CONCLUSION: In our study, we demonstrated that each senescence inducer activates a unique combination of senescence markers in PMH. Doxorubicin demonstrated the highest efficacy in inducing senescence, followed by cisplatin and H2O2, with no impact on apoptosis. Each inducer prompted DNA damage response and mitochondrial dysfunction, independent of MAPK/AKT.


Assuntos
Senescência Celular , Dano ao DNA , Hepatócitos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Senescência Celular/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/citologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Fenótipo Secretor Associado à Senescência , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Doxorrubicina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino
3.
Ageing Res Rev ; 97: 102314, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670462

RESUMO

Uterine fibroids (or uterine leiomyoma, UFs) are one of the most prevalent benign uterine tumors with high proliferation and collagen synthesis capabilities. UFs are a significant worldwide health issue for women, affecting their physical and financial well-being. Risk factors for UFs include age, racial disparities, obesity, uterine infections, hormonal variation, and lifestyle (i.e., diet, exercise, stress, and smoking). Senescence and its associated secretory phenotypes (SASPs) are among the most salient changes accompanying the aging process. As a result, SASPs are suggested to be one of the major contributors to developing UFs. Interleukin 6 (IL-6), IL-8, IL-1, chemokine ligand 20 (CCL-20), and transforming growth factor-beta (TGF-ß) are the most prominent SASPs associated with aging. In addition, different processes contribute to UFs such as collagen deposition and the changes in the immune microenvironment. Programmed death ligand 1 is a major player in the tumor immune microenvironment, which helps tumor cells evade immune attacks. This review focuses on the correlation of SASPs on two axes of tumor progression: immune suppression and collagen deposition. This review opens the door towards more investigations regarding changes in the UF immune microenvironment and age-UFs correlation and thus, a novel targeting approach for UF treatment.


Assuntos
Antígeno B7-H1 , Colágeno , Leiomioma , Fenótipo Secretor Associado à Senescência , Humanos , Feminino , Leiomioma/metabolismo , Leiomioma/genética , Leiomioma/patologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Colágeno/metabolismo , Colágeno/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Envelhecimento/metabolismo , Envelhecimento/imunologia , Senescência Celular , Microambiente Tumoral/imunologia
4.
Ageing Res Rev ; 97: 102287, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570142

RESUMO

The components that comprise the senescence-associated secretory phenotype (SASP) include growth factors, proteases, chemokines, cytokines, and bioactive lipids. It drives secondary aging and disrupts tissue homeostasis, ultimately leading to tissue repair and regeneration loss. It has a two-way regulatory effect on tumor cells, resisting cancer occurrence and promoting its progression. A category of single-stranded circular non-coding RNA molecules known as circular RNAs (circRNAs) carries out a series of cellular activities, including sequestering miRNAs and modulating gene editing and expression. Research has demonstrated that a large number of circRNAs exhibit aberrant expression in pathological settings, and play a part in the onset and progress of cancer via modulating SASP factors. However, the research related to SASP and circRNAs in tumors is still in its infancy at this stage. This review centers on the bidirectional modulation of SASP and the role of circRNAs in regulating SASP factors across different types of tumors. The aim is to present novel perspectives for the diagnosis and therapeutic management of malignancies.


Assuntos
Neoplasias , RNA Circular , Fenótipo Secretor Associado à Senescência , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fenótipo Secretor Associado à Senescência/genética , Animais
5.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38603629

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Assuntos
Senescência Celular , Células da Granulosa , Síndrome do Ovário Policístico , Quercetina , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Senescência Celular/efeitos dos fármacos , Humanos , Animais , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Quercetina/farmacologia , Camundongos , Fenótipo Secretor Associado à Senescência , Adulto , Dasatinibe/farmacologia , Modelos Animais de Doenças , Senoterapia/farmacologia , Hiperandrogenismo/patologia , Hiperandrogenismo/metabolismo , Interleucina-6/metabolismo , Desidroepiandrosterona/farmacologia
6.
Int J Biol Sci ; 20(5): 1763-1777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481803

RESUMO

N6-methyladenosine (m6A), the most prevalent posttranscriptional RNA modification, involved in various diseases and cellular processes. However, the underlying mechanisms of m6A regulation in skin aging are still not fully understood. In this study, proteomics analysis revealed a significant correlation between Wilms' tumor 1-associating protein (WTAP) expression and cellular senescence. Next, upregulated WTAP was detected in aging skin tissues and senescent human dermal fibroblasts (HDFs). Functionally, overexpressed WTAP induced senescence and knockdown of WTAP rescued senescence of HDFs. Mechanistically, WTAP directly targeted ELF3 and promoted its expression in an m6A-dependent manner. Exogenous-ELF3 overexpression evidently reversed shWTAP-suppressed fibroblast senescence. Furthermore, ELF3 induced IRF8-mediated senescence-associated secretory phenotype (SASP) by binding to the (-817 to -804) site of the IRF8 promoter directly. In vivo, overexpression of WTAP evidently increased senescence cells in skin and induced skin aging. In summary, these findings revealed the critical role of WTAP-mediated m6A modification in skin aging and identified ELF3 as an important target of m6A modification in HDFs senescence, providing a new idea for delaying the aging process.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Adenosina , Proteínas de Ciclo Celular , Senescência Celular/genética , Proteínas de Ligação a DNA , Fatores Reguladores de Interferon , Proteínas Proto-Oncogênicas c-ets , RNA , Fatores de Processamento de RNA , Fatores de Transcrição
7.
Nat Commun ; 15(1): 2778, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555361

RESUMO

Bacterial genotoxins damage host cells by targeting their chromosomal DNA. In the present study, we demonstrate that a genotoxin of Salmonella Typhi, typhoid toxin, triggers the senescence-associated secretory phenotype (SASP) by damaging mitochondrial DNA. The actions of typhoid toxin disrupt mitochondrial DNA integrity, leading to mitochondrial dysfunction and disturbance of redox homeostasis. Consequently, it facilitates the release of damaged mitochondrial DNA into the cytosol, activating type I interferon via the cGAS-STING pathway. We also reveal that the GCN2-mediated integrated stress response plays a role in the upregulation of inflammatory components depending on the STING signaling axis. These SASP factors can propagate the senescence effect on T cells, leading to senescence in these cells. These findings provide insights into how a bacterial genotoxin targets mitochondria to trigger a proinflammatory SASP, highlighting a potential therapeutic target for an anti-toxin intervention.


Assuntos
Fenótipo Secretor Associado à Senescência , Febre Tifoide , Humanos , Febre Tifoide/metabolismo , Mutagênicos/metabolismo , Senescência Celular/fisiologia , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo , Salmonella , Fenótipo
8.
Cardiovasc Diabetol ; 23(1): 107, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553774

RESUMO

BACKGROUND: Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny. METHODS AND RESULTS: High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6. Chromatin immunoprecipitation assay (ChIP) of p65 promoter revealed that H3K4me1 histone mark accumulation and methyltransferase SetD7 recruitment, along with the reduction of repressive H3K9me3 histone modification, were involved in NFkB-p65 upregulation of HG-HSPCs, as confirmed by increased RNA polymerase II engagement at gene level. The differentiation of HG-HSPCs into myeloid cells generated highly responsive monocytes, mainly composed of intermediate subsets (CD14hiCD16+), that like the cells from which they derive, were characterized by SASP features and similar epigenetic patterns at the p65 promoter. The clinical relevance of our findings was confirmed in sternal BM-derived HSPCs of T2DM patients. In line with our in vitro model, T2DM HSPCs were characterized by SASP profile and SETD7 upregulation. Additionally, they generated, after myeloid differentiation, senescent monocytes mainly composed of proinflammatory intermediates (CD14hiCD16+) characterized by H3K4me1 accumulation at NFkB-p65 promoter. CONCLUSIONS: Hyperglycemia induces marked chromatin modifications in HSPCs, which, once transmitted to the cell progeny, contributes to persistent and pathogenic changes in immune cell function and composition.


Assuntos
Diabetes Mellitus Tipo 2 , Imunidade Treinada , Humanos , Fenótipo Secretor Associado à Senescência , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Epigênese Genética , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
9.
Environ Pollut ; 347: 123674, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458517

RESUMO

Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Ratos , Animais , Remodelação das Vias Aéreas , Fenótipo Secretor Associado à Senescência , Miócitos de Músculo Liso , Asma/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Colágeno Tipo I , Proliferação de Células , Material Particulado/metabolismo , Células Cultivadas
10.
Biomed Pharmacother ; 174: 116475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522236

RESUMO

Age-related disorders are closely linked to the accumulation of senescent cells. The senescence-associated secretory phenotype (SASP) sustains and progresses chronic inflammation, which is involved in cellular and tissue dysfunction. SASP-related growth and differentiation factor-15 (GDF-15) is an immunoregulatory cytokine that is coupled to aging and thus may have a regulatory role in the development and maintenance of atherosclerosis, a major cause of cardiovascular disease (CVD). Although the effects of GDF-15 are tissue-specific and dependent on microenvironmental changes such as inflammation, available data suggest that GDF-15 has a significant role in CVD. Thus, GDF-15 is a promising biomarker and potential therapeutic target for atherosclerotic CVD.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Fator 15 de Diferenciação de Crescimento , Inflamação , Humanos , Fator 15 de Diferenciação de Crescimento/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Doenças Cardiovasculares/metabolismo , Animais , Envelhecimento/metabolismo , Biomarcadores/metabolismo , Senescência Celular , Fenótipo Secretor Associado à Senescência , Aterosclerose/metabolismo , Aterosclerose/imunologia
11.
Stem Cell Rev Rep ; 20(4): 1093-1105, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457059

RESUMO

Breast cancer, the most prevalent malignancy in women, often progresses to bone metastases, especially in older individuals. Dormancy, a critical aspect of bone-metastasized breast cancer cells (BCCs), enables them to evade treatment and recur. This dormant state is regulated by bone marrow mesenchymal stem cells (BMMSCs) through the secretion of various factors, including those associated with senescence. However, the specific mechanisms by which BMMSCs induce dormancy in BCCs remain unclear. To address this gap, a bone-specific senescence-accelerated murine model, SAMP6, was utilized to minimize confounding systemic age-related factors. Confirming senescence-accelerated osteoporosis, distinct BMMSC phenotypes were observed in SAMP6 mice compared to SAMR1 counterparts. Notably, SAMP6-BMMSCs exhibited premature senescence primarily due to telomerase activity loss and activation of the p21 signaling pathway. Furthermore, the effects of conditioned medium (CM) derived from SAMP6-BMMSCs versus SAMR1-BMMSCs on BCC proliferation were examined. Intriguingly, only CM from SAMP6-BMMSCs inhibited BCC proliferation by upregulating p21 expression in both MCF-7 and MDA-MB-231 cells. These findings suggest that the senescence-associated secretory phenotype (SASP) of BMMSCs suppresses BCC viability by inducing p21, a pivotal cell cycle inhibitor and tumor suppressor. This highlights a heightened susceptibility of BCCs to dormancy in a senescent microenvironment, potentially contributing to the increased incidence of breast cancer bone metastasis and recurrence observed with aging.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Fenótipo Secretor Associado à Senescência , Células-Tronco Mesenquimais/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Feminino , Humanos , Animais , Camundongos , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Meios de Cultivo Condicionados/farmacologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Células MCF-7
12.
Aging (Albany NY) ; 16(3): 2702-2714, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309291

RESUMO

OBJECTIVE: Tendinopathy is influenced by multiple factors, including chronic inflammation and aging. Senescent cells exhibit characteristics such as the secretion of matrix-degrading enzymes and pro-inflammatory cytokines, collectively known as senescence-associated secretory phenotypes (SASPs). Many of these SASP cytokines and enzymes are implicated in the pathogenesis of tendinopathy. MicroRNA-146a (miR-146a) blocks senescence by targeting interleukin-1ß (IL-1ß) receptor-associated kinase 4 (IRAK-4) and TNF receptor-associated factor 6 (TRAF6), thus inhibiting NF-κB activity. The aims of this study were to (1) investigate miR-146a expression in tendinopathic tendons and (2) evaluate the role of miR-146a in countering senescence and SASPs in tendinopathic tenocytes. METHODS: MiR-146a expression was assessed in human long head biceps (LHB) and rat tendinopathic tendons by in situ hybridization. MiR-146a over-expression in rat primary tendinopathic tenocytes was achieved by lentiviral vector-mediated precursor miR-146a transfer (LVmiR-146a). Expression of various senescence-related markers was analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting and immunofluorescence. MiR-146a expression showed a negative correlation with the severity of tendinopathy in human and rat tendinopathic tendons (p<0.001). RESULTS: Tendinopathic tenocyte transfectants overexpressing miR-146a exhibited downregulation of various senescence and SASP markers, as well as the target molecules IRAK-4 and TRAF6, and the inflammatory mediator phospho-NF-κB. Additionally, these cells showed enhanced nuclear staining of high mobility group box 1 (HMGB1) compared to LVmiR-scramble-transduced controls in response to IL-1ß stimulation. CONCLUSIONS: We demonstrate that miR-146a expression is negatively correlated with the progression of tendinopathy. Moreover, its overexpression protects tendinopathic tenocytes from SASPs and senescence through the IRAK-4/TRAF6/NF-kB pathway.


Assuntos
MicroRNAs , Tendinopatia , Animais , Humanos , Ratos , Citocinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fenótipo Secretor Associado à Senescência , Tendinopatia/genética , Tenócitos/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo
13.
Aging (Albany NY) ; 16(4): 3350-3362, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349859

RESUMO

The male reproductive system experiences degradation with age, predominantly impacting the testes. Testicular aging can result in failure to produce physiological testosterone levels, normal sperm concentrations, or both. However, we cannot predict the onset of testicular aging in advance. Using single-cell RNA sequencing (scRNA-seq) from Gene Expression Omnibus (GEO) database, we conducted cell-cell communication network of human testis between older and young group, indicating Leydig cells' potential role in spermatogenesis microenvironment of aging testis. And we depicted the senescence-Associated Secretory Phenotype (SASP) features of aging testis by identifying differentially expressed senescence-associated secretory phenotype (SASP)-related genes between two group. Notably, IGFBP7 mainly expressed in Leydig cells of those differentially expressed SASP-related genes in aging testis. Furthermore, IGFBP7 protein located in the interstitial compartment of older mice confirmed by immunofluorescence and highly expressed in both human seminal plasma and mouse testis in the older group confirmed through Western blot. Together, our findings suggest that IGFBP7 may be a new biomarker of testicular aging.


Assuntos
Fenótipo Secretor Associado à Senescência , Testículo , Humanos , Masculino , Camundongos , Animais , Testículo/metabolismo , Sêmen , Envelhecimento/genética , Perfilação da Expressão Gênica , Senescência Celular/genética , Fenótipo
14.
Methods Cell Biol ; 181: 181-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38302239

RESUMO

Dual-faced cellular senescence is responsible for beneficial biological processes and for age-related pathologies. Senescent cells under stable proliferation arrest develop numerous senescence-associated phenotypes such as the potent pro-inflammatory secretome called the senescence-associated secretory phenotype (SASP). The SASP shapes the senescent microenvironment and influences the biology of adjacent cells, including the modulation of proliferation and migration/invasion, reinforcement/induction of peripheral senescence, and immune cell activity or recruitment. The SASP is a dynamic process with multiple waves of secreted factors described to interlace over a period of many days. Whether the senescence phenotype reaches a mature stable state remains controversial. Overall, the complexity of the context-dependent and timely SASP compositions and its varied microenvironmental impact demonstrate the importance of properly assessing SASP over time. In this chapter, we focus on scalable and dynamic experimental procedures to prepare SASP conditioned medium over time from cells receiving senescence-inducing stimuli. This SASP-containing conditioned medium can be used to assess the composition of the SASP, study SASP-related signaling pathways or evaluate the paracrine microenvironmental impact of senescent cells.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Meios de Cultivo Condicionados/farmacologia , Senescência Celular/genética , Células Cultivadas , Fenótipo
15.
J Biochem ; 175(5): 525-537, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366629

RESUMO

Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.


Assuntos
Senescência Celular , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Senescência Celular/efeitos dos fármacos , Fenótipo Secretor Associado à Senescência , Animais , Envelhecimento/metabolismo , Senoterapia/farmacologia
16.
Sci Rep ; 14(1): 909, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195762

RESUMO

Cellular senescence is a therapy endpoint in melanoma, and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and mitochondrial energy metabolism supports resistance to therapy in melanoma. In a previous report we showed that senescence, induced by the DNA methylating agent temozolomide, increased the level of fusion proteins mitofusin 1 and 2 in melanoma, and silencing Mfn1 or Mfn2 expression reduced interleukin-6 secretion by senescent cells. Here we expanded these observations evaluating the secretome of senescent melanoma cells using shotgun proteomics, and explored the impact of silencing Mfn1 on the SASP. A significant increase in proteins reported to reduce the immune response towards the tumor was found in the media of senescent cells. The secretion of several of these immunomodulatory proteins was affected by Mfn1 silencing, among them was galectin-9. In agreement, tumors lacking mitofusin 1 responded better to treatment with the methylating agent dacarbazine, tumor size was reduced and a higher immune cell infiltration was detected in the tumor. Our results highlight mitochondrial dynamic proteins as potential pharmacological targets to modulate the SASP in the context of melanoma treatment.


Assuntos
Melanoma , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Fenótipo Secretor Associado à Senescência , Senescência Celular/genética , Mitocôndrias , Fenótipo , Microambiente Tumoral
17.
Eur J Med Res ; 29(1): 38, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195489

RESUMO

The senescence-associated secretory phenotype (SASP) is a generic term for the secretion of cytokines, such as pro-inflammatory factors and proteases. It is a crucial feature of senescent cells. SASP factors induce tissue remodeling and immune cell recruitment. Previous studies have focused on the beneficial role of SASP during embryonic development, wound healing, tissue healing in general, immunoregulation properties, and cancer. However, some recent studies have identified several negative effects of SASP on fracture healing. Senolytics is a drug that selectively eliminates senescent cells. Senolytics can inhibit the function of senescent cells and SASP, which has been found to have positive effects on a variety of aging-related diseases. At the same time, recent data suggest that removing senescent cells may promote fracture healing. Here, we reviewed the latest research progress about SASP and illustrated the inflammatory response and the influence of SASP on fracture healing. This review aims to understand the role of SASP in fracture healing, aiming to provide an important clinical prevention and treatment strategy for fracture. Clinical trials of some senolytics agents are underway and are expected to clarify the effectiveness of their targeted therapy in the clinic in the future. Meanwhile, the adverse effects of this treatment method still need further study.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Feminino , Gravidez , Humanos , Fenótipo Secretor Associado à Senescência , Senoterapia , Citocinas
18.
Clin Transl Oncol ; 26(4): 1022-1032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38175424

RESUMO

BACKGROUND: Cellular senescence is a state characterized by cell-cycle arrest and apoptotic resistance. Senescence in cancer may be induced by oncogenes or therapy. While cellular senescence might play an important role in protection against cancer development, elevated and uncontrolled senescent cells accumulation may promote carcinogenesis by secreting a collection of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP). MATERIAL AND METHODS: We determined the gene expression at mRNA level of selected cellular senescence markers (p16 and LMNB1) and SASP factors (IL-6, IL-1b, CXCL-1 and TNF-α) in 72 cancerous tissues and 64 normal tissues obtained from patients with head and neck squamous cell carcinoma (HNSCC) and correlated this data with patients' clinical follow-up. RESULTS: Our results indicate higher levels of selected SASP factors in cancerous compared to normal tissues. We presented the relationship between SASP factors expression at the transcript level and the progression of the disease. Moreover, we proposed CXCL1 as a candidate biomarker differentiating normal tissues from cancerous ones and IL1b expression as a molecular factor related to increased TNM stage. CONCLUSION: Our primary study indicates that SASP expression may be associated with some clinicopathological features. However, a more detailed study is needed to present specific role of senescence-related mechanism and SASPs especially in tumor therapy response and in relation to the patient's immune system condition.


Assuntos
Neoplasias de Cabeça e Pescoço , Fenótipo Secretor Associado à Senescência , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Senescência Celular/genética , Carcinogênese , Neoplasias de Cabeça e Pescoço/genética , Fenótipo
19.
Adv Sci (Weinh) ; 11(2): e2303489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964763

RESUMO

The essential branched-chain amino acids (BCAAs) leucine, isoleucine, and valine play critical roles in protein synthesis and energy metabolism. Despite their widespread use as nutritional supplements, BCAAs' full effects on mammalian physiology remain uncertain due to the complexities of BCAA metabolic regulation. Here a novel mechanism linking intrinsic alterations in BCAA metabolism is identified to cellular senescence and the senescence-associated secretory phenotype (SASP), both of which contribute to organismal aging and inflammation-related diseases. Altered BCAA metabolism driving the SASP is mediated by robust activation of the BCAA transporters Solute Carrier Family 6 Members 14 and 15 as well as downregulation of the catabolic enzyme BCAA transaminase 1 during onset of cellular senescence, leading to highly elevated intracellular BCAA levels in senescent cells. This, in turn, activates the mammalian target of rapamycin complex 1 (mTORC1) to establish the full SASP program. Transgenic Drosophila models further indicate that orthologous BCAA regulators are involved in the induction of cellular senescence and age-related phenotypes in flies, suggesting evolutionary conservation of this metabolic pathway during aging. Finally, experimentally blocking BCAA accumulation attenuates the inflammatory response in a mouse senescence model, highlighting the therapeutic potential of modulating BCAA metabolism for the treatment of age-related and inflammatory diseases.


Assuntos
Aminoácidos de Cadeia Ramificada , Fenótipo Secretor Associado à Senescência , Animais , Camundongos , Aminoácidos de Cadeia Ramificada/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metabolismo Energético , Mamíferos/metabolismo
20.
Aging Cell ; 23(1): e13988, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731189

RESUMO

Originally identified as an outcome of continuous culture of primary cells, cellular senescence has moved beyond the culture dish and is now a bona fide driver of aging and disease in animal models, and growing links to human disease. This cellular stress response consists of a stable proliferative arrest coupled to multiple phenotypic changes. Perhaps the most important of these is the senescence-associated secretory phenotype, or senescence-associated secretory phenotype -a complex and variable collection of secreted molecules release by senescent cells with a number of potent biological activities. Senescent cells appear in multiple age-associated conditions in humans and mice, and interventions that eliminate these cells can prevent or even reverse multiple diseases in mouse models. Here, we review salient aspects of senescent cells in the context of human disease and homeostasis. Senescent cells increase in abundance during several diseases that associated with premature aging. Conversely, senescent cells have a key role in beneficial processes such as development and wound healing, and thus can help maintain tissue homeostasis. Finally, we speculate on mechanisms by which deleterious aspects of senescent cells might be targeted while retaining homeostatic aspects in order to improve age-related outcomes.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Animais , Camundongos , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Modelos Animais de Doenças , Fenótipo Secretor Associado à Senescência , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA