RESUMO
Chlorine (Cl2) is a common toxic industrial gas and human inhalation exposure causes tissue damage with symptoms ranging from wheezing to more severe symptoms such as lung injury or even death. Because the mechanism behind Cl2-induced cell death is not clearly understood, the present study aimed to study the cellular effects in vitro after Cl2 exposure of human A549 lung epithelial cells. In addition, the possible treatment effects of the anti-inflammatory antioxidant N-acetyl cysteine (NAC) were evaluated. Exposure of A549 cells to Cl2 (100-1000 ppm) in the cell medium induced cell damage and toxicity within 1 h in a dose-dependent manner. The results showed that 250 ppm Cl2 increased cell death and formation of apoptotic-like bodies, while 500 ppm Cl2 exposure resulted in predominantly necrotic death. Pre-treatment with NAC was efficient to prevent cell damage at lower Cl2 concentrations in part by averting the formation of apoptotic-like bodies and increasing the expression of the anti-apoptotic proteins clusterin and phosphorylated tumour protein p53(S46). Analysis showed that Cl2 induced cell death by a possibly caspase-independent mechanism, since no cleavage of caspase-3 could be detected after exposure to 250 ppm. Currently, these results justifies further research into new treatment strategies for Cl2-induced lung injury.
Assuntos
Cloro/toxicidade , Pulmão/citologia , Oxidantes/toxicidade , Células A549 , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Caspase 3 , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Citocinas/metabolismo , HumanosRESUMO
Glioblastomas (GBMs), the most frequent brain tumours, are highly invasive and their prognosis is still poor despite the use of combination treatment. MG624 is a 4-oxystilbene derivative that is active on α7- and α9-containing neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Hybridisation of MG624 with a non-nicotinic resveratrol-derived pro-oxidant mitocan has led to two novel compounds (StN-4 and StN-8) that are more potent than MG624 in reducing the viability of GBM cells, but less potent in reducing the viability of mouse astrocytes. Functional analysis of their activity on α7 receptors showed that StN-4 is a silent agonist, whereas StN-8 is a full antagonist, and neither alters intracellular [Ca2+] levels when acutely applied to U87MG cells. After 72 h of exposure, both compounds decreased U87MG cell proliferation, and pAKT and oxphos ATP levels, but only StN-4 led to a significant accumulation of cells in phase G1/G0 and increased apoptosis. One hour of exposure to either compound also decreased the mitochondrial and cytoplasmic ATP production of U87MG cells, and this was not paralleled by any increase in the production of reactive oxygen species. Knocking down the α9 subunit (which is expressed at relatively high levels in U87MG cells) decreased the potency of the effects of both compounds on cell viability, but cell proliferation, ATP production, pAKT levels were unaffected by the presence of the noncell-permeable α7/α9-selective antagonist αBungarotoxin. These last findings suggest that the anti-tumoral effects of StN-4 and StN-8 on GBM cells are not only due to their action on nAChRs, but also to other non-nicotinic mechanisms.
Assuntos
Compostos de Amônio/farmacologia , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Nicotínicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genéticaRESUMO
Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease that even threatens the lives of some patients infected with COVID-19. PF is a multicellular pathological process, including the initial injuries of epithelial cells, recruitment of inflammatory cells, epithelial-mesenchymal transition, activation and differentiation of fibroblasts, etc. TGF-[Formula: see text]1 acts as a key effect factor that participates in these cellular processes of PF. Recently, much attention was paid to inhibiting TGF-[Formula: see text]1 mediated cell processes in the treatment of PF with Chinese herbal medicines (CHM), an important part of traditional Chinese medicine. Here, this review first summarized the effects of TGF-[Formula: see text]1 in different cellular processes of PF. Then, this review summarized the recent research on CHM (compounds, multi-components, single medicines and prescriptions) to directly and/or indirectly inhibit TGF-[Formula: see text]1 signaling (TLRs, PPARs, micrRNA, etc.) in PF. Most of the research focused on CHM natural compounds, including but not limited to alkaloids, flavonoids, phenols and terpenes. After review, the research perspectives of CHM on TGF-[Formula: see text]1 inhibition in PF were further discussed. This review hopes that revealing the inhibiting effects of CHM on TGF-[Formula: see text]1-mediated cellular processes of PF can promote CHM to be better understood and utilized, thus transforming the therapeutic activities of CHM into practice.
Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/antagonistas & inibidores , COVID-19/complicações , COVID-19/metabolismo , COVID-19/virologia , Humanos , Medicina Tradicional Chinesa/métodos , Fitoterapia/métodos , Fibrose Pulmonar/complicações , Fibrose Pulmonar/metabolismo , SARS-CoV-2/fisiologia , Fator de Crescimento Transformador beta1/metabolismoRESUMO
Myeloid leukemia is a hematologic neoplasia characterized by a clonal proliferation of hematopoietic stem cell progenitors. Patient prognosis varies depending on the subtype of leukemia as well as eligibility for intensive treatment regimens and allogeneic stem cell transplantation. Although significant progress has been made in the therapy of patients including novel targeted treatment approaches, there is still an urgent need to optimize treatment outcome. The most common therapy is based on the use of chemotherapeutics cytarabine and anthrayclines. Here, we studied the effect of the recently synthesized marine alkaloid 3,10-dibromofascaplysin (DBF) in myeloid leukemia cells. Unsubstituted fascaplysin was early found to affect cell cycle via inhibiting CDK4/6, thus we compared the activity of DBF and other brominated derivatives with known CDK4/6 inhibitor palbociclib, which was earlier shown to be a promising candidate to treat leukemia. Unexpectedly, the effect DBF on cell cycle differs from palbociclib. In fact, DBF induced leukemic cells apoptosis and decreased the expression of genes responsible for cancer cell survival. Simultaneously, DBF was found to activate the E2F1 transcription factor. Using bioinformatical approaches we evaluated the possible molecular mechanisms, which may be associated with DBF-induced activation of E2F1. Finally, we found that DBF synergistically increase the cytotoxic effect of cytarabine in different myeloid leukemia cell lines. In conclusion, DBF is a promising drug candidate, which may be used in combinational therapeutics approaches to reduce leukemia cell growth.
Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Leucemia Mieloide/tratamento farmacológico , Oxindóis/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide/genéticaRESUMO
The activity of local anesthetics (LAs) has been attributed to the inhibition of ion channels, causing anesthesia. However, there is a growing body of research showing that LAs act on a wide range of receptors and channel proteins far beyond simple analgesia. The current concept of ligand recognition may no longer explain the multitude of protein targets influenced by LAs. We hypothesize that LAs can cause anesthesia without directly binding to the receptor proteins just by changing the physical properties of the lipid bilayer surrounding these proteins and ion channels based on LAs' amphiphilicity. It is possible that LAs act in one of the following ways: They 1) dissolve raft-like membrane microdomains, 2) impede nerve impulse propagation by lowering the lipid phase transition temperature, or 3) modulate the lateral pressure profile of the lipid bilayer. This could also explain the numerous additional effects of LAs besides anesthesia. Furthermore, the concepts of membrane-mediated activity and binding to ion channels do not have to exclude each other. If we were to consider LA as the middle part of a continuum between unspecific membrane-mediated activity on one end and highly specific ligand binding on the other end, we could describe LA as the link between the unspecific action of general anesthetics and toxins with their highly specific receptor binding. This comprehensive membrane-mediated model offers a fresh perspective to clinical and pharmaceutical research and therapeutic applications of local anesthetics. SIGNIFICANCE STATEMENT: Local anesthetics, according to the World Health Organization, belong to the most important drugs available to mankind. Their rediscovery as therapeutics and not only anesthetics marks a milestone in global pain therapy. The membrane-mediated mechanism of action proposed in this review can explain their puzzling variety of target proteins and their thus far inexplicable therapeutic effects. The new concept presented here places LAs on a continuum of structures and molecular mechanisms in between small general anesthetics and the more complex molecular toxins.
Assuntos
Potenciais de Ação/fisiologia , Anestésicos Locais/metabolismo , Fenômenos Fisiológicos Celulares/fisiologia , Microdomínios da Membrana/metabolismo , Potenciais de Ação/efeitos dos fármacos , Anestésicos Locais/administração & dosagem , Anestésicos Locais/química , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Estrutura Secundária de ProteínaRESUMO
Although quiescent hepatic stellate cells (HSCs) have been suggested to regulate hepatic blood flow, there is no direct evidence that quiescent HSCs display contractile abilities. Here, we developed a new method to quantitatively measure the contraction of single isolated HSCs and evaluated whether endothelin-1 (ET-1) induced contraction of HSCs in a non-activated state. HSCs isolated from mice were seeded on collagen gel containing fluorescent beads. The beads around a single HSC were observed gravitating toward the cell upon contraction. By recording the movement of each bead by fluorescent microscopy, the real-time contraction of HSCs was quantitatively evaluated. ET-1 induced a slow contraction of non-activated HSCs, which was inhibited by the non-muscle myosin II inhibitor blebbistatin, the calmodulin inhibitor W-7, and the ETA receptor antagonist ambrisentan. ET-1-induced contraction was also largely reduced in Ca2+-free conditions, but sustained contraction still remained. The tonic contraction was further diminished by the Rho-kinase inhibitor H-1152. The mRNA expression of P/Q-type voltage-dependent Ca2+ channels (VDCC), as well as STIM and Orai, constituents of store-operated channels (SOCs), was observed in mouse non-activated HSCs. ET-1-induced contraction was not affected by amlodipine, a VDCC blocker, whereas it was partly reduced by Gd3+ and amiloride, non-selective cation channel blockers. However, neither YM-58483 nor SKF-96365, which inhibit SOCs, had any effects on the contraction. These results suggest that ET-1 leads to Ca2+-influx through cation channels other than SOCs and produces myosin II-mediated contraction of non-activated HSCs via ETA receptors, as well as via mechanisms involving Ca2+-calmodulin and Rho kinase.
Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Endotelina-1/farmacologia , Células Estreladas do Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Canais de Cálcio Tipo N/metabolismo , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Células Cultivadas , Antagonistas dos Receptores de Endotelina/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Masculino , Camundongos , Miosina Tipo II/antagonistas & inibidores , Miosina Tipo II/metabolismo , Fenilpropionatos/farmacologia , Piridazinas/farmacologia , RNA Mensageiro/genética , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacologia , Quinases Associadas a rho/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Cancer is an inflammatory disease because carcinogenesis and tumor progression depend on intrinsic and extrinsic inflammatory pathways. Although species of the genus Aspidosperma are widely used to treat tumors, and there is ethnopharmacological evidence for traditional use of the species A. subincanum as an anti-inflammatory agent, its antineoplastic potential is unknown. AIM OF THE STUDY: To evaluate toxic effects of the indole alkaloid-rich fraction (IAF) of A. subincanum on the MCF7 cell line and identify some of the anti-inflammatory mechanisms involved. MATERIALS AND METHODS: Chromatographic analyses were performed by ultra-high-performance liquid chromatography with electrospray ionization mass spectrometry, and cytotoxic and antiproliferative effects of IAF were verified by MTT and clonogenic assays. Cell cycle alterations were analyzed by measuring DNA content, while propidium iodide and acridine orange staining was performed to determine the type of induced cell death. The expression of apoptosis markers and proteins involved in cell proliferation and survival pathways was analyzed by immunoblotting, RT-qPCR, and ELISAs. Interference with redox status was investigated using a DCFH-DA probe and by measuring catalase activity. RESULTS: Chromatographic analyses showed that IAF is a complex mixture containing indole alkaloids. IAF selectively exerted toxic and antiproliferative effects, elevating the Bax/Bcl-xL ratio and inducing apoptosis in MCF7 cells. IAF decreased intracellular reactive oxygen species levels and increased catalase activity, while reducing the IL-8 level and suppressing COX-2 expression. CONCLUSIONS: IAF induces apoptosis in MCF7 cells by suppressing COX-2 expression while reducing IL-8 levels and intracellular content of reactive oxygen species.
Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aspidosperma , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Humanos , Interleucina-8/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Lung cancer is the chief reason of cancer death worldwide, and non-small cell lung cancer (NSCLC) make up the majority of lung cancers. Gypenosides are the main active constituents from Gynostemma pentaphyllum. Previous studies showed that they were used to remedy many cancers. The effect of gypenosides on NSCLC has never been studied from the perspective of network pharmacology and metabolomics. The mechanism is still not clear and remains to be explored. AIM OF THE STUDY: To explore the anti-NSCLC activity and mechanism of gypenosides in A549 cells. MATERIAL/METHODS: Gypenosides of G. pentaphyllum were detected by HPLC-MS. The cytotoxicity was detected by MTT assay. The migration, cell cycle and apoptosis of gypenosides were studied by wound healing assay, JC-1 assay and flow cytometry. The mechanism of gypenosides on NSCLC was studied by metabolomics and network pharmacology. Some key proteins and pathways were further confirmed by Western blot. RESULTS: Eleven gypenosides were detected by HPLC-MS. Gypenosides could suppress the proliferation of A549 cells, inhibit the migration of A549 cells, induce apoptosis and arrest cell cycle in G0/G1 phase. Metabolomics and network pharmacology approach revealed that gypenosides might affect 17 metabolite related proteins by acting on 9 candidate targets (STAT3, VEGFA, EGFR, MMP9, IL2, TYMS, FGF2, HPSE, LGALS3), thus resulting in the changes of two metabolites (uridine 5'-monophosphate, D-4'-Phosphopantothenate) and two metabolic pathways (pyrimidine metabolism; pantothenate and CoA biosynthesis). Western blotting indicated that gypenosides might inhibit A549 cells through MMP9, STAT3 and TYMS to indirectly affect the pathways of pyrimidine metabolism, pantothenate and CoA biosynthesis. CONCLUSIONS: This study revealed that metabolomics combined with network pharmacology was conducive to understand the anti-NSCLC mechanism of gypenosides.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Gynostemma , Humanos , Neoplasias Pulmonares/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metabolômica , Farmacologia em Rede , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Timidilato Sintase/metabolismo , Cicatrização/efeitos dos fármacosRESUMO
The extract of pomegranate (Punica granatum) has been applied in medicine since ancient times due to its broad-spectrum health-beneficial properties. It is a rich source of hydrolyzable tannins and anthocyanins, exhibiting strong antioxidative, anti-inflammatory, and antineoplastic properties. Anticancer activities of pomegranate with reference to modulated signaling pathways in various cancer diseases have been recently reviewed. However, less is known about punicalagin (Pug), a prevailing compound in pomegranate, seemingly responsible for its most beneficial properties. In this review, the newest data derived from recent scientific reports addressing Pug impact on neoplastic cells are summarized and discussed. Its attenuating effect on signaling circuits promoting cancer growth and invasion is depicted. The Pug-induced redirection of signal-transduction pathways from survival and proliferation into cell-cycle arrest, apoptosis, senescence, and autophagy (thus compromising neoplastic progression) is delineated. Considerations presented in this review are based mainly on data obtained from in vitro cell line models and concern the influence of Pug on human cervical, ovarian, breast, lung, thyroid, colorectal, central nervous system, bone, as well as other cancer types.
Assuntos
Antineoplásicos/farmacologia , Taninos Hidrolisáveis/farmacologia , Neoplasias/prevenção & controle , Extratos Vegetais/farmacologia , Punica granatum/química , Transdução de Sinais/efeitos dos fármacos , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , HumanosRESUMO
Fluoride is a natural element essential in minute quantities in human's to maintain dental and skeletal health. However, the disease fluorosis manifests itself due to excessive fluoride intake mostly through drinking water and sometimes through food. At the cellular energetics level, fluoride is a known inhibitor of glycolysis. At the tissue level, the effect of fluoride has been more pronounced in the musculoskeletal systems due to its ability to retain fluoride. Fluoride alters dentinogenesis, thereby affecting the tooth enamel formation. In bones, fluoride alters the osteogenesis by replacing calcium, thus resulting in bone deformities. In skeletal muscles, high concentration and long term exposure to fluoride causes loss of muscle proteins leading to atrophy. Although fluorosis is quite a familiar problem, the exact molecular pathway is not yet clear. Extensive research on the effects of fluoride on various organs and its toxicity was reported. Indeed, it is clear that high and chronic exposure to fluoride causes cellular apoptosis. Accordingly, in this review, we have highlighted fluoride-mediated apoptosis via two vital pathways, mitochondrial-mediated and endoplasmic reticulum stress pathways. This review also elaborates on new cellular energetic, apoptotic pathways and therapeutic strategies targeted to treat fluorosis.
Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fluoretos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores , Desenvolvimento de Medicamentos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fluoretos/farmacologia , Fluoretos/uso terapêutico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Oxidantes/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Assuntos
Materiais Biomiméticos/química , Regeneração Óssea/efeitos dos fármacos , Hidrogéis/química , Nanocompostos/química , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Adesivos/síntese química , Adesivos/química , Adesivos/toxicidade , Alendronato/análogos & derivados , Alendronato/toxicidade , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Osso e Ossos/efeitos dos fármacos , Linhagem Celular , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Dextranos/síntese química , Dextranos/química , Dextranos/toxicidade , Durapatita/síntese química , Durapatita/química , Durapatita/toxicidade , Feminino , Hidrogéis/síntese química , Hidrogéis/toxicidade , Masculino , Camundongos , Nanocompostos/toxicidade , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química , Ácido Poliglutâmico/toxicidade , Ratos Sprague-Dawley , Suínos , Engenharia Tecidual/métodosRESUMO
Only a fraction of cancer patients benefits from immune checkpoint inhibitors. This may be partly due to the dense extracellular matrix (ECM) that forms a barrier for T cells. Comparing five preclinical mouse tumor models with heterogeneous tumor microenvironments, we aimed to relate the rate of tumor stiffening with the remodeling of ECM architecture and to determine how these features affect intratumoral T cell migration. An ECM-targeted strategy, based on the inhibition of lysyl oxidase, was used. In vivo stiffness measurements were found to be strongly correlated with tumor growth and ECM crosslinking but negatively correlated with T cell migration. Interfering with collagen stabilization reduces ECM content and tumor stiffness leading to improved T cell migration and increased efficacy of anti-PD-1 blockade. This study highlights the rationale of mechanical characterizations in solid tumors to understand resistance to immunotherapy and of combining treatment strategies targeting the ECM with anti-PD-1 therapy.
Assuntos
Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Colágeno/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/metabolismo , Microambiente Tumoral/fisiologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Proteína-Lisina 6-Oxidase/metabolismoRESUMO
Nanomaterials are proven to affect the biological activity of mammalian and microbial cells profoundly. Despite this fact, only surface chemistry, charge, and area are often linked to these phenomena. Moreover, most attention in this field is directed exclusively at nanomaterial cytotoxicity. At the same time, there is a large body of studies showing the influence of nanomaterials on cellular metabolism, proliferation, differentiation, reprogramming, gene transfer, and many other processes. Furthermore, it has been revealed that in all these cases, the shape of the nanomaterial plays a crucial role. In this paper, the mechanisms of nanomaterials shape control, approaches toward its synthesis, and the influence of nanomaterial shape on various biological activities of mammalian and microbial cells, such as proliferation, differentiation, and metabolism, as well as the prospects of this emerging field, are reviewed.
Assuntos
Células/efeitos dos fármacos , Nanoestruturas/química , Tamanho da Partícula , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fenômenos FísicosRESUMO
The elasticity, topography, and chemical composition of cell culture substrates influence cell behavior. However, the cellular responses toin vivoextracellular matrix (ECM), a hydrogel of proteins (mainly collagen) and polysaccharides, remain unknown as there is no substrate that preserves the key features of native ECM. This study introduces novel collagen hydrogels that can combine elasticity, topography, and composition and reproduce the correlation between collagen concentration (C) and elastic modulus (E) in native ECM. A simple reagent-free method based on radiation-cross-linking altered ECM-derived collagen I and hydrolyzed collagen (gelatin or collagen peptide) solutions into hydrogels with tunable elastic moduli covering a broad range of soft tissues (E= 1-236 kPa) originating from the final collagen density in the hydrogels (C= 0.3%-14%) and precise microtopographies (⩾1 µm). The amino acid composition ratio was almost unchanged by this method, and the obtained collagen hydrogels maintained enzyme-mediated degradability. These collagen hydrogels enabled investigation of the responses of cell lines (fibroblasts, epithelial cells, and myoblasts) and primary cells (rat cardiomyocytes) to soft topographic cues such as thosein vivounder the positive correlation betweenCandE. These cells adhered directly to the collagen hydrogels and chose to stay atop or spontaneously migrate into them depending onE, that is, the density of the collagen network,C. We revealed that the cell morphology and actin cytoskeleton organization conformed to the topographic cues, even when they are as soft asin vivoECM. The stiffer microgrooves on collagen hydrogels aligned cells more effectively, except HeLa cells that underwent drastic changes in cell morphology. These collagen hydrogels may not only reducein vivoandin vitrocell behavioral disparity but also facilitate artificial ECM design to control cell function and fate for applications in tissue engineering and regenerative medicine.
Assuntos
Materiais Biocompatíveis , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Colágeno , Elasticidade/efeitos dos fármacos , Hidrogéis , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Colágeno/química , Colágeno/farmacologia , Cães , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Células HeLa , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células Madin Darby de Rim Canino , Ratos , Propriedades de SuperfícieRESUMO
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Assuntos
Poluentes Ambientais/toxicidade , Telomerase/metabolismo , Telômero/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , HumanosRESUMO
PURPOSE: The main characteristic of proliferative vitreoretinopathy (PVR) is migration, adhesion, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPE). Eupatilin is a naturally occurring flavone that has the potential to inhibit cell proliferation and EMT. However, its efficacy on the PVR model induced by transforming growth factor-2 (TGF-ß2) is unknown. In this study, the potential effect of eupatilin on proliferation and EMT in the treatment of RPE was investigated. METHODS: Serum starved human RPE cells (ARPE-19) were treated with 10 ng/ml TGF-ß2 alone or co-treated with 25 µM eupatilin for 48 h. Quantitative real-time PCR and Western blot analysis were used to assess targets at the mRNA and protein expression level, respectively. Apoptosis and cell cycle progression was assessed by image-based cytometry. The effect of treatment on cell migration was evaluated by wound healing assay. RESULTS: Eupatilin inhibited TGF-ß2-induced RPE cell proliferation via regulating the cell cycle and inducing apoptosis. TGF-ß2 upregulated mRNA expression of mesenchymal markers fibronectin and vimentin was significantly downregulated by the treatment, while the epithelial markers E-cadherin and occludin expression was upregulated. The therapy significantly suppressed TGF-ß2 encouraged cell migration through downregulating the expression of transcription factors Twist, Snail, and ZEB1 induced by TGF-ß2. Furthermore, eupatilin significantly inhibited the expression of MMP-1, -7, and -9, and suppressed NF-κB signalling. CONCLUSION: These results suggest that eupatilin could inhibit the proliferation and transformation into fibroblast-like cells of RPE cells; thus the agent may be a potential therapeutic value in treating PVR.
Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/farmacologia , Epitélio Pigmentado da Retina/citologia , Antígenos CD/genética , Caderinas/genética , Linhagem Celular , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibronectinas/genética , Humanos , Metaloproteinases da Matriz/genética , Proteínas Nucleares/genética , Ocludina/genética , Fatores de Transcrição da Família Snail/genética , Fator de Crescimento Transformador beta2 , Proteína 1 Relacionada a Twist/genética , Vimentina/genética , Vimentina/metabolismo , Vitreorretinopatia Proliferativa/tratamento farmacológico , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genéticaRESUMO
G9a, a histone methyltransferase, has been found to be upregulated in a range of tumor tissues, and contributes to tumor growth and metastasis. However, the impact of G9a inhibition as a potential therapeutic target in nasopharyngeal carcinoma (NPC) is unclear. In the present study we aimed to investigate the anti-proliferative effect of G9a inhibition in the NPC cell lines CNE1 and CNE2, and to further elucidate the molecular mechanisms underlying these effects. The expression of G9a in NPC tumor tissues was significantly higher than that in normal nasopharyngeal tissues. The pharmacological inhibition of G9a by BIX-01294 (BIX) inhibited proliferation and induced caspase-independent apoptosis in NPC cells in vitro. Treatment with BIX induced autophagosome accumulation, which exacerbated the cytotoxic activity of BIX in NPC cells. Mechanistic studies have found that BIX impairs autophagosomes by initiating autophagy in a Beclin-1-independent way, and impairs autophagic degradation by inhibiting lysosomal cathepsin D activation, leading to lysosomal dysfunction. BIX was able to suppress tumor growth, possibly by inhibiting autophagic flux; it might therefore constitute a promising candidate for NPC therapy.
Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Quinazolinas/farmacologia , Autofagossomos/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , RNA Interferente Pequeno/genéticaRESUMO
Background Statins inhibit the cholesterol biosynthesis and are used as cholesterol-lowering agents in fat-metabolism disorders. Furthermore, several studies state that statins have supportive functions in breast cancer treatment. Therefore, simvastatin (SVA) as a potential radiosensitizer should be investigated on the basis of human breast cells. Methods First, an optimal concentration of SVA for normal (MCF10A) and cancer (MCF-7) cells was identified via growth and cytotoxicity assays that, according to the definition of a radiosensitizer in the narrower sense, enhances the effect of radiation therapy but has no cytotoxic effect. Next, in combination with radiation SVA's influence on DNA repair capacity and clonogenic survival in 2D and 3D was determined. Furthermore cell cycle distribution, expression of survivin and connective tissue growth factor (CTGF) as well as ERK1 map kinase were analysed. Results 1 µM SVA was identified as highest concentration without an influence on cell growth and cytotoxicity and was used for further analyses. In terms of early and residual γH2AX-foci, SVA affected the number of foci in both cell lines with or without irradiation. Different radiation responses were detected in 2D and 3D culture conditions. During the 2D cultivation, a radiosensitizing effect within the clonogenic survival was observable, but not in 3D. Conclusion The present study suggests that SVA may have potential for radiosensitization. Therefore, it is important to further investigate the role of SVA in relation to the extent of radiosensitization and how it could be used to positively influence the therapy of breast cancer or other entities.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Radiossensibilizantes/farmacologia , Sinvastatina/farmacologia , Mama/citologia , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fenômenos Fisiológicos Celulares/efeitos da radiação , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Feminino , Histonas/metabolismo , Humanos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Survivina/metabolismoRESUMO
BACKGROUND: In addition to the well-known role played in lactation and parturition, Oxytocin (OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory, anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects. OBJECTIVE: The aim of this narrative review is to summarize the main data coming from the literature dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most relevant aspects. METHODS: Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally, references of original articles and reviews were examined. RESULTS: We report the most significant and updated data on the role played by OT and OTR in physiology and different clinical contexts. CONCLUSION: Emerging evidence indicates the involvement of OT system in several pathophysiological mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric conditions. Furthermore, it modulates pancreatic ß-cell responsiveness and lipid metabolism leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even reversing atherosclerotic lesions.
Assuntos
Ocitocina/metabolismo , Ocitocina/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Fenômenos Fisiológicos Celulares/fisiologia , Feminino , Humanos , Masculino , Ocitocina/farmacologia , Gravidez , Receptores de Ocitocina/metabolismo , Transdução de Sinais/fisiologia , Comportamento SocialRESUMO
Transition metals interact with a large proportion of the proteome in all forms of life, and they play mandatory and irreplaceable roles. The dynamics of ligand binding to ions of transition metals falls within the realm of Coordination Chemistry, and it provides the basic principles controlling traffic, regulation, and use of metals in cells. Yet, the cellular environment stands out against the conditions prevailing in the test tube when studying metal ions and their interactions with various ligands. Indeed, the complex and often changing cellular environment stimulates fast metal-ligand exchange that mostly escapes presently available probing methods. Reducing the complexity of the problem with purified proteins or in model organisms, although useful, is not free from pitfalls and misleading results. These problems arise mainly from the absence of the biosynthetic machinery and accessory proteins or chaperones dealing with metal / metal groups in cells. Even cells struggle with metal selectivity, as they do not have a metal-directed quality control system for metalloproteins, and serendipitous metal binding is probably not exceptional. The issue of metal exchange in biology is reviewed with particular reference to iron and illustrating examples in patho-physiology, regulation, nutrition, and toxicity.