Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.210
Filtrar
1.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715090

RESUMO

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Assuntos
Encéfalo , Citocinas , Camundongos Endogâmicos C57BL , Transtornos do Neurodesenvolvimento , Placenta , Efeitos Tardios da Exposição Pré-Natal , Caracteres Sexuais , Feminino , Animais , Gravidez , Masculino , Citocinas/metabolismo , Citocinas/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Encéfalo/embriologia , Placenta/metabolismo , Placenta/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/metabolismo , Poli I-C/toxicidade , Transcriptoma , Modelos Animais de Doenças , Feto/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731907

RESUMO

Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is obtained from the maternal diet during pregnancy, and is essential for normal fetal growth and development. A maternal high-LA (HLA) diet alters maternal and offspring fatty acids, maternal leptin and male/female ratio at embryonic (E) day 20 (E20). We investigated the effects of an HLA diet on embryonic offspring renal branching morphogenesis, leptin signalling, megalin signalling and angiogenesis gene expression. Female Wistar Kyoto rats were fed low-LA (LLA; 1.44% energy from LA) or high-LA (HLA; 6.21% energy from LA) diets during pregnancy and gestation/lactation. Offspring were sacrificed and mRNA from kidneys was analysed by real-time PCR. Maternal HLA decreased the targets involved in branching morphogenesis Ret and Gdnf in offspring, independent of sex. Furthermore, downstream targets of megalin, namely mTOR, Akt3 and Prkab2, were reduced in offspring from mothers consuming an HLA diet, independent of sex. There was a trend of an increase in the branching morphogenesis target Gfra1 in females (p = 0.0517). These findings suggest that an HLA diet during pregnancy may lead to altered renal function in offspring. Future research should investigate the effects an HLA diet has on offspring kidney function in adolescence and adulthood.


Assuntos
Rim , Ácido Linoleico , Morfogênese , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Feminino , Gravidez , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Ratos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Ácido Linoleico/metabolismo , Masculino , Ratos Endogâmicos WKY , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Feto/metabolismo , Feto/efeitos dos fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731997

RESUMO

Glucose, the primary energy substrate for fetal oxidative processes and growth, is transferred from maternal to fetal circulation down a concentration gradient by placental facilitative glucose transporters. In sheep, SLC2A1 and SLC2A3 are the primary transporters available in the placental epithelium, with SLC2A3 located on the maternal-facing apical trophoblast membrane and SLC2A1 located on the fetal-facing basolateral trophoblast membrane. We have previously reported that impaired placental SLC2A3 glucose transport resulted in smaller, hypoglycemic fetuses with reduced umbilical artery insulin and glucagon concentrations, in addition to diminished pancreas weights. These findings led us to subject RNA derived from SLC2A3-RNAi (RNA interference) and NTS-RNAi (non-targeting sequence) fetal pancreases to qPCR followed by transcriptomic analysis. We identified a total of 771 differentially expressed genes (DEGs). Upregulated pathways were associated with fat digestion and absorption, particularly fatty acid transport, lipid metabolism, and cholesterol biosynthesis, suggesting a potential switch in energetic substrates due to hypoglycemia. Pathways related to molecular transport and cell signaling in addition to pathways influencing growth and metabolism of the developing pancreas were also impacted. A few genes directly related to gluconeogenesis were also differentially expressed. Our results suggest that fetal hypoglycemia during the first half of gestation impacts fetal pancreas development and function that is not limited to ß cell activity.


Assuntos
Hipoglicemia , Pâncreas , Placenta , Interferência de RNA , Transcriptoma , Gravidez , Animais , Feminino , Placenta/metabolismo , Ovinos , Pâncreas/metabolismo , Pâncreas/embriologia , Hipoglicemia/genética , Hipoglicemia/metabolismo , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo , Feto/metabolismo , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Perfilação da Expressão Gênica
4.
Bull Exp Biol Med ; 176(5): 533-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38722506

RESUMO

We performed a comparative analysis of direct and mediated through the maternal organism effects of elevated catecholamine concentration on changes in the cardiac activity parameters in female rats and their fetuses on gestation days 18 and 20 under in vivo conditions. Administration of L-DOPA, a precursor of catecholaminergic transmitters, did not cause chronotropic effects in fetuses. Analysis of HR variability showed that in fetuses, irrespective of the administration route, there was an increase in nervous influences while the leading role of humoral-metabolic factors in the regulation of HR was preserved. In females receiving L-DOPA injection on day 18 of gestation, a decrease in humoral-metabolic and an increase in nerve effects were observed; in rats injected with L-DOPA on day 20 of gestation, an increase in sympathetic influences was found. Administration of L-DOPA to fetuses provoked a slight increase in the power of all components of the heart rhythm periodogram spectrum in females on day 18 of gestation and their decrease on day 20. Changes in the parameters of HR variability in females can confirm the hypothesis that in the "mother-fetus" system, the heart rhythm in the mother can be affected by both maternal and fetal influences presumably through the humoral-metabolic regulation.


Assuntos
Catecolaminas , Feto , Levodopa , Animais , Feminino , Ratos , Gravidez , Levodopa/farmacologia , Catecolaminas/metabolismo , Feto/metabolismo , Feto/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Ratos Wistar , Frequência Cardíaca Fetal/efeitos dos fármacos , Frequência Cardíaca Fetal/fisiologia
5.
Sci Rep ; 14(1): 10854, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740788

RESUMO

Unlike adult mammalian wounds, early embryonic mouse skin wounds completely regenerate and heal without scars. Analysis of the underlying molecular mechanism will provide insights into scarless wound healing. Twist2 is an important regulator of hair follicle formation and biological patterning; however, it is unclear whether it plays a role in skin or skin appendage regeneration. Here, we aimed to elucidate Twist2 expression and its role in fetal wound healing. ICR mouse fetuses were surgically wounded on embryonic day 13 (E13), E15, and E17, and Twist2 expression in tissue samples from these fetuses was evaluated via in situ hybridization, immunohistochemistry, and reverse transcription-quantitative polymerase chain reaction. Twist2 expression was upregulated in the dermis of E13 wound margins but downregulated in E15 and E17 wounds. Twist2 knockdown on E13 left visible marks at the wound site, inhibited regeneration, and resulted in defective follicle formation. Twist2-knockdown dermal fibroblasts lacked the ability to undifferentiate. Furthermore, Twist2 hetero knockout mice (Twist + /-) formed visible scars, even on E13, when all skin structures should regenerate. Thus, Twist2 expression correlated with skin texture formation and hair follicle defects in late mouse embryos. These findings may help develop a therapeutic strategy to reduce scarring and promote hair follicle regeneration.


Assuntos
Feto , Folículo Piloso , Regeneração , Pele , Proteína 2 Relacionada a Twist , Cicatrização , Animais , Folículo Piloso/metabolismo , Camundongos , Cicatrização/genética , Cicatrização/fisiologia , Feto/metabolismo , Pele/metabolismo , Proteína 2 Relacionada a Twist/metabolismo , Proteína 2 Relacionada a Twist/genética , Camundongos Knockout , Camundongos Endogâmicos ICR , Feminino , Fibroblastos/metabolismo , Proteínas Repressoras , Proteína 1 Relacionada a Twist
6.
Nat Commun ; 15(1): 4034, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740814

RESUMO

Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.


Assuntos
Proliferação de Células , Hepatócitos , Metabolismo dos Lipídeos , Organoides , Transcriptoma , Humanos , Hepatócitos/metabolismo , Hepatócitos/citologia , Organoides/metabolismo , Feto/metabolismo , Adulto , Interleucina-6/metabolismo , Interleucina-6/genética , Células Cultivadas
7.
Placenta ; 150: 22-30, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581971

RESUMO

INTRODUCTION: During pregnancy, the dynamic metabolic demands for fetal growth require a continuous supply of essential metabolites. Understanding maternal metabolome changes during gestation is crucial for predicting disease risks in neonates. METHODS: The study aimed to characterize the placental and amniotic fluid (AF) metabolomes during gestation in rats at gestational days GD-13 and 19 reflecting the end of the embryonic and fetal periods, respectively, and the maternal plasma, using metabolomics (LC-MS) and chemometrics. The objective was to highlight, through univariate and multivariate analyses, the complementarity of the data obtained from these different biological matrices. RESULTS: The biological matrix had more impact on the metabolome composition than the gestational stage. The placental and AF metabolomes showed specific metabolome evolving over the two gestational stages. Analyzing the three targeted metabolomes revealed evolving pathways in arginine and proline metabolism/glutathione metabolism and phenylalanine metabolism; purine metabolism; and carbohydrate metabolism. Significantly, lipid metabolism in the placenta exhibited substantial changes with higher levels of certain phosphatidylethanolamine and sphingomyelins at GD19 while some cholesteryl esters and some glycosphingolipids levels being in higher levels at GD13. DISCUSSION: These data highlight the metabolic gradients (mainly in placenta, also in AF, but only a few in plasma) observed through embryonic patterning and organ development during mid-to late gestation.


Assuntos
Líquido Amniótico , Metabolômica , Placenta , Feminino , Animais , Gravidez , Líquido Amniótico/metabolismo , Líquido Amniótico/química , Placenta/metabolismo , Metabolômica/métodos , Ratos , Metaboloma , Feto/metabolismo
8.
Sci Rep ; 14(1): 8500, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605102

RESUMO

Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.


Assuntos
Desenvolvimento Fetal , Retardo do Crescimento Fetal , Músculo Esquelético , Suínos , Humanos , Animais , Masculino , Feminino , Suínos/genética , Suínos/fisiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Músculo Esquelético/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Desenvolvimento Fetal/genética , Transcriptoma , Idade Gestacional , Reação em Cadeia da Polimerase em Tempo Real , Imuno-Histoquímica , Feto/metabolismo , Genes Controladores do Desenvolvimento , Proteína MyoD/genética , Proteína MyoD/metabolismo , Actinina/genética , Actinina/metabolismo
9.
JCI Insight ; 9(10)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687612

RESUMO

Fetal growth restriction (FGR) is accompanied by early activation of hepatic glucose production (HGP), a hallmark of type 2 diabetes (T2D). Here, we used fetal hepatic catheterization to directly measure HGP and substrate flux in a sheep FGR model. We hypothesized that FGR fetuses would have increased hepatic lactate and amino acid uptake to support increased HGP. Indeed, FGR fetuses compared with normal (CON) fetuses had increased HGP and activation of gluconeogenic genes. Unexpectedly, hepatic pyruvate output was increased, while hepatic lactate and gluconeogenic amino acid uptake rates were decreased in FGR liver. Hepatic oxygen consumption and total substrate uptake rates were lower. In FGR liver tissue, metabolite abundance, 13C-metabolite labeling, enzymatic activity, and gene expression supported decreased pyruvate oxidation and increased lactate production. Isolated hepatocytes from FGR fetuses had greater intrinsic capacity for lactate-fueled glucose production. FGR livers also had lower energy (ATP) and redox state (NADH/NAD+ ratio). Thus, reduced hepatic oxidative metabolism may make carbons available for increased HGP, but also produces nutrient and energetic stress in FGR liver. Intrinsic programming of these pathways regulating HGP in the FGR fetus may underlie increased HGP and T2D risk postnatally.


Assuntos
Retardo do Crescimento Fetal , Feto , Glucose , Fígado , Oxirredução , Animais , Fígado/metabolismo , Retardo do Crescimento Fetal/metabolismo , Glucose/metabolismo , Ovinos , Feminino , Feto/metabolismo , Gravidez , Gluconeogênese , Hepatócitos/metabolismo , Ácido Láctico/metabolismo , Modelos Animais de Doenças , Consumo de Oxigênio , Ácido Pirúvico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
10.
Nitric Oxide ; 147: 13-25, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588917

RESUMO

In the developing lung, nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) signaling are essential in regulating lung formation and vascular tone. Animal studies have linked many anatomical and pathophysiological features of newborn lung disease to abnormalities in the NO/cGMP signaling system. They have demonstrated that driving this system with agonists and antagonists alleviates many of them. This research has spurred the rapid clinical development, testing, and application of several NO/cGMP-targeting therapies with the hope of treating and potentially preventing significant pediatric lung diseases. However, there are instances when the therapeutic effectiveness of these agents is limited. Studies indicate that injury-induced disruption of several critical components within the signaling system may hinder the promise of some of these therapies. Recent research has identified basic mechanisms that suppress NO/cGMP signaling in the injured newborn lung. They have also pinpointed biomarkers that offer insight into the activation of these pathogenic mechanisms and their influence on the NO/cGMP signaling system's integrity in vivo. Together, these will guide the development of new therapies to protect NO/cGMP signaling and safeguard newborn lung development and function. This review summarizes the important role of the NO/cGMP signaling system in regulating pulmonary development and function and our evolving understanding of how it is disrupted by newborn lung injury.


Assuntos
GMP Cíclico , Pulmão , Óxido Nítrico , Óxido Nítrico/metabolismo , Humanos , Pulmão/metabolismo , Animais , GMP Cíclico/metabolismo , Recém-Nascido , Transdução de Sinais , Feto/metabolismo
11.
Curr Top Dev Biol ; 156: 201-243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556424

RESUMO

Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.


Assuntos
Coração , Mitocôndrias , Gravidez , Feminino , Humanos , Mitocôndrias/metabolismo , Desenvolvimento Fetal , Feto/metabolismo , Embrião de Mamíferos/metabolismo , Metabolismo Energético
12.
J Environ Pathol Toxicol Oncol ; 43(2): 57-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505913

RESUMO

Alpha-fetoprotein (AFP) belongs to the albuminoid protein family and is considered as the fetal analog of serum albumin. This plasma protein is initially synthesized in the fetal liver and yolk sac and shows a maximum peak near the end of the first trimester. Later, concentrations begin to decline prenatally and drop precipitously after birth. This protein has three key ligand-binding pockets for interactions with various biomolecules. It contains multiple phosphorylation and acetylation sites for the regulation of physiological and pathophysiological states. High serum AFP titer is an established biomarker for yolk sac, embryonal and hepatocellular carcinoma. The present review critically analyzes the chemical nature, receptors, clinical implications, and therapeutic aspects of AFP, underpinning the development of different types of cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/metabolismo , Saco Vitelino/metabolismo , Feto/metabolismo , Neoplasias Hepáticas/metabolismo
13.
Horm Behav ; 161: 105525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452612

RESUMO

Testosterone plays a critical role in mediating fitness-related traits in many species. Although it is highly responsive to environmental and social conditions, evidence from several species show a heritable component to its individual variation. Despite the known effects that in utero testosterone exposure have on adult fitness, the heritable component of individual testosterone variation in fetuses is mostly unexplored. Furthermore, testosterone has sex-differential effects on fetal development, i.e., a specific level may be beneficial for male fetuses but detrimental for females, producing sexual conflict. Such sexual conflict may be resolved by the evolution of a sex-specific genetic architecture of the trait. Here, we quantified fetal testosterone levels in a wild species, free-ranging nutrias (Myocastor coypus) using hair-testing and estimated testosterone heritability between parent and offspring from the same and opposite sex. We found that in utero accumulated hair testosterone levels were heritable between parents and offspring of the same sex. Moreover, there was a low additive genetic covariance between the sexes, and a low cross-sex genetic correlation, suggesting a potential for sex-specific trait evolution, expressed early on, in utero.


Assuntos
Cabelo , Testosterona , Animais , Feminino , Testosterona/metabolismo , Masculino , Cabelo/química , Caracteres Sexuais , Pai , Feto/metabolismo , Gravidez , Mães
14.
Leukemia ; 38(5): 1115-1130, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38555405

RESUMO

Infant and adult MLL1/KMT2A-rearranged (MLLr) leukemia represents a disease with a dismal prognosis. Here, we present a functional and proteomic characterization of in utero-initiated and adult-onset MLLr leukemia. We reveal that fetal MLL::ENL-expressing lymphomyeloid multipotent progenitors (LMPPs) are intrinsically programmed towards a lymphoid fate but give rise to myeloid leukemia in vivo, highlighting a complex interplay of intra- and extracellular factors in determining disease subtype. We characterize early proteomic events of MLL::ENL-mediated transformation in fetal and adult blood progenitors and reveal that whereas adult pre-leukemic cells are mainly characterized by retained myeloid features and downregulation of ribosomal and metabolic proteins, expression of MLL::ENL in fetal LMPPs leads to enrichment of translation-associated and histone deacetylases signaling proteins, and decreased expression of inflammation and myeloid differentiation proteins. Integrating the proteome of pre-leukemic cells with their secretome and the proteomic composition of the extracellular environment of normal progenitors highlights differential regulation of Igf2 bioavailability, as well as of VLA-4 dimer and its ligandome, upon initiation of fetal- and adult-origin leukemia, with implications for human MLLr leukemia cells' ability to communicate with their environment through granule proteins. Our study has uncovered opportunities for targeting ontogeny-specific proteomic vulnerabilities in in utero-initiated and adult-onset MLLr leukemia.


Assuntos
Proteína de Leucina Linfoide-Mieloide , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Humanos , Camundongos , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Rearranjo Gênico , Proteômica/métodos , Feto/metabolismo , Adulto , Feminino , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia/genética , Leucemia/patologia , Leucemia/metabolismo
15.
Front Endocrinol (Lausanne) ; 15: 1307619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379864

RESUMO

Alpha-fetoprotein (AFP) is a serum protein highly produced during the fetal period. It is also known as a biomarker of various pathologies. Commonly, tumors requiring diagnosis and monitoring through AFP determination appear during the first year of life, with poorer outcomes when presenting in fetal life. Due to advancements in imaging technology, the detectability of ovarian masses in infants is higher. However, the use of AFP as a biomarker could improve diagnosis in cases when imaging and histological examinations are not sensitive enough to detect tumors. From the outcome of our investigation, it is possible to conclude that there is evidence of an association between increased AFP levels and ovarian masses. However, previous studies have presented contradictory and unverified results, with the authors emphasizing that future research is needed. In this article, an analysis of the available literature on AFP as a biomarker of ovarian masses in children was performed. Two types of literature were reviewed: guidance and published studies (clinical trials, reviews, and systematic reviews). We searched the Embase, PubMed, ScienceDirect, and Web of Science databases to collect essential data.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Criança , Lactente , Feminino , Humanos , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/metabolismo , Biomarcadores , Feto/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/patologia
16.
Life Sci ; 341: 122484, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311219

RESUMO

AIMS: Lipids are essential cellular components with many important biological functions. Disturbed lipid biosynthesis and metabolism has been shown to cause cardiac developmental abnormality and cardiovascular diseases. In this study, we aimed to investigate the composition and the molecular profiles of lipids in mammalian hearts between embryonic and adult stages and uncover the underlying links between lipid and cardiac development and maturation. MATERIALS AND METHODS: We collected mouse hearts at the embryonic day 11.5 (E11.5), E15.5, and the age of 2 months, 4 months and 10 months, and performed lipidomic analysis to determine the changes of the composition, molecular species, and relative abundance of cardiac lipids between embryonic and adult stages. Additionally, we also performed the electronic microscopy and RNA sequencing in both embryonic and adult mouse hearts. KEY FINDINGS: The relative abundances of certain phospholipids and sphingolipids including cardiolipin, phosphatidylglycerol, phosphatidylethanolamine, and ceramide, are different between embryonic and adult hearts. Such lipidomic changes are accompanied with increased densities of mitochondrial membranes and elevated expression of genes related to mitochondrial formation in adult mouse hearts. We also analyzed individual molecular species of phospholipids and sphingolipids, and revealed that the composition and distribution of lipid molecular species in hearts also change with development. SIGNIFICANCE: Our study provides not only a lipidomic view of mammalian hearts when developing from the embryonic to the adult stage, but also a potential pool of lipid indicators for cardiac cell development and maturation.


Assuntos
Lipidômica , Fosfolipídeos , Animais , Camundongos , Fosfolipídeos/metabolismo , Esfingolipídeos/metabolismo , Coração , Feto/metabolismo , Mamíferos/metabolismo
17.
Placenta ; 148: 31-37, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38350223

RESUMO

INTRODUCTION: Glucose from placenta is the predominant energy source for the fetus. Individual placentas exhibit a range of glucose handling from apparent net production to high consumption, presumably reflecting an ability of placenta to secure both own and fetal energy needs. A dependency of placenta on glucose as the main energy source could impede fetal supply. Placenta seems to release lactate to maternal side implying loss of energy. Whether placenta takes up ketones is unclear. Our main hypothesis was that the human placenta can release lactate to the maternal side but take up maternal ketones. METHODS: An in vivo study of term uncomplicated pregnancies including 56 women delivered by cesarean section. We measured uterine and umbilical blood flow by Doppler ultrasonography, combined with blood sampling from maternal radial artery, uterine vein, umbilical artery and vein. Lactate and ketones were determined by quantitative nuclear magnetic resonance. RESULTS: Placenta released lactate to the maternal side (median -36.65 µmol/min. Q1, Q3: 78.53, 13.29), p < 0.001), but not to the fetal side. A net uptake of maternal ketones was found (median (Q1, Q3): 59.12 (30.64, 131.46) µmol acetate equivalents/min, p < 0.001) which largely was metabolized by the uteroplacenta. The uptake of ketones was comparable in energy to the loss of lactate. DISCUSSION: Placenta may release lactate to the maternal side. The energy lost by lactate may be compensated by uptake of maternal ketones. This lactate-ketone trade could benefit both placenta and the fetus by providing lactate for maternal gluconeogenesis and ketones for uteroplacental oxidative energy production.


Assuntos
Ácido Láctico , Placenta , Humanos , Feminino , Gravidez , Placenta/metabolismo , Ácido Láctico/metabolismo , Cesárea , Glucose/metabolismo , Feto/metabolismo , Metabolismo Energético
18.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L508-L513, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349123

RESUMO

Prolonged labor can lead to infection, fetal distress, asphyxia, and life-threatening harm to both the mother and the baby. Surfactant protein A (SP-A) was shown to contribute to the maintenance of pregnancy and timing of term labor. SP-A modulates the stoichiometric expression of the SP-R210L and SP-R210S isoforms of the SP-R210 receptor on alveolar macrophages (AMs). Lack of SP-R210L dysregulates macrophage inflammatory responses. We asked whether SP-A alters normal and inflammation-induced parturition through SP-R210 using SP-A- and SP-R210L-deficient mice. Labor and delivery of time-pregnant mice were monitored in real time using a time-lapse infrared camera. Intrauterine injection with either vehicle or Escherichia coli lipopolysaccharide (LPS) on embryonic (E) day 18.5 post coitus was used to assess the effect of gene disruption in chorioamnionitis-induced labor. We report that either lack of SP-A or disruption of SP-R210L delays parturition by 0.40 and 0.55 days compared with controls, respectively. LPS induced labor at 0.60, 1.01, 0.40, 1.00, and 1.31 days earlier than PBS controls in wild type (WT), SP-A-deficient, littermate controls, heterozygous, and homozygous SP-R210L-deficient mice, respectively. Lack of SP-A reduced litter size in PBS-treated mice, whereas the total number of pups delivered was similar in all LPS-treated mice. The number of live pups, however, was significantly reduced by 50%-70% in SP-A and SP-R210L-deficient mice compared with controls. Differences in gestational length were not associated with intrauterine growth restriction. The present findings support the novel concept that the SP-A/SP-R210 pathway modulates timely labor and delivery and supports fetal lung barrier integrity during fetal-to-neonatal transition in term pregnancy.NEW & NOTEWORTHY To our knowledge, this study is the first to report that SP-A prevents delay of labor and inflammation-induced stillbirth through the receptor SP-R210L.


Assuntos
Lipopolissacarídeos , Proteína A Associada a Surfactante Pulmonar , Feminino , Gravidez , Animais , Camundongos , Lipopolissacarídeos/efeitos adversos , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Parto/metabolismo , Feto/metabolismo , Inflamação/metabolismo
19.
Toxicol Appl Pharmacol ; 484: 116847, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336252

RESUMO

Neonicotinoids (NNs) are commonly used pesticides that have a selective agonistic action on insect nicotinic acetylcholine receptors. Recent evidence has shown that NNs have adverse effects in the next generation of mammals, but it remains unclear how NNs transferred from dams to fetuses are distributed and accumulated in fetal tissues. Here, we aimed to clarify the tissue distribution and accumulation properties of the NN clothianidin (CLO) and its 6 metabolites in 7 tissues and blood in both dams and fetuses of mice administered CLO for a single day or for 9 consecutive days. The results showed that the total concentrations of CLO-related compounds in the brain and kidney were higher in fetuses than in dams, whereas in the liver, heart, and blood they were lower in fetuses. The multi-day administration increased the total levels in heart and blood only in the fetuses of the single administration group. In addition, dimethyl metabolites of CLO showed fetus/dam ratios >1 in some tissues, suggesting that fetuses have higher accumulation property and are thus at higher risks of exposure to CLO-related compounds than dams. These findings revealed differences in the tissue-specific distribution patterns of CLO and its metabolites between dams and fetuses, providing new insights into the assessment of the developmental toxicity of NNs.


Assuntos
Inseticidas , Praguicidas , Tiazóis , Camundongos , Animais , Praguicidas/toxicidade , Praguicidas/metabolismo , Distribuição Tecidual , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Feto/metabolismo , Inseticidas/toxicidade , Inseticidas/metabolismo , Guanidinas/toxicidade , Guanidinas/metabolismo , Mamíferos
20.
J Clin Pharmacol ; 64(5): 568-577, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305718

RESUMO

Nifedipine is used for treating mild to severe hypertension and preventing preterm labor in pregnant women. Nevertheless, concerns about nifedipine fetal exposure and safety are always raised. The aim of this study was to develop and validate a maternal-placental-fetal nifedipine physiologically based pharmacokinetic (PBPK) model and apply the model to predict maternal, placental, and fetal exposure to nifedipine at different pregnancy stages. A nifedipine PBPK model was verified with nonpregnant data and extended to the pregnant population after the inclusion of the fetoplacental multicompartment model that accounts for the placental tissue and different fetal organs within the Simcyp Simulator version 22. Model parametrization involved scaling nifedipine transplacental clearance based on Caco-2 permeability, and fetal hepatic clearance was obtained from in vitro to in vivo extrapolation encompassing cytochrome P450 3A7 and 3A4 activities. Predicted concentration profiles were compared with in vivo observations and the transplacental transfer results were evaluated using 2-fold criteria. The PBPK model predicted a mean cord-to-maternal plasma ratio of 0.98 (range, 0.86-1.06) at term, which agrees with experimental observations of 0.78 (range, 0.59-0.93). Predicted nifedipine exposure was 1.4-, 2.0-, and 3.0-fold lower at 15, 27, and 39 weeks of gestation when compared with nonpregnant exposure, respectively. This innovative PBPK model can be applied to support maternal and fetal safety assessment for nifedipine at various stages of pregnancy.


Assuntos
Troca Materno-Fetal , Modelos Biológicos , Nifedipino , Placenta , Nifedipino/farmacocinética , Nifedipino/administração & dosagem , Humanos , Gravidez , Feminino , Placenta/metabolismo , Células CACO-2 , Feto/metabolismo , Adulto , Citocromo P-450 CYP3A/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA