Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686288

RESUMO

The tumor microenvironment comprises multiple cell types, like cancer cells, endothelial cells, fibroblasts, and immune cells. In recent years, there have been massive research efforts focusing not only on cancer cells, but also on other cell types of the tumor microenvironment, thereby aiming to expand and determine novel treatment options. Fibroblasts represent a heterogenous cell family consisting of numerous subtypes, which can alter immune cell fractions, facilitate or inhibit tumor growth, build pre-metastatic niches, or stabilize vessels. These effects can be achieved through cell-cell interactions, which form the extracellular matrix, or via the secretion of cytokines or chemokines. The pro- or antitumorigenic fibroblast phenotypes show variability not only among different cancer entities, but also among intraindividual sites, including primary tumors or metastatic lesions. Commonly prescribed for arterial hypertension, the inhibitors of the renin-angiotensin system have recently been described as having an inhibitory effect on fibroblasts. This inhibition leads to modified immune cell fractions and increased tissue stiffness, thereby contributing to overcoming therapy resistance and ultimately inhibiting tumor growth. However, it is important to note that the inhibition of fibroblasts can also have the opposite effect, potentially resulting in increased tumor growth. We aim to summarize the latest state of research regarding fibroblast heterogeneity and its intricate impact on the tumor microenvironment and extracellular matrix. Specifically, we focus on highlighting recent advancements in the comprehension of intraindividual heterogeneity and therapy options within this context.


Assuntos
Fibroblastos Associados a Câncer , Carcinogênese , Neoplasias , Fibroblastos Associados a Câncer/classificação , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/fisiologia , Humanos , Microambiente Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Anti-Hipertensivos/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia
2.
Pathol Int ; 72(3): 161-175, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35020975

RESUMO

Cancer-associated fibroblasts (CAFs), a compartment of the tumor microenvironment, were previously thought to be a uniform cell population that promotes cancer progression. However, recent studies have shown that CAFs are heterogeneous and that there are at least two types of CAFs, that is, cancer-promoting and -restraining CAFs. We previously identified Meflin as a candidate marker of cancer-restraining CAFs (rCAFs) in pancreatic ductal adenocarcinoma (PDAC). The precise nature of rCAFs, however, has remained elusive owing to a lack of understanding of their comprehensive gene signatures. Here, we screened genes whose expression correlated with Meflin in single-cell transcriptomic analyses of human cancers. Among the identified genes, we identified matrix remodeling-associated protein 8 (MXRA8), which encodes a type I transmembrane protein with unknown molecular function. Analysis of MXRA8 expression in human PDAC samples showed that MXRA8 was differentially co-expressed with other CAF markers. Moreover, in patients with PDAC or syngeneic tumors developed in MXRA8-knockout mice, MXRA8 expression did not affect the roles of CAFs in cancer progression, and the biological importance of MXRA8+ CAFs is still unclear. Overall, we identified MXRA8 as a new CAF marker; further studies are needed to determine the relevance of this marker.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Imunoglobulinas/análise , Proteínas de Membrana/análise , Neoplasias Pancreáticas/diagnóstico , Animais , Biomarcadores/análise , Fibroblastos Associados a Câncer/citologia , Fibroblastos Associados a Câncer/patologia , Modelos Animais de Doenças , Imunoglobulinas/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout/genética , Neoplasias Pancreáticas/patologia
3.
BJU Int ; 129(1): 80-92, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107167

RESUMO

OBJECTIVES: To investigate the role of cancer-associated fibroblasts (CAFs) in clear cell renal cell carcinoma (ccRCC) with respect to tumour aggressiveness, metastasis development, and resistance to anti-angiogenic therapy (vascular endothelial growth factor receptor-tyrosine kinase inhibitors [VEGFR-TKI]). PATIENTS AND METHODS: Our study involved tissue samples from three distinct and independent cohorts of patients with ccRCC. The presence of CAFs and tumour lymphangiogenesis was investigated, respectively, by transcriptional signatures and then correlated with tumour development and prognosis. The effect of these CAFs on tumour cell migration and VEGFR-TKI resistance was analysed on co-cultures of ccRCC cells with CAFs. RESULTS: Results from our cohorts and from in silico investigations showed that VEGFR-TKI significantly increase the number of CAFs in tumours. In the same populations of patients with ccRCC, the proportion of intra-tumoral CAFs correlated to shorter disease-free and overall survival. The presence of CAFs was also correlated with lymphangiogenesis and lymph node metastasis. CAFs increased the migration and decreased the VEGFR-TKI-dependent cytotoxic effect of tumour cells. CONCLUSIONS: Our results show that VEGFR-TKI promote the development of CAFs, and CAFs favour tumour aggressiveness, metastatic dissemination, and resistance to treatment in ccRCC. CAFs could represent a new therapeutic target to fight resistance to treatment of ccRCC. Targeting CAF and immunotherapies combination are emerging as efficient treatments in many types of solid tumours. Our results highlight their relevance in ccRCC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma de Células Renais/patologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/patologia , Neovascularização Patológica/patologia , Actinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/genética , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/fisiologia , Capilares/patologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/secundário , Carcinoma de Células Renais/cirurgia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Intervalo Livre de Doença , Endopeptidases/genética , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/terapia , Linfangiogênese , Metástase Linfática , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Neovascularização Patológica/tratamento farmacológico , Nefrectomia , Estudos Retrospectivos , Sunitinibe/metabolismo , Sunitinibe/uso terapêutico , Taxa de Sobrevida , Transcriptoma
4.
Int J Oncol ; 60(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34913066

RESUMO

The cancer­stromal interaction has been demonstrated to promote tumor progression, and cancer-associated fibroblasts (CAFs), which are the main components of stromal cells, have attracted attention as novel treatment targets. Chitinase 3-like 1 (CHI3L1) is a chitinase-like protein, which affects cell proliferation and angiogenesis. However, the mechanisms through which cells secrete CHI3L1 and through which CHI3L1 mediates tumor progression in the cancer microenvironment are still unclear. Accordingly, the present study assessed the secretion of CHI3L1 in the microenvironment of colorectal cancer and evaluated how CHI3L1 affects tumor angiogenesis. CAFs and normal fibroblasts (NFs) established from colorectal cancer tissue, and human colon cancer cell lines were evaluated using immunostaining, cytokine antibody array, RNA interference, reverse transcription-quantitative PCR (RT-qPCR), ELISA, western blotting and angiogenesis assays. The expression and secretion of CHI3L1 in CAFs were stronger than those in NFs and colorectal cancer cell lines. In addition, interleukin-13 receptor α2 (IL-13Rα2), a receptor for CHI3L1, was not expressed in colorectal cancer cell lines, but was expressed in fibroblasts, particularly CAFs. Furthermore, the expression and secretion of IL-8 in CAFs was stronger than that in NFs and cancer cell lines, and recombinant CHI3L1 addition increased IL-8 expression in CAFs, whereas knockdown of CHI3L1 suppressed IL-8 expression. Furthermore, IL-13Rα2 knockdown suppressed the enhancement of IL-8 expression induced by CHI3L1 treatment in CAFs. For vascular endothelial growth factor-A (VEGFA), similar results to IL-8 were observed in an ELISA for comparison of secretion between CAFs and NFs and for changes in secretion after CHI3L1 treatment in CAFs; however, no significant differences were observed for changes in expression after CHI3L1 treatment or IL-13Rα2 knockdown in CAFs assessed using RT-qPCR assays. Angiogenesis assays revealed that tube formation in vascular endothelial cells was suppressed by conditioned medium from CAFs with the addition of human CHI3L1 neutralizing antibodies compared with control IgG, and also suppressed by conditioned medium from CAFs transfected with CHI3L1, IL-8 or VEGFA small interfering RNA compared with negative control small interfering RNA. Overall, the present findings indicated that CHI3L1 secreted from CAFs acted on CAFs to increase the secretion of IL-8, thereby affecting tumor angiogenesis in colorectal cancer.


Assuntos
Indutores da Angiogênese/metabolismo , Fibroblastos Associados a Câncer/citologia , Proteína 1 Semelhante à Quitinase-3/biossíntese , Neoplasias Colorretais/sangue , Interleucina-8/biossíntese , Idoso , Indutores da Angiogênese/efeitos adversos , Western Blotting/métodos , Western Blotting/estatística & dados numéricos , Fibroblastos Associados a Câncer/fisiologia , Linhagem Celular/citologia , Linhagem Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteína 1 Semelhante à Quitinase-3/efeitos adversos , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Humanos , Japão , Masculino
5.
Gastroenterology ; 162(3): 890-906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34883119

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Assuntos
Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/fisiologia , Carcinogênese/patologia , Linhagem da Célula , Neoplasias Colorretais/patologia , Células-Tronco Mesenquimais/fisiologia , Actinas/genética , Actinas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Diferenciação Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/patologia , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Organoides/patologia , Organoides/fisiologia , Prognóstico , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Análise de Sequência de RNA , Taxa de Sobrevida , Microambiente Tumoral
6.
Cell Death Dis ; 12(6): 586, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099638

RESUMO

Hyaluronan (HA) cross-linking is a conformational state of HA, a covalent complex between HA and heavy chains (HCs) from inter-α-trypsin inhibitor (I-α-I) mediated by tumor necrosis factor-induced protein 6 (TSG6). Cross-linked HA has been identified as a protective factor in physiological and inflammatory conditions. However, the state of HA cross-linking in tumor microenvironment has not been fully elucidated. As a major constituent of the extracellular matrix (ECM), HA is mainly synthesized by cancer-associated fibroblasts (CAFs). Our study aimed to clarify the role of HA cross-linking in breast cancer malignancy. Compared to normal mammary gland tissues, cross-linked HA levels were significantly decreased in breast cancer and associated with tumor malignancy. When NFbs were activated into CAFs, the levels of cross-linked HA and TSG6 were both suppressed. Through upregulating TSG6, CAFs restored the high level of cross-linked HA and significantly inhibited breast cancer malignancy, whereas NFbs promoted the malignancy when the cross-linked HA level was reduced. Furthermore, the inhibitory role of HA cross-linking in tumor malignancy was directly verified using the synthesized HA-HC complex. Collectively, our study found that the deficiency of cross-linked HA induced breast cancer malignancy in a CAF-dependent manner, suggesting that recovering HA cross-linking may be a potential therapeutic strategy.


Assuntos
Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/fisiologia , Ácido Hialurônico/metabolismo , Animais , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Moléculas de Adesão Celular/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Feminino , Humanos , Metástase Linfática , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Microambiente Tumoral
7.
Life Sci Alliance ; 4(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33758075

RESUMO

Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Ácido Cítrico/metabolismo , Neoplasias Pancreáticas/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Células Estromais/metabolismo , Microambiente Tumoral/fisiologia , Neoplasias Pancreáticas
8.
Mol Oncol ; 15(5): 1507-1527, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682233

RESUMO

Cancer-associated fibroblasts (CAFs) regulate cancer progression through the modulation of extracellular matrix (ECM) and cancer cell adhesion. While undergoing a series of phenotypic changes, CAFs control cancer-stroma interactions through integrin receptor signaling. Here, we isolated CAFs from patients with non-small-cell lung cancer (NSCLC) and examined their gene expression profiles. We identified collagen type XI α1 (COL11A1), integrin α11 (ITGA11), and the ITGA11 major ligand collagen type I α1 (COL1A1) among the 390 genes that were significantly enriched in NSCLC-associated CAFs. Increased ITGA11 expression in cancer stroma was correlated with a poor clinical outcome in patients with NSCLC. Increased expression of fibronectin and collagen type I induced ITGA11 expression in CAFs. The cellular migration of CAFs toward collagen type I and fibronectin was promoted via ERK1/2 signaling, independently of the fibronectin receptor integrin α5ß1. Additionally, ERK1/2 signaling induced ITGA11 and COL11A1 expression in cancer stroma. We, therefore, propose that targeting ITGA11 and COL11A1 expressing CAFs to block cancer-stroma interactions may serve as a novel, promising anti-tumor strategy.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cadeias alfa de Integrinas/genética , Neoplasias Pulmonares/patologia , Células A549 , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos de Casos e Controles , Movimento Celular/genética , Células Cultivadas , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cadeias alfa de Integrinas/metabolismo , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Regulação para Cima/genética
9.
Cancer Med ; 10(7): 2509-2522, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33704935

RESUMO

Prostate cancer-associated fibroblasts (prostate CAFs) are essential components of the tumor microenvironment and can promote tumor progression through their immunosuppressive functions. MPSSS, a novel polysaccharide purified from Lentinus edodes, has been reported to have anti-tumor activity. MPSSS could also inhibit the immunosuppressive function of prostate CAFs, which has been demonstrated through that the secretome of MPSSS-treated prostate CAFs could inhibit the proliferation of T cells. However, how the secretome of MPSSS-treated prostate CAFs influence prostate cancer progression is still unclear. Interestingly, we found that the low molecular weight (3-100kD) secretome of prostate CAFs (lmwCAFS) could promote the growth of PC-3 cells, while that of MPSSS-treated prostate CAFs (MT-lmwCAFS) could inhibit their growth. We carried out comparative secretomic analysis of lmwCAFS and MT-lmwCAFS to identify functional molecules that inhibit the growth of PC-3 cells, and proteomic analysis of lmwCAFS-treated PC-3 cells and MT-lmwCAFS-treated PC-3 cells to investigate the underlying molecular mechanism. These analyses suggest that TGF-ß3 from MT-lmwCAFS may inhibit the growth of PC-3 cells. The validated experiments revealed that TGF-ß3 from MT-lmwCAFS activated p21 expression in PC-3 cells by regulating the FoxO pathway thereby inducing G0/G1 cell cycle arrest of PC-3 cells. Overall, our data demonstrated that MPSSS reversed the ability of prostate CAFs to suppress the cell viability of PC-3 cells, which might provide a potential therapeutic strategy to prevent prostate cancer progression.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Polissacarídeos Fúngicos/farmacologia , Neoplasias da Próstata/patologia , Proteômica , Fator de Crescimento Transformador beta3/farmacologia , Actinas/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Fibroblastos Associados a Câncer/química , Fibroblastos Associados a Câncer/fisiologia , Pontos de Checagem do Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Progressão da Doença , Vesículas Extracelulares/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Células PC-3 , Neoplasias da Próstata/terapia , Cogumelos Shiitake/química , Microambiente Tumoral/imunologia
10.
Arch Immunol Ther Exp (Warsz) ; 69(1): 2, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33630157

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive, treatment-resistant cancer. Five-year survival rate is about 9%, one of the lowest among all solid tumors. Such a poor outcome is partly due to the limited knowledge of tumor biology, and the resulting lack of effective treatment options and robust predictive biomarkers. The leukemia inhibitory factor (LIF) has recently emerged as a potential biomarker and therapeutic target for PDAC. Accumulating evidence has suggested that LIF plays a role in supporting cancer evolution as a regulator of cell differentiation, renewal and survival. Interestingly, it can be detected in the serum of PDAC patients at higher concentrations than healthy individuals, this supporting its potential value as diagnostic biomarker. Furthermore, preliminary data indicate that testing for LIF serum concentration or tissue expression may help with treatment response monitoring and prognostication. Finally, studies in PDAC mouse models have also shown that LIF may be a valuable therapeutic target, and first-in-human clinical trial is currently ongoing. This article aims to review the available data on the role of LIF in PDAC promotion, and to discuss the evidence supporting its potential role as a biomarker and target of effective anti-cancer therapy in this setting.


Assuntos
Carcinoma Ductal Pancreático/patologia , Fator Inibidor de Leucemia/fisiologia , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/análise , Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Resistencia a Medicamentos Antineoplásicos , Humanos , Tolerância Imunológica , Fator Inibidor de Leucemia/análise , Invasividade Neoplásica , Células-Tronco Neoplásicas/fisiologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral
11.
Cancer Res ; 81(7): 1639-1653, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33547159

RESUMO

Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Vesículas Extracelulares/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Gástricas/patologia , Animais , Fibroblastos Associados a Câncer/patologia , Células Cultivadas , Estudos de Coortes , Progressão da Doença , Vesículas Extracelulares/patologia , Fatores de Transcrição de Choque Térmico/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Invasividade Neoplásica , Fenótipo , Prognóstico , Via Secretória/fisiologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Análise de Sobrevida , Microambiente Tumoral/fisiologia
12.
Methods Mol Biol ; 2224: 99-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606209

RESUMO

The tumor microenvironment (TME) contains stromal cells in a complex interaction with cancer cells. This relationship has become better understood with the use of fluorescent proteins for in vivo imaging, originally developed by our laboratories. Spectrally-distinct fluorescent proteins can be used for color-coded imaging of the complex interaction of the tumor microenvironment in the living state using cancer cells expressing a fluorescent protein of one color and host mice expressing another-color fluorescent protein. Cancer cells engineered in vitro to express a fluorescent protein were orthotopically implanted into transgenic mice expressing a fluorescent protein of a different color. Confocal microscopy was then used for color-coded imaging of the TME. Color-coded imaging of the TME has enabled us to discover that stromal cells are necessary for metastasis. Patient-derived orthotopic xenograft (PDOX) tumors were labeled by first passaging them orthotopically through transgenic nude mice expressing either green, red, or cyan fluorescent protein in order to label the stromal cells of the tumor (Yang et al., Cancer Res 64:8651-8656, 2004; Yang et al. J Cell Biochem 106: 279-284, 2009). The colored stromal cells become stably associated with the PDOX tumors through multiple passages in transgenic colored nude mice or non-colored nude mice. The fluorescent protein-expressing stromal cells included cancer-associated fibroblasts and tumor-associated macrophages. Color-coded imaging enabled the visualization of apparent fusion of cancer and stromal cells. Color-coded imaging is a powerful tool visualizing the interaction of cancer and stromal cells during cancer progression and treatment.


Assuntos
Comunicação Celular/fisiologia , Microscopia Confocal/métodos , Neoplasias Pancreáticas/patologia , Células Estromais/fisiologia , Microambiente Tumoral/fisiologia , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Linhagem Celular Tumoral , Cor , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Camundongos Transgênicos , Neoplasias Pancreáticas/metabolismo , Células Estromais/metabolismo
13.
Methods Mol Biol ; 2179: 243-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939725

RESUMO

In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell-cell interactions and cell-matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Movimento Celular , Rastreamento de Células/métodos , Imageamento Tridimensional/métodos , Esferoides Celulares/fisiologia , Fibroblastos Associados a Câncer/citologia , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Rastreamento de Células/instrumentação , Matriz Extracelular/química , Humanos , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Esferoides Celulares/citologia , Células Tumorais Cultivadas
15.
Gastroenterology ; 160(1): 346-361.e24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007300

RESUMO

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by a fibroblast-rich desmoplastic stroma. Cancer-associated fibroblasts (CAFs) have been shown to display a high degree of interconvertible states including quiescent, inflammatory, and myofibroblastic phenotypes; however, the mechanisms by which this plasticity is achieved are poorly understood. Here, we aim to elucidate the role of CAF plasticity and its impact on PDAC biology. METHODS: To investigate the role of mesenchymal plasticity in PDAC progression, we generated a PDAC mouse model in which CAF plasticity is modulated by genetic depletion of the transcription factor Prrx1. Primary pancreatic fibroblasts from this mouse model were further characterized by functional in vitro assays. To characterize the impact of CAFs on tumor differentiation and response to chemotherapy, various coculture experiments were performed. In vivo, tumors were characterized by morphology, extracellular matrix composition, and tumor dissemination and metastasis. RESULTS: Our in vivo findings showed that Prrx1-deficient CAFs remain constitutively activated. Importantly, this CAF phenotype determines tumor differentiation and disrupts systemic tumor dissemination. Mechanistically, coculture experiments of tumor organoids and CAFs showed that CAFs shape the epithelial-to-mesenchymal phenotype and confer gemcitabine resistance of PDAC cells induced by CAF-derived hepatocyte growth factor. Furthermore, gene expression analysis showed that patients with pancreatic cancer with high stromal expression of Prrx1 display the squamous, most aggressive, subtype of PDAC. CONCLUSIONS: Here, we define that the Prrx1 transcription factor is critical for tuning CAF activation, allowing a dynamic switch between a dormant and an activated state. This work shows that Prrx1-mediated CAF plasticity has significant impact on PDAC biology and therapeutic resistance.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/patologia , Proteínas de Homeodomínio/fisiologia , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia , Animais , Plasticidade Celular/fisiologia , Modelos Animais de Doenças , Camundongos
16.
Curr Radiopharm ; 14(4): 374-393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33357190

RESUMO

The tumor microenvironment is a dynamic ecosystem where malignant cells interact with the stromal cells sustaining and promoting tumor growth and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of tumor stroma. CAFs control key tumorigenic activities by participating in immune evasion and suppression, extracellular matrix remodeling, neo-angiogenesis, and drug resistance. Therefore, targeting CAFs emerges as an attractive anti-cancer strategy. This review summarized recent advancements in targeting CAFs with diagnostic and therapeutic radiopharmaceuticals using clinically-promising biomarkers. The efforts to improve clinical outcomes via the application of new radiotheranostic compounds are discussed in the context of radionuclide, the pharmacophore, and, more generally, in terms of biomarker specificity and expression across different cancers and CAF phenotypes.


Assuntos
Fibroblastos Associados a Câncer/efeitos da radiação , Medicina de Precisão , Compostos Radiofarmacêuticos/farmacologia , Microambiente Tumoral , Fibroblastos Associados a Câncer/fisiologia , Humanos , Fenótipo
17.
Semin Immunol ; 48: 101417, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-33077325

RESUMO

In tumors, Cancer-Associated Fibroblasts (CAFs) constitute the most prominent component of the tumor microenvironment (TME). CAFs are heterogeneous and composed of different CAF subsets exerting distinct functions in tumors. Specific CAF subpopulations actively influence various aspects of tumor growth, including cancer cell survival and proliferation, angiogenesis, extracellular matrix (ECM) remodeling, metastatic spread and chemoresistance. During the past decade, some CAF subsets have also been shown to modulate anti-tumor immune response. Indeed, they can increase the content in regulatory T lymphocytes and inhibit the activity of effector and cytotoxic immune cells. These functions are mainly controlled by their constitutive secretion of cytokines, chemokines, growth factors and ECM proteins, either directly in the surrounding extracellular space or through micro-vesicles. Some CAFs also express key regulators of immune checkpoints. The different roles played by CAFs, both as immunosuppressor or as physical support for tumor cell progression, set them as promising targets for anti-tumor therapies. In this review, we describe the main current knowledge on CAFs heterogeneity and immunosuppressive microenvironment, as well as their potential therapeutic implications.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Fibroblastos/fisiologia , Macrófagos/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Tolerância Imunológica , Neoplasias/terapia , Microambiente Tumoral
18.
Crit Rev Oncog ; 25(1): 1-9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865906

RESUMO

The tumor microenvironment (TME) favors the complex interaction of tumor cells with stromal cells that are recognized to be the regulators of hallmarks of liver cancer growth and metastasis. The most common components of TME include cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated extracellular matrix (ECM) are involved in facilitating the enhancement of liver cancer and can be exploited as potential targets. In addition, cancer stem cells (CSCs) that are known to regulate tumor initiation and progression are present in the TME. All these accumulated factors of the TME represent the driving force for liver cancer progression. This review is focused on the functions of each of the above-mentioned components of the TME and their roles as potential key players in targeting liver cancer.


Assuntos
Neoplasias Hepáticas/etiologia , Microambiente Tumoral/fisiologia , Animais , Fibroblastos Associados a Câncer/fisiologia , Progressão da Doença , Exossomos/fisiologia , Matriz Extracelular/fisiologia , Humanos , Neoplasias Hepáticas/imunologia , Metástase Neoplásica , Macrófagos Associados a Tumor/fisiologia
19.
Cancer Lett ; 492: 71-83, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860852

RESUMO

The blood vessel growth inhibitor bevacizumab targets vascular endothelial growth factor (VEGF), a crucial regulator of angiogenesis. Recently, small extracellular vesicles (sEVs) have been demonstrated to be important vehicles in the transport of growth factors to target cells. In this study, we isolated primary carcinoma-associated fibroblasts (CAFs) from four human oral squamous cell carcinoma (OSCC) specimens. Compared with other non-extracellular vesicle components, CAF-derived sEVs were found to be the main regulators of angiogenesis. The ability of CAF sEVs to activate VEGF receptor 2 (VEGFR2) signaling in human umbilical vein endothelial cells (HUVEC) was dependent on the association between sEVs and VEGF. In addition, sEV-bound VEGF secreted by CAFs further activated VEGFR2 signaling in HUVEC in a bevacizumab-resistant manner. VEGF was found to interact with heparan sulfate proteoglycans on the CAF sEV surface and could be released by heparinase I/III. The bioactivity of the dissociated VEGF was retained in vitro and in vivo and could be neutralized by bevacizumab. These findings suggest that the combined use of heparinase and bevacizumab might inhibit angiogenesis in patients with high levels of sEV-bound VEGF.


Assuntos
Bevacizumab/uso terapêutico , Fibroblastos Associados a Câncer/fisiologia , Vesículas Extracelulares/fisiologia , Neoplasias Bucais/irrigação sanguínea , Neovascularização Patológica/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Heparina Liase/farmacologia , Humanos , Neoplasias Bucais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia
20.
Br J Cancer ; 123(9): 1353-1355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32830198
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA