Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Physiol Plant ; 176(5): e14536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323055

RESUMO

Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.


Assuntos
Aclimatação , Cianobactérias , Luz , Fotossíntese , Fotossíntese/fisiologia , Cianobactérias/fisiologia , Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Aclimatação/fisiologia , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Clorofila/metabolismo
2.
PLoS Comput Biol ; 20(9): e1012445, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264951

RESUMO

Cyanobacteria hold great potential to revolutionize conventional industries and farming practices with their light-driven chemical production. To fully exploit their photosynthetic capacity and enhance product yield, it is crucial to investigate their intricate interplay with the environment including the light intensity and spectrum. Mathematical models provide valuable insights for optimizing strategies in this pursuit. In this study, we present an ordinary differential equation-based model for the cyanobacterium Synechocystis sp. PCC 6803 to assess its performance under various light sources, including monochromatic light. Our model can reproduce a variety of physiologically measured quantities, e.g. experimentally reported partitioning of electrons through four main pathways, O2 evolution, and the rate of carbon fixation for ambient and saturated CO2. By capturing the interactions between different components of a photosynthetic system, our model helps in understanding the underlying mechanisms driving system behavior. Our model qualitatively reproduces fluorescence emitted under various light regimes, replicating Pulse-amplitude modulation (PAM) fluorometry experiments with saturating pulses. Using our model, we test four hypothesized mechanisms of cyanobacterial state transitions for ensemble of parameter sets and found no physiological benefit of a model assuming phycobilisome detachment. Moreover, we evaluate metabolic control for biotechnological production under diverse light colors and irradiances. We suggest gene targets for overexpression under different illuminations to increase the yield. By offering a comprehensive computational model of cyanobacterial photosynthesis, our work enhances the basic understanding of light-dependent cyanobacterial behavior and sets the first wavelength-dependent framework to systematically test their producing capacity for biocatalysis.


Assuntos
Luz , Modelos Biológicos , Fotossíntese , Synechocystis , Fotossíntese/fisiologia , Synechocystis/metabolismo , Synechocystis/fisiologia , Biologia Computacional , Dióxido de Carbono/metabolismo , Ciclo do Carbono/fisiologia , Ficobilissomas/metabolismo , Simulação por Computador
3.
J Phys Chem Lett ; 15(38): 9746-9756, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39288324

RESUMO

Phycobilisomes (PBs) are giant antenna supercomplexes of cyanobacteria that use phycobilin pigments to capture sunlight and transfer the collected energy to membrane-bound photosystems. In the PB core, phycobilins are bound to particular allophycocyanin (APC) proteins. Some phycobilins are thought to be terminal emitters (TEs) with red-shifted fluorescence. However, the precise identification of TEs is still under debate. In this work, we employ multiscale quantum-mechanical calculations to disentangle the excitation energy landscape of PB cores. Using the recent atomistic PB structures from Synechoccoccus PCC 7002 and Synechocystis PCC 6803, we compute the spectral properties of different APC trimers and assign the low-energy pigments. We show that the excitation energy of APC phycobilins is determined by geometric and electrostatic factors and is tuned by the specific protein-protein interactions within the core. Our findings challenge the simple picture of a few red-shifted bilins in the PB core and instead suggest that the red-shifts are established by the entire TE-containing APC trimers. Our work provides a theoretical microscopic basis for the interpretation of energy migration and time-resolved spectroscopy in phycobilisomes.


Assuntos
Ficobilissomas , Teoria Quântica , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficocianina/química , Synechocystis/química , Synechocystis/metabolismo , Modelos Químicos , Ficobilinas/química , Ficobilinas/metabolismo
4.
Nat Commun ; 15(1): 7201, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169020

RESUMO

Photosynthesis converting solar energy to chemical energy is one of the most important chemical reactions on earth. In cyanobacteria, light energy is captured by antenna system phycobilisomes (PBSs) and transferred to photosynthetic reaction centers of photosystem II (PSII) and photosystem I (PSI). While most of the protein complexes involved in photosynthesis have been characterized by in vitro structural analyses, how these protein complexes function together in vivo is not well understood. Here we implemented STAgSPA, an in situ structural analysis strategy, to solve the native structure of PBS-PSII supercomplex from the cyanobacteria Arthrospira sp. FACHB439 at resolution of ~3.5 Å. The structure reveals coupling details among adjacent PBSs and PSII dimers, and the collaborative energy transfer mechanism mediated by multiple super-PBS in cyanobacteria. Our results provide insights into the diversity of photosynthesis-related systems between prokaryotic cyanobacteria and eukaryotic red algae but are also a methodological demonstration for high-resolution structural analysis in cellular or tissue samples.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema II , Ficobilissomas , Ficobilissomas/metabolismo , Ficobilissomas/química , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Cianobactérias/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Transferência de Energia , Modelos Moleculares , Microscopia Crioeletrônica
5.
Plant Cell Physiol ; 65(9): 1450-1460, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39034452

RESUMO

Phycobilisomes play a crucial role in the light-harvesting mechanisms of cyanobacteria, red algae and glaucophytes, but the molecular mechanism of their regulation is largely unknown. In the cyanobacterium, Synechocystis sp. PCC 6803, we identified slr0244 as a phycobilisome-related gene using phylogenetic profiling analysis, a method used to predict gene function based on comparative genomics. To investigate the physiological function of the slr0244 gene, we characterized slr0244 mutants spectroscopically. Disruption of the slr0244 gene impaired state transition, a process by which the distribution of light energy absorbed by the phycobilisomes between two photosystems is regulated in response to the changes in light conditions. The Slr0244 protein seems to act in the process of state transition, somewhere at or downstream of the sensing step of the redox state of the plastoquinone (PQ) pool. These findings, together with past reports describing the interaction of this gene product with thioredoxin and glutaredoxin, suggest that the slr0244 gene is a novel state-transition regulator that integrates the redox signal of PQ pools with that of the photosystem I-reducing side. The protein has two universal stress protein (USP) motifs in tandem. The second motif has two conserved cysteine residues found in USPs of other cyanobacteria and land plants. These redox-type USPs with conserved cysteines may function as redox regulators in various photosynthetic organisms. Our study also shows the efficacy of phylogenetic profiling analysis in predicting the function of cyanobacterial genes that have not been annotated so far.


Assuntos
Proteínas de Bactérias , Ficobilissomas , Filogenia , Synechocystis , Ficobilissomas/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/genética , Plastoquinona/metabolismo
6.
ACS Synth Biol ; 13(8): 2391-2401, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39038807

RESUMO

Phycobilisomes (PBSs) are light-harvesting antenna complexes in cyanobacteria that adapt to diverse light environments through the use of phycobiliproteins within the PBS structures. Freshwater cyanobacteria, such as Synechococcus elongatus PCC 7942, thrive under red light because of the presence of phycocyanin (PC) and its chromophore, phycocyanobilin (PCB), in the PBS. Cyanobacteria in shorter-wavelength light environments such as green light, employ phycoerythrin paired with phycoerythrobilin (PEB) along with PC in the PBS. Synthetic biology studies have shown that PEB production can be achieved by expression of the heterologous PEB synthases 15,16-dihydrobiliverdin:ferredoxin oxidoreductase (PebA) and PEB:ferredoxin oxidoreductase (PebB), leading to PEB accumulation and cellular browning. This approach is genetically unstable, and the properties of the resulting PEB-bound PBS complexes remain uncharacterized. In this study, we engineered a novel strain of Synechococcus 7942 PEB1 with finely tuned control of PEB biosynthesis. PEB1 exhibited a reversible change in the color of the culture from green to brown and pink based on PebA and PebB induction levels. High induction led to complete PCB-to-PEB substitution, causing the disassembly of the PBS rod complex. In contrast, low induction levels of PebA and PebB resulted in the formation of a stable chimeric PBS complex with partial PCB-to-PEB substitution. This acclimation enabled efficient light harvesting in the green spectrum and energy transfer to the photosynthetic reaction center. These findings, which improve our understanding of PBS and highlight the structural importance of the bilin composition, provide a foundation for future studies on PBS adaptation in bioengineering, synthetic biology, and renewable energy.


Assuntos
Proteínas de Bactérias , Ficobiliproteínas , Ficobilissomas , Ficocianina , Synechococcus , Synechococcus/metabolismo , Synechococcus/genética , Ficobilissomas/metabolismo , Ficobiliproteínas/metabolismo , Ficobiliproteínas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ficocianina/metabolismo , Ficocianina/genética , Ficobilinas/metabolismo , Ficoeritrina/metabolismo , Ficoeritrina/química , Pigmentos Biliares/metabolismo , Luz , Biologia Sintética/métodos , Cianobactérias/metabolismo , Cianobactérias/genética
7.
J Am Chem Soc ; 146(31): 21913-21921, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39058977

RESUMO

Cyanobacteria were the first microorganisms that released oxygen into the atmosphere billions of years ago. To do it safely under intense sunlight, they developed strategies that prevent photooxidation in the photosynthetic membrane, by regulating the light-harvesting activity of their antenna complexes-the phycobilisomes-via the orange-carotenoid protein (OCP). This water-soluble protein interacts with the phycobilisomes and triggers nonphotochemical quenching (NPQ), a mechanism that safely dissipates overexcitation in the membrane. To date, the mechanism of action of OCP in performing NPQ is unknown. In this work, we performed ultrafast spectroscopy on a minimal NPQ system composed of the active domain of OCP bound to the phycobilisome core. The use of this system allowed us to disentangle the signal of the carotenoid from that of the bilins. Our results demonstrate that the binding to the phycobilisomes modifies the structure of the ketocarotenoid associated with OCP. We show that this molecular switch activates NPQ, by enabling excitation-energy transfer from the antenna pigments to the ketocarotenoid.


Assuntos
Proteínas de Bactérias , Carotenoides , Cianobactérias , Ficobilissomas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cianobactérias/metabolismo , Cianobactérias/química , Ficobilissomas/química , Ficobilissomas/metabolismo , Pigmentos Biliares/química , Pigmentos Biliares/metabolismo , Processos Fotoquímicos
8.
Biochim Biophys Acta Bioenerg ; 1865(3): 149049, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801856

RESUMO

Phycobilisome (PBS) is a large pigment-protein complex in cyanobacteria and red algae responsible for capturing sunlight and transferring its energy to photosystems (PS). Spectroscopic and structural properties of various PBSs have been widely studied, however, the nature of so-called complex-complex interactions between PBS and PSs remains much less explored. In this work, we have investigated the function of a newly identified PBS linker protein, ApcG, some domain of which, together with a loop region (PB-loop in ApcE), is possibly located near the PBS-PS interface. Using Synechocystis sp. PCC 6803, we generated an ApcG deletion mutant and probed its deletion effect on the energetic coupling between PBS and photosystems. Steady-state and time-resolved spectroscopic characterization of the purified ΔApcG-PBS demonstrated that ApcG removal weakly affects the photophysical properties of PBS for which the spectroscopic properties of terminal energy emitters are comparable to those of PBS from wild-type strain. However, analysis of fluorescence decay imaging datasets reveals that ApcG deletion induces disruptions within the allophycocyanin (APC) core, resulting in the emergence (splitting) of two spectrally diverse subgroups with some short-lived APC. Profound spectroscopic changes of the whole ΔApcG mutant cell, however, emerge during state transition, a dynamic process of light scheme adaptation. The mutant cells in State I show a substantial increase in PBS-related fluorescence. On the other hand, global analysis of time-resolved fluorescence demonstrates that in general ApcG deletion does not alter or inhibit state transitions interpreted in terms of the changes of the PSII and PSI fluorescence emission intensity. The results revealed yet-to-be discovered mechanism of ApcG-docking induced excitation energy transfer regulation within PBS or to Photosystems.


Assuntos
Proteínas de Bactérias , Transferência de Energia , Ficobilissomas , Synechocystis , Ficobilissomas/metabolismo , Ficobilissomas/química , Synechocystis/metabolismo , Synechocystis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Peptídeos/metabolismo , Peptídeos/química
9.
Plant Cell ; 36(10): 4036-4064, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38652697

RESUMO

Cyanobacteria, red algae, and cryptophytes produce 2 classes of proteins for light harvesting: water-soluble phycobiliproteins (PBP) and membrane-intrinsic proteins that bind chlorophylls (Chls) and carotenoids. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) are complexes of brightly colored PBP and linker (assembly) proteins. To date, 6 structural classes of PBS have been described: hemiellipsoidal, block-shaped, hemidiscoidal, bundle-shaped, paddle-shaped, and far-red-light bicylindrical. Two additional antenna complexes containing single types of PBP have also been described. Since 2017, structures have been reported for examples of all of these complexes except bundle-shaped PBS by cryogenic electron microscopy. PBS range in size from about 4.6 to 18 mDa and can include ∼900 polypeptides and bind >2000 chromophores. Cyanobacteria additionally produce membrane-associated proteins of the PsbC/CP43 superfamily of Chl a/b/d-binding proteins, including the iron-stress protein IsiA and other paralogous Chl-binding proteins (CBP) that can form antenna complexes with Photosystem I (PSI) and/or Photosystem II (PSII). Red and cryptophyte algae also produce CBP associated with PSI but which belong to the Chl a/b-binding protein superfamily and which are unrelated to the CBP of cyanobacteria. This review describes recent progress in structure determination for PBS and the Chl proteins of cyanobacteria, red algae, and cryptophytan algae.


Assuntos
Cianobactérias , Ficobiliproteínas , Rodófitas , Ficobiliproteínas/metabolismo , Rodófitas/metabolismo , Cianobactérias/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/química , Ficobilissomas/metabolismo , Criptófitas/metabolismo , Criptófitas/genética
10.
J Biol Chem ; 300(5): 107262, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579990

RESUMO

Cyanobacteria harvest light by using architecturally complex, soluble, light-harvesting complexes known as phycobilisomes (PBSs). PBS diversity includes specialized subunit paralogs that are tuned to specific regions of the light spectrum; some cyanobacterial lineages can even absorb far-red light. In a recent issue of the Journal of Biological Chemistry, Gisriel et al. reported the cryo-electron microscopic structure of a far-red PBS core, showing how bilin binding in the α-subunits of allophycocyanin paralogs can modify the bilin-binding site to red shift the absorbance spectrum. This work helps explain how cyanobacteria can grow in environments where most of the visible light has been filtered out.


Assuntos
Cianobactérias , Luz , Ficobilissomas , Ficobilissomas/metabolismo , Ficobilissomas/química , Cianobactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica/métodos , Ficocianina/química , Ficocianina/metabolismo , Luz Vermelha
11.
Sci Adv ; 10(14): eadk7535, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578996

RESUMO

Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/química , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Cantaxantina/metabolismo , Microscopia Crioeletrônica , Cianobactérias/metabolismo
12.
Photosynth Res ; 160(1): 17-29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38407779

RESUMO

Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Synechocystis , Ficobilissomas/metabolismo , Synechocystis/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Proteínas de Bactérias/metabolismo , Espectrometria de Fluorescência
13.
Plant J ; 118(4): 1207-1217, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38319793

RESUMO

CpcL-phycobilisomes (CpcL-PBSs) are a reduced type of phycobilisome (PBS) found in several cyanobacteria. They lack the traditional PBS terminal energy emitters, but still show the characteristic red-shifted fluorescence at ~670 nm. We established a method of assembling in vitro a rod-membrane linker protein, CpcL, with phycocyanin, generating complexes with the red-shifted spectral features of CpcL-PBSs. The red-shift arises from the interaction of a conserved key glutamine, Q57 of CpcL in Synechocystis sp. PCC 6803, with a single phycocyanobilin chromophore of trimeric phycocyanin at one of the three ß82-sites. This chromophore is the terminal energy acceptor of CpcL-PBSs and donor to the photosystem(s). This mechanism also operates in PBSs from Acaryochloris marina MBIC11017. We then generated multichromic complexes harvesting light over nearly the complete visible range via the replacement of phycocyanobilin chromophores at sites α84 and ß153 of phycocyanins by phycoerythrobilin and/or phycourobilin. The results demonstrate the rational design of biliprotein-based light-harvesting elements by engineering CpcL and phycocyanins, which broadens the light-harvesting range and accordingly improves the light-harvesting capacity and may be potentially applied in solar energy harvesting.


Assuntos
Proteínas de Bactérias , Ficobilinas , Ficobilissomas , Ficocianina , Synechocystis , Ficobilissomas/metabolismo , Ficocianina/metabolismo , Ficocianina/química , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Ficobilinas/metabolismo , Ficobilinas/química , Cianobactérias/metabolismo
14.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972281

RESUMO

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Assuntos
Synechocystis , Synechocystis/metabolismo , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia/fisiologia
15.
Photosynth Res ; 159(2-3): 165-175, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37233900

RESUMO

In response to fluctuation in light intensity and quality, oxygenic photosynthetic organisms modify their light-harvesting and excitation energy-transfer processes to maintain optimal photosynthetic activity. Glaucophytes, which are a group of primary symbiotic algae, possess light-harvesting antennas called phycobilisomes (PBSs) consistent with cyanobacteria and red algae. However, compared with cyanobacteria and red algae, glaucophytes are poorly studied and there are few reports on the regulation of photosynthesis in the group. In this study, we examined the long-term light adaptation of light-harvesting functions in a glaucophyte, Cyanophora paradoxa, grown under different light conditions. Compared with cells grown under white light, the relative number of PBSs to photosystems (PSs) increased in blue-light-grown cells and decreased in green-, yellow-, and red-light-grown cells. Moreover, the PBS number increased with increment in the monochromatic light intensity. More energy was transferred from PBSs to PSII than to PSI under blue light, whereas energy transfer from PBSs to PSII was reduced under green and yellow lights, and energy transfer from the PBSs to both PSs decreased under red light. Decoupling of PBSs was induced by intense green, yellow, and red lights. Energy transfer from PSII to PSI (spillover) was observed, but the contribution of the spillover did not distinctly change depending on the culture light intensity and quality. These results suggest that the glaucophyte C. paradoxa modifies the light-harvesting abilities of both PSs and excitation energy-transfer processes between the light-harvesting antennas and both PSs during long-term light adaption.


Assuntos
Cianobactérias , Cyanophora , Rodófitas , Cyanophora/metabolismo , Ficobilissomas/metabolismo , Fotossíntese , Cianobactérias/metabolismo , Rodófitas/metabolismo , Transferência de Energia , Adaptação Ocular , Complexo de Proteína do Fotossistema I/metabolismo
16.
Photosynth Res ; 159(2-3): 177-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37328680

RESUMO

The chromophorylated PBLcm domain of the ApcE linker protein in the cyanobacterial phycobilisome (PBS) serves as a bottleneck for Förster resonance energy transfer (FRET) from the PBS to the antennal chlorophyll of photosystem II (PS II) and as a redirection point for energy distribution to the orange protein ketocarotenoid (OCP), which is excitonically coupled to the PBLcm chromophore in the process of non-photochemical quenching (NPQ) under high light conditions. The involvement of PBLcm in the quenching process was first directly demonstrated by measuring steady-state fluorescence spectra of cyanobacterial cells at different stages of NPQ development. The time required to transfer energy from the PBLcm to the OCP is several times shorter than the time it takes to transfer energy from the PBLcm to the PS II, ensuring quenching efficiency. The data obtained provide an explanation for the different rates of PBS quenching in vivo and in vitro according to the half ratio of OCP/PBS in the cyanobacterial cell, which is tens of times lower than that realized for an effective NPQ process in solution.


Assuntos
Ficobilissomas , Synechocystis , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/metabolismo , Transferência de Energia
17.
Biochim Biophys Acta Bioenerg ; 1865(1): 149014, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739300

RESUMO

Phycobilisomes (PBSs) are giant water-soluble light-harvesting complexes of cyanobacteria and red algae, consisting of hundreds of phycobiliproteins precisely organized to deliver the energy of absorbed light to chlorophyll chromophores of the photosynthetic electron-transport chain. Quenching the excess of excitation energy is necessary for the photoprotection of photosynthetic apparatus. In cyanobacteria, quenching of PBS excitation is provided by the Orange Carotenoid Protein (OCP), which is activated under high light conditions. In this work, we describe parameters of anti-Stokes fluorescence of cyanobacterial PBSs in quenched and unquenched states. We compare the fluorescence readout from entire phycobilisomes and their fragments. The obtained results revealed the heterogeneity of conformations of chromophores in isolated phycobiliproteins, while such heterogeneity was not observed in the entire PBS. Under excitation by low-energy quanta, we did not detect a significant uphill energy transfer from the core to the peripheral rods of PBS, while the one from the terminal emitters to the bulk allophycocyanin chromophores is highly probable. We show that this direction of energy migration does not eliminate fluorescence quenching in the complex with OCP. Thus, long-wave excitation provides new insights into the pathways of energy conversion in the phycobilisome.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Fotossíntese , Cianobactérias/metabolismo , Espectrometria de Fluorescência/métodos
18.
Nat Commun ; 14(1): 8009, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049400

RESUMO

Phycobilisomes (PBS) are antenna megacomplexes that transfer energy to photosystems II and I in thylakoids. PBS likely evolved from a basic, inefficient form into the predominant hemidiscoidal shape with radiating peripheral rods. However, it has been challenging to test this hypothesis because ancestral species are generally inaccessible. Here we use spectroscopy and cryo-electron microscopy to reveal a structure of a "paddle-shaped" PBS from a thylakoid-free cyanobacterium that likely retains ancestral traits. This PBS lacks rods and specialized ApcD and ApcF subunits, indicating relict characteristics. Other features include linkers connecting two chains of five phycocyanin hexamers (CpcN) and two core subdomains (ApcH), resulting in a paddle-shaped configuration. Energy transfer calculations demonstrate that chains are less efficient than rods. These features may nevertheless have increased light absorption by elongating PBS before multilayered thylakoids with hemidiscoidal PBS evolved. Our results provide insights into the evolution and diversification of light-harvesting strategies before the origin of thylakoids.


Assuntos
Cianobactérias , Tilacoides , Tilacoides/metabolismo , Ficobilissomas/metabolismo , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo
19.
Nat Commun ; 14(1): 3961, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407580

RESUMO

Phycobilisomes (PBS) are the major light harvesting complexes of photosynthesis in the cyanobacteria and red algae. CpcL-PBS is a type of small PBS in cyanobacteria that transfers energy directly to photosystem I without the core structure. Here we report the cryo-EM structure of the CpcL-PBS from the cyanobacterium Synechocystis sp. PCC 6803 at 2.6-Å resolution. The structure shows the CpcD domain of ferredoxin: NADP+ oxidoreductase is located at the distal end of CpcL-PBS, responsible for its attachment to PBS. With the evidence of ultrafast transient absorption and fluorescence spectroscopy, the roles of individual bilins in energy transfer are revealed. The bilin 1Iß822 located near photosystem I has an enhanced planarity and is the red-bilin responsible for the direct energy transfer to photosystem I.


Assuntos
Ficobilissomas , Synechocystis , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Microscopia Crioeletrônica , Synechocystis/metabolismo , Espectrometria de Fluorescência , Transferência de Energia , Proteínas de Bactérias/química
20.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298688

RESUMO

The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed.


Assuntos
Ficobilissomas , Rodófitas , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilinas , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Fotossíntese , Rodófitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA