Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
PLoS One ; 16(11): e0259837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793488

RESUMO

Human protoporphyrinogen oxidase IX (hPPO) is an oxygen-dependent enzyme catalyzing the penultimate step in the heme biosynthesis pathway. Mutations in the enzyme are linked to variegate porphyria, an autosomal dominant metabolic disease. Here we investigated eukaryotic cells as alternative systems for heterologous expression of hPPO, as the use of a traditional bacterial-based system failed to produce several clinically relevant hPPO variants. Using bacterially-produced hPPO, we first analyzed the impact of N-terminal tags and various detergent on hPPO yield, and specific activity. Next, the established protocol was used to compare hPPO constructs heterologously expressed in mammalian HEK293T17 and insect Hi5 cells with prokaryotic overexpression. By attaching various fusion partners at the N- and C-termini of hPPO we also evaluated the influence of the size and positioning of fusion partners on expression levels, specific activity, and intracellular targeting of hPPO fusions in mammalian cells. Overall, our results suggest that while enzymatically active hPPO can be heterologously produced in eukaryotic systems, the limited availability of the intracellular FAD co-factor likely negatively influences yields of a correctly folded protein making thus the E.coli a system of choice for recombinant hPPO overproduction. At the same time, PPO overexpression in eukaryotic cells might be preferrable in cases when the effects of post-translational modifications (absent in bacteria) on target protein functions are studied.


Assuntos
Flavoproteínas/biossíntese , Flavoproteínas/isolamento & purificação , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/isolamento & purificação , Protoporfirinogênio Oxidase/biossíntese , Protoporfirinogênio Oxidase/isolamento & purificação , Animais , Linhagem Celular , Escherichia coli/genética , Flavoproteínas/genética , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Protoporfirinogênio Oxidase/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Células Sf9
2.
J Clin Invest ; 131(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878035

RESUMO

Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive, loss-of-function mutations in FIG4, encoding a phosphoinositol(3,5)P2-phosphatase. CMT4J patients have both neuron loss and demyelination in the peripheral nervous system, with vacuolization indicative of endosome/lysosome trafficking defects. Although the disease is highly variable, the onset is often in childhood and FIG4 mutations can dramatically shorten life span. There is currently no treatment for CMT4J. Here, we present the results of preclinical studies testing a gene-therapy approach to restoring FIG4 expression. A mouse model of CMT4J, the Fig4-pale tremor (plt) allele, was dosed with a single-stranded adeno-associated virus serotype 9 (AAV9) to deliver a codon-optimized human FIG4 sequence. Untreated, Fig4plt/plt mice have a median survival of approximately 5 weeks. When treated with the AAV9-FIG4 vector at P1 or P4, mice survived at least 1 year, with largely normal gross motor performance and little sign of neuropathy by neurophysiological or histopathological evaluation. When mice were treated at P7 or P11, life span was still significantly prolonged and peripheral nerve function was improved, but rescue was less complete. No unanticipated adverse effects were observed. Therefore, AAV9-mediated delivery of FIG4 is a well-tolerated and efficacious strategy in a mouse model of CMT4J.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Dependovirus , Flavoproteínas/biossíntese , Longevidade , Fosfatases de Fosfoinositídeos/biossíntese , Transdução Genética , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Feminino , Flavoproteínas/genética , Masculino , Camundongos , Camundongos Knockout , Fosfatases de Fosfoinositídeos/genética
3.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 276-283, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29217478

RESUMO

BACKGROUND: The multi-step bile acid 7α-dehydroxylating pathway by which a few species of Clostridium convert host primary bile acids to toxic secondary bile acids is of great importance to gut microbiome structure and host physiology and disease. While genes in the oxidative arm of the 7α-dehydroxylating pathway have been identified, genes in the reductive arm of the pathway are still obscure. METHODS: We identified a candidate flavoprotein-encoding gene predicted to metabolize steroids. This gene was cloned and overexpressed in E. coli and affinity purified. Reaction substrate and product were separated by thin layer chromatography and identified by liquid chromatograph mass spectrometry-ion trap-time of flight (LCMS-IT-TOF). Phylogenetic analysis of the amino acid sequence was performed. RESULTS: We report the identification of a gene encoding a flavoprotein (EDS08212.1) involved in secondary bile acid metabolism by Clostridium scindens ATCC 35704 and related species. Purified rEDS08212.1 catalyzed formation of a product from 3-dehydro-deoxycholic acid that UPLC-IT-TOF-MS analysis suggests loses 4amu. Our phylogeny identified this gene in other bile acid 7α-dehydroxylating bacteria. CONCLUSIONS: These data suggest formation of a product, 3-dehydro-4,6-deoxycholic acid, a recognized intermediate in the reductive arm of bile acid 7α-dehydroxylation pathway and the first report of a gene in the reductive arm of the bile acid 7α-dehydroxylating pathway.


Assuntos
Proteínas de Bactérias , Ácidos e Sais Biliares/metabolismo , Clostridium , Flavoproteínas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clostridium/genética , Clostridium/metabolismo , Flavoproteínas/biossíntese , Flavoproteínas/química , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Humanos , Intestinos/microbiologia
4.
Microbiologyopen ; 5(1): 21-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626129

RESUMO

We recently reported a flavin-trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal-dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal-dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal-dependent Ftp catalysis in either Nqr- or Rnf-redox-containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD-binding protein to a Mg(2+)-dependent FAD pyrophosphatase (Ftp_Tp-like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox-carrying proteins (e.g., RnfG_Ec) via the metal-dependent covalent attachment of FMN. A high-resolution structure of the Ftp-mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester-threonyl-FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Flavoproteínas/metabolismo , Periplasma/enzimologia , Processamento de Proteína Pós-Traducional , Pirofosfatases/metabolismo , Shewanella/enzimologia , Monofosfato de Adenosina/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/biossíntese , Mutagênese Sítio-Dirigida , Oxirredução , Periplasma/metabolismo , Transporte Proteico , Pirofosfatases/genética , Shewanella/metabolismo
5.
Clin Cancer Res ; 21(16): 3695-704, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25944804

RESUMO

PURPOSE: The clinical management of colorectal cancer patients has significantly improved because of the identification of novel therapeutic targets such as EGFR and VEGF. Because rapid tumor proliferation is associated with poor patient prognosis, here we characterized the transcriptional signature of rapidly proliferating colorectal cancer cells in an attempt to identify novel candidate therapeutic targets. EXPERIMENTAL DESIGN: The doubling time of 52 colorectal cancer cell lines was determined and genome-wide expression profiling of a subset of these lines was assessed by microarray analysis. We then investigated the potential of genes highly expressed in cancer cells with faster growth as new therapeutic targets. RESULTS: Faster proliferation rates were associated with microsatellite instability and poorly differentiated histology. The expression of 1,290 genes was significantly correlated with the growth rates of colorectal cancer cells. These included genes involved in cell cycle, RNA processing/splicing, and protein transport. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protoporphyrinogen oxidase (PPOX) were shown to have higher expression in faster growing cell lines and primary tumors. Pharmacologic or siRNA-based inhibition of GAPDH or PPOX reduced the growth of colon cancer cells in vitro. Moreover, using a mouse xenograft model, we show that treatment with the specific PPOX inhibitor acifluorfen significantly reduced the growth of three of the seven (42.8%) colon cancer lines investigated. CONCLUSIONS: We have characterized at the transcriptomic level the differences between colorectal cancer cells that vary in their growth rates, and identified novel candidate chemotherapeutic targets for the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Flavoproteínas/biossíntese , Gliceraldeído-3-Fosfato Desidrogenases/biossíntese , Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/biossíntese , Protoporfirinogênio Oxidase/biossíntese , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Flavoproteínas/antagonistas & inibidores , Flavoproteínas/genética , Regulação Neoplásica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Células HCT116 , Humanos , Masculino , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Nitrobenzoatos/administração & dosagem , Transporte Proteico/genética , Protoporfirinogênio Oxidase/antagonistas & inibidores , Protoporfirinogênio Oxidase/genética , Splicing de RNA/genética , RNA Interferente Pequeno , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
6.
mBio ; 6(3): e00519-15, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25944861

RESUMO

UNLABELLED: The syphilis spirochete Treponema pallidum is an important human pathogen but a highly enigmatic bacterium that cannot be cultivated in vitro. T. pallidum lacks many biosynthetic pathways and therefore has evolved the capability to exploit host-derived metabolites via its periplasmic lipoprotein repertoire. We recently reported a flavin-trafficking protein in T. pallidum (Ftp_Tp; TP0796) as the first bacterial metal-dependent flavin adenine dinucleotide (FAD) pyrophosphatase that hydrolyzes FAD into AMP and flavin mononucleotide (FMN) in the spirochete's periplasm. However, orthologs of Ftp_Tp from other bacteria appear to lack this hydrolytic activity; rather, they bind and flavinylate subunits of a cytoplasmic membrane redox system (Nqr/Rnf). To further explore this dichotomy, biochemical analyses, protein crystallography, and structure-based mutagenesis were used to show that a single amino acid change (N55Y) in Ftp_Tp converts it from an Mg(2+)-dependent FAD pyrophosphatase to an FAD-binding protein. We also demonstrated that Ftp_Tp has a second enzymatic activity (Mg(2+)-FMN transferase); it flavinylates protein(s) covalently with FMN on a threonine side chain of an appropriate sequence motif using FAD as the substrate. Moreover, mutation of a metal-binding residue (D284A) eliminates Ftp_Tp's dual activities, thereby underscoring the role of Mg(2+) in the enzyme-catalyzed reactions. The posttranslational flavinylation activity that can target a periplasmic lipoprotein (TP0171) has not previously been described. The observed activities reveal the catalytic flexibility of a treponemal protein to perform multiple functions. Together, these findings imply mechanisms by which a dynamic pool of flavin cofactor is maintained and how flavoproteins are generated by Ftp_Tp locally in the T. pallidum periplasm. IMPORTANCE: Treponema pallidum, the syphilis spirochete, exploits its periplasmic lipoproteins for a number of essential physiologic processes. One of these, flavin-trafficking protein (Ftp), not only exploits its catalytic center to mediate posttranslational flavinylation of proteins (to create flavoproteins) but also likely maintains the periplasmic flavin pool via its unique ability to hydrolyze FAD. This functional diversity within a single lipoprotein is quite remarkable and reflects the enzymatic versatility of the treponemal lipoproteins, as well as molecular parsimony in an organism with a limited genome. Ftp-mediated protein flavinylation in the periplasm also likely is a key aspect of a predicted flavin-dependent Rnf-based redox homeostasis system at the cytoplasmic membrane of T. pallidum. In addition to its importance in T. pallidum physiology, Ftp homologs exist in other bacteria, thereby expanding our understanding of the bacterial periplasm as a metabolically active subcellular compartment for flavoprotein biogenesis as well as flavin homeostasis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Pirofosfatases/química , Pirofosfatases/metabolismo , Treponema pallidum/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Escherichia coli/genética , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/biossíntese , Flavoproteínas/genética , Humanos , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Mutação , Periplasma/metabolismo , Estrutura Terciária de Proteína , Pirofosfatases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sífilis/microbiologia
7.
Eur J Immunol ; 44(11): 3220-31, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25196058

RESUMO

While the presentation mechanism of antigenic peptides derived from exogenous proteins by MHC class II molecules is well understood, relatively little is known about the presentation mechanism of endogenous MHC class II-restricted antigens. We therefore screened a chemical library of 200 compounds derived from natural products to identify inhibitors of the presentation of endogenous MHC class II-restricted antigens. We found that pyrenocine B, a compound derived from the fungus Pyrenochaeta terrestris, inhibits presentation of endogenous MHC class II-restricted minor histocompatibility antigen IL-4 inducible gene 1 (IL4I1) by primary dendritic cells (DCs). Phage display screening and surface plasmon resonance (SPR) analysis were used to investigate the mechanism of suppressive action by pyrenocine B. EpsinR, a target molecule for pyrenocine B, mediates endosomal trafficking through binding of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Lentiviral-mediated short hairpin (sh) RNA downregulation of EpsinR expression in DCs resulted in a decrease in the responsiveness of CD4+ T cells. Our data thus suggest that EpsinR plays a role in antigen presentation, which provides insight into the mechanism of presentation pathway of endogenous MHC class II-restricted antigen.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Apresentação de Antígeno/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Adaptadoras de Transporte Vesicular/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/imunologia , Técnicas de Visualização da Superfície Celular , Células Dendríticas/imunologia , Flavoproteínas/antagonistas & inibidores , Flavoproteínas/biossíntese , Proteínas Fúngicas/farmacologia , L-Aminoácido Oxidase , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pironas/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Proteínas SNARE/imunologia , Ressonância de Plasmônio de Superfície
8.
Biochem Pharmacol ; 89(2): 224-35, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24632291

RESUMO

The nitro-chloromethylbenzindoline prodrug SN29428 has been rationally designed to target tumour hypoxia. SN29428 is metabolised to a DNA minor groove alkylator via oxygen-sensitive reductive activation initiated by unknown one-electron reductases. The present study sought to identify reductases capable of activating SN29428 in tumours. Expression of candidate reductases in cell lines was modulated using forced expression and, for P450 (cytochrome) oxidoreductase (POR), by zinc finger nuclease-mediated gene knockout. Affymetrix microarray mRNA expression of flavoreductases was correlated with SN29428 activation in a panel of 23 cancer cell lines. Reductive activation and cytotoxicity of prodrugs were measured using mass spectrometry and antiproliferative assays, respectively. SN29428 activation under hypoxia was strongly attenuated by the pan-flavoprotein inhibitor diphenyliodonium, but less so by knockout of POR suggesting other flavoreductases contribute. Forced expression of 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), as well as POR, increased activation of SN29428 in hypoxic HCT 116 cells. SN29428 activation strongly correlated with expression of POR and also FAD-dependent oxidoreductase domain containing 2 (FOXRED2), in cancer cell lines. This association persisted after removing the effect of POR enzyme activity using first-order partial correlation. Forced expression of FOXRED2 increased SN29428 activation and cytotoxicity in hypoxic HEK293 cells and also increased activation of hypoxia-targeted prodrugs PR-104A, tirapazamine and SN30000, and increased cytotoxicity of the clinical-stage prodrug TH-302. Thus this study has identified three flavoreductases capable of enzymatically activating SN29428, one of which (FOXRED2) has not previously been implicated in xenobiotic metabolism. These results will inform future development of biomarkers predictive of SN29428 sensitivity.


Assuntos
Flavoproteínas/biossíntese , Oxirredutases/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Óxidos N-Cíclicos/química , Óxidos N-Cíclicos/farmacologia , Células HCT116 , Células HEK293 , Células Hep G2 , Humanos , Indóis/administração & dosagem , Indóis/química , Indóis/metabolismo , Oxirredução , Oxirredutases/biossíntese , Pró-Fármacos/administração & dosagem , Triazinas/química , Triazinas/farmacologia
9.
Proc Natl Acad Sci U S A ; 110(18): 7136-41, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23596212

RESUMO

Biogenesis of iron-sulfur cluster proteins is a highly regulated process that requires complex protein machineries. In the cytosolic iron-sulfur protein assembly machinery, two human key proteins--NADPH-dependent diflavin oxidoreductase 1 (Ndor1) and anamorsin--form a stable complex in vivo that was proposed to provide electrons for assembling cytosolic iron-sulfur cluster proteins. The Ndor1-anamorsin interaction was also suggested to be implicated in the regulation of cell survival/death mechanisms. In the present work we unravel the molecular basis of recognition between Ndor1 and anamorsin and of the electron transfer process. This is based on the structural characterization of the two partner proteins, the investigation of the electron transfer process, and the identification of those protein regions involved in complex formation and those involved in electron transfer. We found that an unstructured region of anamorsin is essential for the formation of a specific and stable protein complex with Ndor1, whereas the C-terminal region of anamorsin, containing the [2Fe-2S] redox center, transiently interacts through complementary charged residues with the FMN-binding site region of Ndor1 to perform electron transfer. Our results propose a molecular model of the electron transfer process that is crucial for understanding the functional role of this interaction in human cells.


Assuntos
Flavoproteínas/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas Ferro-Enxofre/biossíntese , Oxirredutases/biossíntese , Biossíntese de Proteínas , Transporte de Elétrons , Mononucleotídeo de Flavina/metabolismo , Flavoproteínas/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Ferro-Enxofre/química , Modelos Biológicos , Modelos Moleculares , Oxirredutases/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
10.
Thyroid ; 22(10): 1054-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22874065

RESUMO

BACKGROUND: Thyroglobulin (Tg) is a macromolecular precursor in thyroid hormone synthesis to which iodine is stably bound. Tg, which is stored in the follicular space, is also a potent negative feedback regulator of follicular function, and this is achieved by suppressing mRNA levels of thyroid-specific genes such as the sodium/iodide symporter (Slc5a5), Tg, and thyroid peroxidase. Dual oxidase 1 (DUOX1) and DUOX2, originally identified in the thyroid, are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases that are necessary to produce the H2O2 required for thyroid hormone biosynthesis. Since follicular Tg regulates the expression of genes that are essential for thyroid hormone synthesis, we hypothesized that Tg might also regulate DUOX expression and H2O2 production. METHODS: Rat thyroid FRTL-5 cells were treated with Tg, and the mRNA expression of Duox1 and Duox2 and their corresponding maturation factors Duoxa1 and Duoxa2 were evaluated by DNA microarray and real-time PCR. Duox2 promoter activity was examined by luciferase reporter gene assay. Protein levels of DUOX2 were also examined by Western blot analysis. Intracellular H2O2 generation was quantified by a fluorescent dye, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, and acetyl ester (CM-H2DCFDA). RESULTS: mRNA levels of Duox2 and its activation factor Duoxa2 (but not Duox1 or Duoxa1) were significantly suppressed by Tg in a dose-dependent manner and a time-dependent fashion in rat thyroid FRTL-5 cells. DUOX2 promoter activity was significantly suppressed by Tg in a dose-dependent manner. Protein levels of DUOX2 and H2O2 generation in cells were also reduced by Tg treatment. CONCLUSIONS: We show that physiological concentrations of Tg suppressed the expression and function of DUOX2 in thyroid cells. These results suggest that Tg is a strong suppressor of the expression and the activity of DUOX2/DUOXA2, thereby regulating iodide organification and hormone synthesis in the thyroid. The evidence supports a reported model in which accumulated Tg in thyroid follicles plays important roles in autoregulating the function of individual follicles, which produces the basis of follicular heterogeneity.


Assuntos
Flavoproteínas/biossíntese , Peróxido de Hidrogênio/metabolismo , Proteínas de Membrana/biossíntese , NADPH Oxidases/biossíntese , Tireoglobulina/farmacologia , Animais , Células Cultivadas , Oxidases Duais , RNA Mensageiro/metabolismo , Ratos , Glândula Tireoide/fisiologia
11.
J Biosci Bioeng ; 114(3): 257-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22704811

RESUMO

An L-amino acid oxidase was found from a newly isolated strain, Pseudomonas sp. AIU 813. This enzyme was remarkably induced by incubation with L-lysine as a nitrogen source, and efficiently purified using an affinity chromatography with L-lysine as ligand. The enzyme oxidized L-lysine, L-ornithine and L-arginine, but not other L-amino acids and d-amino acids. The oxidase activity for L-lysine was detected in a wide pH range, and its optimal was pH 7.0. In contrast, the oxidase activity for L-ornithine and L-arginine was not shown in acidic region from pH 6.5, and optimal pH for both substrates was 9.0. The enzyme was a flavoprotein and composed of two identical subunits with molecular mass of 54.5 kDa. The N-terminal amino acid sequence was similar to that of putative flavin-containing amine oxidase and putative tryptophan 2-monooxygenase, but not to that of L-amino acid oxidases.


Assuntos
L-Aminoácido Oxidase/isolamento & purificação , L-Aminoácido Oxidase/metabolismo , Pseudomonas/enzimologia , Sequência de Aminoácidos , Arginina/metabolismo , Arginina/farmacologia , Coenzimas/metabolismo , Coenzimas/farmacologia , Indução Enzimática/efeitos dos fármacos , Flavoproteínas/biossíntese , Flavoproteínas/química , Flavoproteínas/isolamento & purificação , Flavoproteínas/metabolismo , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , L-Aminoácido Oxidase/biossíntese , L-Aminoácido Oxidase/química , Lisina/metabolismo , Lisina/farmacologia , Dados de Sequência Molecular , Peso Molecular , Nitrogênio/metabolismo , Nitrogênio/farmacologia , Ornitina/metabolismo , Ornitina/farmacologia , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Especificidade por Substrato , Temperatura , Fatores de Tempo
12.
J Neuropathol Exp Neurol ; 71(1): 28-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22157617

RESUMO

The phosphatase FIG4 regulates the concentration of phosphatidylinositol 3,5-diphosphate (PI3,5P2), a molecule critical for endosomal/lysosomal membrane trafficking and neuron function. We investigated Fig4 expression in the developing CNS of mice and rats using Western blot, real-time polymerase chain reaction, and morphological techniques in situ and in vitro and after spinal cord injury. Fig4 was expressed at a high levels throughout development in myelinating cells, particularly Schwann cells, and dorsal root ganglia sensory neurons. Fig4 protein and mRNA in CNS neurons were markedly diminished in adult versus embryonal animals. Spinal cord hemisection induced upregulation of Fig4 in adult spinal cord tissues that was associated with accumulation of lysosomes in neurons and glia. This accumulation appeared similar to the abnormal lysosomal storage observed in dorsal root ganglia of young fig4-null mice. The results suggest that Fig4 is involved in normal neural development and the maintenance of peripheral nervous system myelin. We speculate that adequate levels of Fig4 may be required to prevent neurons and glia from excessive lysosomal accumulation after injury and in neurodegeneration.


Assuntos
Flavoproteínas/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Lisossomos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neuroglia/patologia , Neurônios/patologia , Fosfatases de Fosfoinositídeos , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
13.
J Biol Chem ; 286(3): 1709-18, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21068394

RESUMO

Previous genetic studies in Sphingomonas macrogolitabida strain TFA have established that expression of genes involved in tetralin biodegradation (thn genes) requires the function of the LysR type activator ThnR and also ThnY. Sequence comparison indicated that ThnY is homologous to bacterial oxygenase-coupled NAD(P)H-dependent ferredoxin reductases. However, ThnY showed substitutions in highly conserved positions of the pyridine nucleotide binding domain of these ferredoxin reductases. ThnY expression is co-regulated with all other genes required for tetralin biodegradation, and presumably thnY is part of the thnCA3A4RY operon. ThnY has been purified, and its biochemical and functional properties were characterized. ThnY was found to be a monomeric orange-brown iron-sulfur flavoprotein (estimated mass of 37,000 Da) containing one non-covalently attached flavin adenine dinucleotide and one plant type ferredoxin 2Fe-2S cluster. It can be efficiently reduced by dithionite, but reduction by pyridine nucleotides was very poor. Consistently, ThnY-dependent reduction of cytochrome c, ferricyanide, or 2,6-dichlorophenolindophenol using NAD(P)H as the electron donor was undetectable or very weak. The addition of ThnY to electrophoretic mobility shift assays containing ThnR and a probe bearing two thn divergent promoters resulted in a 3-fold increase in protein-DNA complex formation affinity, which indicates that ThnY directly promotes thn transcription activation by ThnR.


Assuntos
Proteínas de Bactérias/biossíntese , Ferredoxina-NADP Redutase/biossíntese , Flavoproteínas/biossíntese , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Sphingomonas/enzimologia , Tetra-Hidronaftalenos/farmacologia , Proteínas de Bactérias/genética , Biodegradação Ambiental/efeitos dos fármacos , Citocromos c/genética , Citocromos c/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Evolução Molecular , Ferredoxina-NADP Redutase/genética , Ferricianetos/metabolismo , Flavoproteínas/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Óperon/fisiologia , Oxirredução/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína , Sphingomonas/genética , Tetra-Hidronaftalenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia
14.
Eur J Immunol ; 40(9): 2557-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20683900

RESUMO

MPhi and DC are key elements in the control of tissue homeostasis and response to insult. In this work, we demonstrate that MPhi and DC are the major producers of the phenylalanine catabolizing enzyme IL-4-induced gene 1 (IL4I1) under inflammatory conditions. IL4I1 was first described in B cells, which indeed can produce IL4I1 in vitro, although at much lower levels. In vivo, IL4I1 is highly expressed by MPhi and DC of Th1 granulomas (sarcoidosis, tuberculosis) but poorly detected in Th2 granulomas (schistosomiasis). In vitro, expression of the enzyme is induced in mononuclear phagocytes by various pro-inflammatory stimuli through the activation of the transcription factors NF-kappaB and/or STAT1. B cells also express IL4I1 in response to NF-kappaB-activating stimuli such as CD40L; however, in contrast to myeloid cells, B cells are insensitive to IFN-gamma but respond to stimulation of the IL-4/STAT6 axis. As we show that the expression of IL4I1 by a monocytic cell line inhibits T-cell proliferation and production of IFN-gamma and inflammatory cytokines, we propose that IL4I1 participates in the downregulation of Th1 inflammation in vivo.


Assuntos
Linfócitos B/metabolismo , Flavoproteínas/biossíntese , Sistema Fagocitário Mononuclear/metabolismo , Células Th1/metabolismo , Células Th2/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/patologia , Ligante de CD40/farmacologia , Linhagem Celular , Proliferação de Células , Técnicas de Cocultura , Flavoproteínas/genética , Flavoproteínas/imunologia , Humanos , Tolerância Imunológica , Inflamação , Interferon gama/farmacologia , Interleucina-4/imunologia , Interleucina-4/metabolismo , L-Aminoácido Oxidase , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/patologia , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT6/metabolismo , Células Th1/imunologia , Células Th1/patologia , Células Th2/imunologia , Células Th2/patologia
15.
Proc Natl Acad Sci U S A ; 105(52): 21028-33, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19106300

RESUMO

Photoperiodic control of flowering time is believed to affect latitudinal distribution of plants. The blue light receptor CRY2 regulates photoperiodic flowering in the experimental model plant Arabidopsis thaliana. However, it is unclear whether genetic variations affecting cryptochrome activity or expression is broadly associated with latitudinal distribution of plants. We report here an investigation of the function and expression of two cryptochromes in soybean, GmCRY1a and GmCRY2a. Soybean is a short-day (SD) crop commonly cultivated according to the photoperiodic sensitivity of cultivars. Both cultivated soybean (Glycine max) and its wild relative (G. soja) exhibit a strong latitudinal cline in photoperiodic flowering. Similar to their Arabidopsis counterparts, both GmCRY1a and GmCRY2a affected blue light inhibition of cell elongation, but only GmCRY2a underwent blue light- and 26S proteasome-dependent degradation. However, in contrast to Arabidopsis cryptochromes, soybean GmCRY1a, but not GmCRY2a, exhibited a strong activity promoting floral initiation, and the level of protein expression of GmCRY1a, but not GmCRY2a, oscillated with a circadian rhythm that has different phase characteristics in different photoperiods. Consistent with the hypothesis that GmCRY1a is a major regulator of photoperiodic flowering in soybean, the photoperiod-dependent circadian rhythmic expression of the GmCRY1a protein correlates with photoperiodic flowering and latitudinal distribution of soybean cultivars. We propose that genes affecting protein expression of the GmCRY1a protein play an important role in determining latitudinal distribution of soybeans.


Assuntos
Ritmo Circadiano/fisiologia , Flavoproteínas/biossíntese , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glycine max/enzimologia , Proteínas de Plantas/biossíntese , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis , Sequência de Bases , Criptocromos , Flavoproteínas/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento
16.
J Inorg Biochem ; 102(5-6): 1366-72, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18289689

RESUMO

The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane-bound, respiratory Na+ pump. Its NqrF subunit contains one FAD and a [2Fe-2S] cluster and catalyzes the initial oxidation of NADH. A soluble variant of NqrF lacking its hydrophobic, N-terminal helix (NqrF') was produced in V. cholerae wild type and nqr deletion strain. Under identical conditions of growth and induction, the yield of NqrF' increased by 30% in the presence of the Na+-NQR. FAD-containing NqrF' species with or without the FeS cluster were observed, indicating that assembly of the FeS center, but not insertion of the flavin cofactor, was limited during overproduction in V. cholerae. A comparison of these distinct NqrF' species with regard to specific NADH dehydrogenase activity, pH dependence of activity and thermal inactivation showed that NqrF' lacking the [2Fe-2S] cluster was less stable, partially unfolded, and therefore prone to proteolytic degradation in V. cholerae. We conclude that the overall yield of NqrF' critically depends on the amount of fully assembled, FeS-containing NqrF' in the V. cholerae host cells. The Na+-NQR is proposed to increase the stability of NqrF' by stimulating the maturation of FeS centers.


Assuntos
Proteínas de Bactérias/metabolismo , Flavoproteínas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , NADH NADPH Oxirredutases/metabolismo , Quinona Redutases/metabolismo , Proteínas de Bactérias/biossíntese , Cromatografia por Troca Iônica , Flavoproteínas/biossíntese , NADH NADPH Oxirredutases/biossíntese , Subunidades Proteicas/metabolismo , Quinona Redutases/isolamento & purificação , Espectrofotometria Ultravioleta , Vibrio cholerae/enzimologia
17.
Cancer Res ; 68(4): 1037-45, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281478

RESUMO

The development of lung cancer is associated with aberrant promoter methylation and thus transcriptional silencing of many tumor suppressor genes or genes critical for cellular maintenance. Here we report that the NADPH oxidases DUOX1 and DUOX2, which are one of the main sources for reactive oxygen species production in the airway, are frequently silenced in human lung cancer. Screening of lung cancer cell lines revealed loss of DUOX1 and DUOX2 expression, which was restored after treatment with 5-aza 2'-deoxycytidine. Two genes, DUOXA1 and DUOXA2, which are transcriptionally and functionally linked to DUOX, also showed coordinated down-regulation in lung cancer cells and lung cancer specimen. Bisulfite sequencing and methylation-specific PCR revealed that CpG-rich promoter regions in both DUOX genes are hypermethylated. Epigenetic modification of at least one DUOX gene was detected in 50% of primary adenocarcinomas. Immunohistochemical analysis of airway sections derived from cancerous and matched healthy tissues confirmed down-regulation of Duox in the ciliated epithelial cells lining the respiratory tract. Reintroduction of functional Duox1 into lung cancer cell lines increased cell migration and wound repair without affecting cell growth. Our results suggest that an area on chromosome 15 that includes DUOX1, DUOX2, and their maturation factors is a frequent target for epigenetic silencing in lung cancer.


Assuntos
Flavoproteínas/genética , Neoplasias Pulmonares/enzimologia , NADPH Oxidases/genética , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Metilação de DNA , Regulação para Baixo , Oxidases Duais , Flavoproteínas/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NADPH Oxidases/biossíntese , NADPH Oxidases/deficiência , Regiões Promotoras Genéticas
18.
J Bacteriol ; 190(8): 2997-3005, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263722

RESUMO

The lldPRD operon of Escherichia coli, involved in L-lactate metabolism, is induced by growth in this compound. We experimentally identified that this system is transcribed from a single promoter with an initiation site located 110 nucleotides upstream of the ATG start codon. On the basis of computational data, it had been proposed that LldR and its homologue PdhR act as regulators of the lldPRD operon. Nevertheless, no experimental data on the function of these regulators have been reported so far. Here we show that induction of an lldP-lacZ fusion by L-lactate is lost in an Delta lldR mutant, indicating the role of LldR in this induction. Expression analysis of this construct in a pdhR mutant ruled out the participation of PdhR in the control of lldPRD. Gel shift experiments showed that LldR binds to two operator sites, O1 (positions -105 to -89) and O2 (positions +22 to +38), with O1 being filled at a lower concentration of LldR. L-Lactate induced a conformational change in LldR that did not modify its DNA binding activity. Mutations in O1 and O2 enhanced the basal transcriptional level. However, only mutations in O1 abolished induction by L-lactate. Mutants with a change in helical phasing between O1 and O2 behaved like O2 mutants. These results were consistent with the hypothesis that LldR has a dual role, acting as a repressor or an activator of lldPRD. We propose that in the absence of L-lactate, LldR binds to both O1 and O2, probably leading to DNA looping and the repression of transcription. Binding of L-lactate to LldR promotes a conformational change that may disrupt the DNA loop, allowing the formation of the transcription open complex.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Flavoproteínas/biossíntese , Regulação Bacteriana da Expressão Gênica , L-Lactato Desidrogenase/biossíntese , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Fatores de Transcrição/metabolismo , Fusão Gênica Artificial , Sequência de Bases , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Genes Reporter , Dados de Sequência Molecular , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Regiões Operadoras Genéticas , Óperon , Mutação Puntual , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
19.
Biochemistry ; 46(32): 9310-9, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17658895

RESUMO

Phototropins (phot1 and phot2) are blue light receptor kinases that control a range of photoresponses that serve to optimize the photosynthetic efficiency of plants. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Bacterially expressed LOV domains bind flavin mononucleotide noncovalently and are photochemically active in solution. Irradiation of the LOV domain results in the formation of a flavin-cysteinyl adduct (LOV390) which thermally relaxes back to the ground state in the dark, effectively completing a photocycle that serves as a molecular switch to control receptor kinase activity. We have employed a random mutagenesis approach to identify further amino acid residues involved in LOV-domain photochemistry. Escherichia coli colonies expressing a mutagenized population of LOV2 derived from Avena sativa (oat) phot1 were screened for variants that showed altered photochemical reactivity in response to blue light excitation. One variant showed slower rates of LOV390 formation but exhibited adduct decay times 1 order of magnitude faster than wild type. A single Ile --> Val substitution was responsible for the effects observed, which removes a single methyl group found in van der Waals contact with the cysteine sulfur involved in adduct formation. A kinetic acceleration trend was observed for adduct decay by decreasing the size of the isoleucine side chain. Our findings therefore indicate that the steric nature of this amino acid side chain contributes to stabilization of the C-S cysteinyl adduct.


Assuntos
Flavoproteínas/química , Luz , Oxigênio/fisiologia , Proteínas de Plantas/química , Transdução de Sinais/fisiologia , Arginina/genética , Dicroísmo Circular , Criptocromos , Cisteína/genética , Evolução Molecular Direcionada , Condutividade Elétrica , Escherichia coli/genética , Flavoproteínas/biossíntese , Flavoproteínas/genética , Isoleucina/genética , Lisina/genética , Mutagênese Sítio-Dirigida , Fotoquímica , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estrutura Terciária de Proteína/genética , Transdução de Sinais/genética , Espectrometria de Fluorescência , Estereoisomerismo , Valina/genética
20.
Adv Exp Med Biol ; 600: 38-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17607945

RESUMO

MICALs (for Molecule Interacting with CasL) form a recently discovered family of evolutionary conserved signal transduction proteins. They contain multiple well-conserved domains known for interactions with the cytoskeleton, cytoskeletal adaptor proteins, and other signaling proteins. In addition to their ability to bind other proteins, MICALs contain a large NADPH-dependent flavoprotein monooxygenase enzymatic domain. Although MICALs have already been implicated in a variety of cellular processes, their function during axonal pathfinding in the Drosophila neuromuscular system has been best characterized. During the establishment of neuromuscular connectivity in the fruit fly, MICAL binds the axon guidance receptor Plexin A and transduces semaphorin-1a-mediated repulsive axon guidance. Intriguingly, mutagenesis and pharmacological inhibitor studies suggest a role for MICAL flavoenzyme redox functions in semaphorin/plexin-mediated axonal pathfinding events. This review summarizes our current understanding of MICALs, with an emphasis on their role in semaphorin signaling.


Assuntos
Flavoproteínas/química , Flavoproteínas/fisiologia , Oxigenases de Função Mista/química , Oxigenases de Função Mista/fisiologia , Semaforinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Flavoproteínas/biossíntese , Flavoproteínas/genética , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/fisiologia , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética , Transdução de Sinais/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA