Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
1.
Mol Genet Genomic Med ; 12(7): e2489, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38967380

RESUMO

BACKGROUND: Glutaric aciduria type II (GA2) is a rare genetic disorder inherited in an autosomal recessive manner. Double dosage mutations in GA2 corresponding genes, ETFDH, ETFA, and ETFB, lead to defects in the catabolism of fatty acids, and amino acids lead to broad-spectrum phenotypes, including muscle weakness, developmental delay, and seizures. product of these three genes have crucial role in transferring electrons to the electron transport chain (ETC), but are not directly involve in ETC complexes. METHODS: Here, by using exome sequencing, the cause of periodic cryptic gastrointestinal complications in a 19-year-old girl was resolved after years of diagnostic odyssey. Protein modeling for the novel variant served as another line of validation for it. RESULTS: Exome Sequencing (ES) identified two variants in ETFDH: ETFDH:c.926T>G and ETFDH:c.1141G>C. These variants are likely contributing to the crisis in this case. To the best of our knowledge at the time of writing this manuscript, variant ETFDH:c.926T>G is reported here for the first time. Clinical manifestations of the case and pathological analysis are in consistent with molecular findings. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. ETFDH:c.926T>G is reported here for the first time in relation to the causation GA2. CONCLUSION: Given the milder symptoms in this case, a review of GA2 cases caused by compound heterozygous mutations was conducted, highlighting the range of symptoms observed in these patients, from mild fatigue to more severe outcomes. The results underscore the importance of comprehensive genetic analysis in elucidating the spectrum of clinical presentations in GA2 and guiding personalized treatment strategies.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Heterozigoto , Proteínas Ferro-Enxofre , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Feminino , Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Adulto Jovem , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/patologia , Encefalopatias Metabólicas/diagnóstico , Mutação , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/patologia
2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 790-796, 2024 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-38946359

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic variants in three children with late-onset Multiple acyl-Coenzyme A dehydrogenase deficiency (MADD type Ⅲ). METHODS: Clinical data of three children diagnosed with late-onset MADD at the Children's Hospital Affiliated to Zhengzhou University between March 2020 and March 2022 were retrospectively analyzed. All children were subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. All children had received improved metabolic therapy and followed up for 1 ~ 3 years. RESULTS: The children had included 2 males and 1 female, and aged from 2 months to 11 years and 7 months. Child 1 had intermittent vomiting, child 2 had weakness in lower limbs, while child 3 had no symptom except abnormal neonatal screening. Tandem mass spectrometry of the three children showed elevation of multiple acylcarnitines with short, medium and long chains. Children 1 and 2 showed increased glutaric acid and multiple dicarboxylic acids by urine Gas chromatography-mass spectrometry (GC-MS) analysis. All children were found to harbor compound heterozygous variants of the ETFDH gene, including a paternal c.1211T>C (p.M404T) and a maternal c.488-22T>G variant in child 1, a paternal c.1717C>T (p.Q573X) and a maternal c.250G>A (p.A84T) variant in child 2, and a paternal c.1285+1G>A and maternal c.629A>G (p.S210N) variant in child 3. As for the treatment, high-dose vitamin B2, levocarnitine and coenzyme Q10 were given to improve the metabolism, in addition with a low fat, hypoproteinic and high carbohydrate diet. All children showed a stable condition with normal growth and development during the follow-up. CONCLUSION: The compound heterozygous variants of the ETFDH gene probably underlay the muscle weakness, remittent vomiting, elevated short, medium, and long chain acylcarnitine, as well as elevated glutaric acid and various dicarboxylic acids in the three children with type Ⅲ MADD.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Masculino , Feminino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Lactente , Criança , Pré-Escolar , Flavoproteínas Transferidoras de Elétrons/genética , Mutação , Estudos Retrospectivos , Carnitina/análogos & derivados , Carnitina/sangue , Proteínas Ferro-Enxofre/genética , Sequenciamento do Exoma , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Variação Genética
3.
Mol Genet Metab ; 142(4): 108516, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941880

RESUMO

Glutaric aciduria type II (GAII) is a heterogeneous genetic disorder affecting mitochondrial fatty acid, amino acid and choline oxidation. Clinical manifestations vary across the lifespan and onset may occur at any time from the early neonatal period to advanced adulthood. Historically, some patients, in particular those with late onset disease, have experienced significant benefit from riboflavin supplementation. GAII has been considered an autosomal recessive condition caused by pathogenic variants in the gene encoding electron-transfer flavoprotein ubiquinone-oxidoreductase (ETFDH) or in the genes encoding electron-transfer flavoprotein subunits A and B (ETFA and ETFB respectively). Variants in genes involved in riboflavin metabolism have also been reported. However, in some patients, molecular analysis has failed to reveal diagnostic molecular results. In this study, we report the outcome of molecular analysis in 28 Australian patients across the lifespan, 10 paediatric and 18 adult, who had a diagnosis of glutaric aciduria type II based on both clinical and biochemical parameters. Whole genome sequencing was performed on 26 of the patients and two neonatal onset patients had targeted sequencing of candidate genes. The two patients who had targeted sequencing had biallelic pathogenic variants (in ETFA and ETFDH). None of the 26 patients whose whole genome was sequenced had biallelic variants in any of the primary candidate genes. Interestingly, nine of these patients (34.6%) had a monoallelic pathogenic or likely pathogenic variant in a single primary candidate gene and one patient (3.9%) had a monoallelic pathogenic or likely pathogenic variant in two separate genes within the same pathway. The frequencies of the damaging variants within ETFDH and FAD transporter gene SLC25A32 were significantly higher than expected when compared to the corresponding allele frequencies in the general population. The remaining 16 patients (61.5%) had no pathogenic or likely pathogenic variants in the candidate genes. Ten (56%) of the 18 adult patients were taking the selective serotonin reuptake inhibitor antidepressant sertraline, which has been shown to produce a GAII phenotype, and another two adults (11%) were taking a serotonin-norepinephrine reuptake inhibitor antidepressant, venlafaxine or duloxetine, which have a mechanism of action overlapping that of sertraline. Riboflavin deficiency can also mimic both the clinical and biochemical phenotype of GAII. Several patients on these antidepressants showed an initial response to riboflavin but then that response waned. These results suggest that the GAII phenotype can result from a complex interaction between monoallelic variants and the cellular environment. Whole genome or targeted gene panel analysis may not provide a clear molecular diagnosis.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Feminino , Masculino , Criança , Adulto , Pré-Escolar , Flavoproteínas Transferidoras de Elétrons/genética , Adolescente , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Queensland , Riboflavina/uso terapêutico , Adulto Jovem , Lactente , Proteínas Ferro-Enxofre/genética , Estudos de Coortes , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Recém-Nascido , Mutação , Sequenciamento Completo do Genoma
4.
J Invertebr Pathol ; 205: 108141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788920

RESUMO

Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.


Assuntos
Beauveria , Flavoproteínas Transferidoras de Elétrons , Beauveria/patogenicidade , Beauveria/genética , Beauveria/enzimologia , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Oxirredutases/metabolismo , Oxirredutases/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH
5.
Int Heart J ; 65(2): 329-338, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556340

RESUMO

Hypertension and atherosclerosis often occur simultaneously. This study aimed to explore the role and mechanism of platelet microparticle (PMP) -derived microRNA-320b (miR-320b) in patients with hypertension accompanied by atherosclerosis.We collected samples from 13 controls without hypertension and atherosclerosis and 20 patients who had hypertension accompanied by atherosclerosis. In vitro, platelets were activated by Thrombin receptor-activating peptide to produce PMPs. HUVECs were induced by CoCl2 to mimic a hypoxic environment in vitro. RT-qPCR was employed to detect the expression levels of CD61, miR-320b, and ETFA. The protein expression level of ETFA was evaluated via Western blotting. Furthermore, 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine, and wound healing assays were employed to assess the proliferation and migration of HUVECs. Enzyme-linked immunosorbent assay was used to measure the oxidative stress and inflammation-related factor expression.The expression of miR-320b was reduced in both platelets and PMPs but increased in plasma. MiR-320b promoted CoCl2-induced HUVEC viability, proliferation, and migration. The levels of the oxidative stress factors SOD and GSH as well as the inflammatory factor IL-10 were elevated in the CoCl2 + miR-320b mimics group compared with both the CoCl2 + mimics NC and CoCl2 groups. Conversely, the levels of the oxidative stress factors MDA and ROS as well as the inflammatory factors IL-6, TNF-α, and IL-1ß were decreased. These results were regulated by miR-320b targeting ETFA.PMP-derived miR-320b inhibits the development of hypertension accompanied by atherosclerosis by targeting ETFA.


Assuntos
Aterosclerose , Hipertensão , MicroRNAs , Humanos , Apoptose , Aterosclerose/genética , Cobalto , Flavoproteínas Transferidoras de Elétrons , Hipertensão/complicações , Hipertensão/genética , MicroRNAs/metabolismo
6.
BMJ Case Rep ; 17(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490702

RESUMO

Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder which typically manifests with muscle weakness. However, despite late-onset MADD being treatable, it is often misdiagnosed, due in part to the heterogeneity of presentations. We report a case of late-onset MADD manifesting first as a sensory neuropathy before progressing to myopathic symptoms and acute metabolic decompensation. Early diagnostic workup with acylcarnitine profiling and organic acid analysis was critical in patient outcome; metabolic decompensation and myopathic symptoms were completely reversed with riboflavin supplementation and dietary modification, although sensory neuropathy persisted. Clinical consideration of MADD as part of the differential diagnosis of neuropathy with myopathy is crucial for a timely diagnosis and treatment of MADD.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Doenças do Sistema Nervoso Periférico , Humanos , Acil-CoA Desidrogenase , Mutação , Flavoproteínas Transferidoras de Elétrons/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/complicações , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Riboflavina/uso terapêutico , Doenças Raras/tratamento farmacológico
7.
Orphanet J Rare Dis ; 19(1): 72, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365830

RESUMO

BACKGROUND: Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS: In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS: Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS: Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Masculino , Feminino , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Mutação , Diagnóstico Tardio , Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo
8.
J Hum Genet ; 69(3-4): 125-131, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38228875

RESUMO

Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.


Assuntos
Proteínas Ferro-Enxofre , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Distrofias Musculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Acil Coenzima A/uso terapêutico , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Riboflavina/uso terapêutico
9.
Nat Metab ; 6(2): 209-225, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243131

RESUMO

Coenzyme Q (Q) is a key lipid electron transporter, but several aspects of its biosynthesis and redox homeostasis remain undefined. Various flavoproteins reduce ubiquinone (oxidized form of Q) to ubiquinol (QH2); however, in eukaryotes, only oxidative phosphorylation (OXPHOS) complex III (CIII) oxidizes QH2 to Q. The mechanism of action of CIII is still debated. Herein, we show that the Q reductase electron-transfer flavoprotein dehydrogenase (ETFDH) is essential for CIII activity in skeletal muscle. We identify a complex (comprising ETFDH, CIII and the Q-biosynthesis regulator COQ2) that directs electrons from lipid substrates to the respiratory chain, thereby reducing electron leaks and reactive oxygen species production. This metabolon maintains total Q levels, minimizes QH2-reductive stress and improves OXPHOS efficiency. Muscle-specific Etfdh-/- mice develop myopathy due to CIII dysfunction, indicating that ETFDH is a required OXPHOS component and a potential therapeutic target for mitochondrial redox medicine.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Fosforilação Oxidativa , Ubiquinona , Animais , Camundongos , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Homeostase , Lipídeos , Músculo Esquelético/metabolismo , Ubiquinona/metabolismo
10.
Int J Rheum Dis ; 27(1): e14906, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37737545

RESUMO

A 35-year-old male patient presented fluctuating bilateral lower extremity weakness for 3 years. Physical examination showed grade 4 proximal muscle weakness in both lower extremities and grade 5 distal muscle weakness. Laboratory data revealed elevated creatine kinase, triglycerides, and cholesterol. Muscle pathology showed deposition of lipid droplet under the sarcolemma. Bone densitometry indicated severe osteoporosis. Next-generation sequencing revealed a pathogenic mutation in the ETFDH gene. The patient was diagnosed with late-onset multiple acyl-CoA dehydrogenase deficiency. After riboflavin treatment, symptoms of the patient were relieved, physical endurance was restored, and bone mineral density was improved.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Osteoporose , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Masculino , Humanos , Adulto , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Mutação , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Osteoporose/tratamento farmacológico , Osteoporose/genética
11.
J Neurol Sci ; 456: 122808, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38043332

RESUMO

There are scarce reports of riboflavin-responsive lipid storage myopathy in elderly patients with onset in their sixties. We describe three elderly patients with riboflavin-responsive lipid-storage myopathy. All three patients (aged 67-71 years on first examination) had subacute onset of neck extensors and proximal limb weakness progressing to inability to rise from a sitting position or to walk. Muscle biopsies showed vacuoles with lipid content, mainly in type 1 fibers. Genetic analysis failed to identify any pathogenic variant in one patient, identified a heterozygous variant of uncertain significance c.812 A > G; p.Tyr271Cys in the ETFDH gene in the second patient, and revealed a heterozygote likely pathogenic variant c.1286-2 A > C in the ETFDH gene predicted to cause abnormal splicing in the third patient. All patients responded to treatment with riboflavin and carnitine, and regained normal strength. This report emphasizes the importance of muscle biopsy in revealing treatable lipid storage myopathy in elderly patients with progressive myopathy of unidentifiable cause.


Assuntos
Proteínas Ferro-Enxofre , Erros Inatos do Metabolismo Lipídico , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Doenças Musculares , Distrofias Musculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Idoso , Músculo Esquelético/metabolismo , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Proteínas Ferro-Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Doenças Musculares/patologia , Riboflavina/uso terapêutico , Lipídeos
12.
J Chem Inf Model ; 63(21): 6756-6767, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874902

RESUMO

Cryptochromes are proteins that are highly conserved across species and in many instances bind the flavin adenine dinucleotide (FAD) cofactor within their photolyase-homology region (PHR) domain. The FAD cofactor has multiple redox states that help catalyze reactions, and absorbs photons at about 450 nm, a feature linked to the light-related functions of cryptochrome proteins. Reactive oxygen species (ROS) are produced from redox reactions involving molecular oxygen and are involved in a myriad of biological processes. Superoxide O2•- is an exemplary ROS that may be formed through electron transfer from FAD to O2, generating an electron radical pair. Although the formation of a superoxide-FAD radical pair has been speculated, it is still unclear if the required process steps could be realized in cryptochrome. Here, we present results from molecular dynamics (MD) simulations of oxygen interacting with the PHR domain of Arabidopsis thaliana cryptochrome 1 (AtCRY1). Using MD simulation trajectories, oxygen binding locations are characterized through both the O2-FAD intermolecular distance and the local protein environment. Oxygen unbinding times are characterized through replica simulations of the bound oxygen. Simulations reveal that oxygen molecules can localize at certain sites within the cryptochrome protein for tens of nanoseconds, and superoxide molecules can localize for significantly longer. This relatively long-duration molecule binding suggests the possibility of an electron-transfer reaction leading to superoxide formation. Estimates of electron-transfer rates using the Marcus theory are performed for the identified potential binding sites. Molecular oxygen binding results are compared with recent results demonstrating long-time oxygen binding within the electron-transfer flavoprotein (ETF), another FAD binding protein.


Assuntos
Arabidopsis , Superóxidos , Superóxidos/química , Superóxidos/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas Transferidoras de Elétrons/química
13.
Physiol Rep ; 11(20): e15840, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37857571

RESUMO

High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from ß-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFß, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFß (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFß and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.


Assuntos
Dieta Hiperlipídica , Flavoproteínas Transferidoras de Elétrons , Feminino , Animais , Camundongos , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Lipídeos , Respiração , RNA/metabolismo
14.
Analyst ; 148(19): 4777-4786, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37599631

RESUMO

Electron transfer flavoprotein subunit beta (ETFB) of Leptospira interrogans is a biomarker for diagnosing leptospiral infection. Thus, the ETFB-specific nuclease-resistant RNA aptamer ETFB3-63 was developed and used in an electrochemical aptasensor to assay ETFB. Although the majority of reported biosensors detect various genes and antibodies of L. interrogans, this is the first attempt to construct an electrochemical biosensor to detect ETFB protein for the diagnosis of leptospiral infection. The ETFB protein can be detected without any extraction phase. In this assay, a single-stranded DNA probe complementary to the ETFB3-63 sequence was immobilized on a screen-printed carbon electrode (SPCE). The aptamer was then incubated and hybridized with the antisense probe on the SPCE. In the presence of ETFB, the aptamer dissociates from the aptamer/probe complex on the SPCE to bind with the protein. Methylene blue was then added to intercalate with the remaining hybridized aptamers, and its signal was measured using differential pulse voltammetry. The signal arising from the intercalated methylene blue decreased with increasing concentration of ETFB, showing a linear response in the range of 50-500 nM of ETFB and 10 to 109 leptospira cells per mL, respectively. The aptasensor signal was also specific to L. interrogans but not to 12 related bacteria tested. In addition, the aptasensor showed similar performance in detecting ETFB spiked in human serum to that in buffer, indicating that proteins in the serum do not interfere with the assay. Therefore, this assay has great potential to develop into a point-of-care electrochemical device that is accurate, cost-effective, and user-friendly for leptospirosis diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Leptospirose , Humanos , Azul de Metileno , Técnicas Eletroquímicas , Carbono , Eletrodos , Leptospirose/diagnóstico , Flavoproteínas Transferidoras de Elétrons , Limite de Detecção , Ouro
15.
BMJ Case Rep ; 16(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217231

RESUMO

Multiple acyl-CoA dehydrogenase deficiency (MADD) is a rare inborn error of metabolism that results in impairment of mitochondrial ß-oxidation of fatty acids. It is inherited in an autosomal recessive manner and impairs electron transfer in the electron transport chain. The clinical manifestations of MADD are highly variable and include exercise intolerance, myopathy, cardiomyopathy, encephalopathy, coma and death. Early-onset MADD is often associated with a high mortality with significant number of patients presenting with severe metabolic acidosis, non-ketotic hypoglycaemia and/or hyperammonaemic presentations. While late-onset MADD is suggested to have a lower mortality, the severe encephalopathic presentations may well be under-reported as a diagnosis of MADD may not be considered.MADD is treatable with riboflavin and appropriate nutrition with a focus on prevention and early management of metabolic decompensation. The neonatal phenotype differs significantly from late-onset MADD, where diagnosis may be delayed due to heterogeneity in clinical features, atypical presentation and confounding comorbidities, together with lower awareness among physicians.This report describes a woman in her 30s who presented with acute-onset ataxia, confusion and hyperammonaemic encephalopathy requiring intubation. Subsequent biochemical investigation revealed a diagnosis of MADD. At present, there are no national guidelines in Australia for the management of MADD. This case highlights the investigation and treatment of late-onset MADD.


Assuntos
Deficiência Múltipla de Acil Coenzima A Desidrogenase , Feminino , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/complicações , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Riboflavina/uso terapêutico , Austrália , Acil-CoA Desidrogenase/genética , Mutação
16.
J Biol Chem ; 299(6): 104762, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119850

RESUMO

Bifurcating electron transferring flavoproteins (Bf-ETFs) tune chemically identical flavins to two contrasting roles. To understand how, we used hybrid quantum mechanical molecular mechanical calculations to characterize noncovalent interactions applied to each flavin by the protein. Our computations replicated the differences between the reactivities of the flavins: the electron transferring flavin (ETflavin) was calculated to stabilize anionic semiquinone (ASQ) as needed to execute its single-electron transfers, whereas the Bf flavin (Bfflavin) was found to disfavor the ASQ state more than does free flavin and to be less susceptible to reduction. The stability of ETflavin ASQ was attributed in part to H-bond donation to the flavin O2 from a nearby His side chain, via comparison of models employing different tautomers of His. This H-bond between O2 and the ET site was uniquely strong in the ASQ state, whereas reduction of ETflavin to the anionic hydroquinone (AHQ) was associated with side chain reorientation, backbone displacement, and reorganization of its H-bond network including a Tyr from the other domain and subunit of the ETF. The Bf site was less responsive overall, but formation of the Bfflavin AHQ allowed a nearby Arg side chain to adopt an alternative rotamer that can H-bond to the Bfflavin O4. This would stabilize the anionic Bfflavin and rationalize effects of mutation at this position. Thus, our computations provide insights on states and conformations that have not been possible to characterize experimentally, offering explanations for observed residue conservation and raising possibilities that can now be tested.


Assuntos
Flavoproteínas Transferidoras de Elétrons , Flavoproteínas , Flavoproteínas Transferidoras de Elétrons/metabolismo , Flavoproteínas/química , Oxirredução , Flavinas/metabolismo , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo
17.
Stem Cell Res ; 69: 103067, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37019029

RESUMO

Mutations in the ETFDH gene, encoding electron transfer flavoprotein dehydrogenase, have been identified to cause riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (RR-MADD) (Wen et al., 2010). We performed the generation and characterization of human induced pluripotent stem cell (iPSC) line from skin fibroblasts of a patient with RR-MADD carrying two heterozygous ETFDH mutations (p.D130V and p.A84V). Their pluripotency was verified by the expression of several pluripotency markers on RNA and protein levels and the capability to differentiate into all three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Deficiência Múltipla de Acil Coenzima A Desidrogenase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mutação/genética , Riboflavina/genética , Riboflavina/metabolismo
18.
Am J Med Genet A ; 191(4): 1089-1093, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579410

RESUMO

Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. We describe a patient identified through newborn screening in which the diagnosis of MADD was confirmed based on metabolic profiling, but clinical molecular sequencing of ETFA, ETFB, and ETFDH was normal. In order to identify the genetic etiology of MADD, we performed whole genome sequencing and identified a novel homozygous promoter variant in ETFA (c.-85G > A). Subsequent studies showed decreased ETFA protein expression in lymphoblasts. A promoter luciferase assay confirmed decreased activity of the mutant promoter. In both assays, the variant displayed considerable residual activity, therefore we speculate that our patient may have a late onset form of MADD (Type III). Our findings may be helpful in establishing a molecular diagnosis in other MADD patients with a characteristic biochemical profile but apparently normal molecular studies.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Recém-Nascido , Humanos , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Flavoproteínas Transferidoras de Elétrons/genética , Aminoácidos/genética , Homozigoto , Proteínas Ferro-Enxofre/genética , Mutação
19.
Turk J Med Sci ; 52(4): 1256-1265, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36326420

RESUMO

BACKGROUND: The lipid storage myopathy (LSM) diagnosis is based on the patient's clinical manifestations and muscle pathology. However, when genetic testing is lacking, there is a high rate of misdiagnosis of the disease. This study aimed to investigate the clinical and pathological features of genetically diagnosed LSM in northern China, analyze genetic mutations' characteristics, and improve the LSM diagnostic rate. METHODS: Twenty patients with LSM diagnosed were collected; meanwhile, the clinical data, muscle samples, and routine pathological staining of muscle specimens were collected. The morphological changes of muscle fibers were observed under an optical microscope. RESULTS: Among the included patients, 18 cases had ETFDH (HGNC ID: 3483) mutations, and two had PNPLA2 mutations. Family pedigree verification was performed on three patients with heterozygous mutations in the ETFDH gene complex. Histopathological staining showed that all patients had fine vacuoles in the muscle fibers, and some of them merged to form fissures, and the lipid droplets increased in cells. After therapy, 18 patients were associated with a favorable prognosis, and two patients were ineffective with the treatment of neutral lipid storage myopathy (NLSDM) caused by PNPLA2 mutation. DISCUSSION: The clinical manifestations of LSM are complex and diverse, mainly manifested by proximal muscle weakness and exercise intolerance in the extremities. The pathological images of LSM muscles are abnormal storage of lipid droplets in muscle fibers, primarily involving type I fibers. The LSM patients were mainly multiple acyl-CoA dehydrogenase deficiency (MADD) caused by the ETFDH gene mutation. It is necessary to perform an accurate typing diagnosis of LSM.


Assuntos
Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/uso terapêutico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/tratamento farmacológico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Mutação/genética
20.
J R Coll Physicians Edinb ; 52(3): 256-258, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36369806

RESUMO

Multiple-acyl-CoA dehydrogenase deficiency (MADD) is a rare autosomal recessive disorder which can be split into three types. Type III MADD is associated with acute or subacute proximal muscle weakness and other variable non-specific features making it a challenging diagnosis for the clinician. This case report describes MADD in a 64 year-old lady, thought to be one of the latest first presentations of the disease. Unusually for this condition, the initial presentation was with dyspnoea. Furthermore, since this case provides further evidence that gene variants can predict age of onset, we advocate for further subclassification of type III MADD into late onset MADD (LO-MADD) when homozygous gene variants are present and very LO-MADD when heterozygous gene variants are found.


Assuntos
Acil-CoA Desidrogenases , Proteínas Ferro-Enxofre , Deficiência Múltipla de Acil Coenzima A Desidrogenase , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Feminino , Humanos , Pessoa de Meia-Idade , Flavoproteínas Transferidoras de Elétrons/genética , Flavoproteínas Transferidoras de Elétrons/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas Ferro-Enxofre/genética , Mutação , Deficiência Múltipla de Acil Coenzima A Desidrogenase/diagnóstico , Deficiência Múltipla de Acil Coenzima A Desidrogenase/genética , Acil-CoA Desidrogenases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA