Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.544
Filtrar
1.
Plant Cell Rep ; 43(6): 142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744747

RESUMO

KEY MESSAGE: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Secale , Flores/genética , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secale/genética , Secale/fisiologia , Temperatura Baixa , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Genoma de Planta/genética , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dedos de Zinco PHD/genética
2.
PLoS One ; 19(5): e0300819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722920

RESUMO

The role of endemic species in global biodiversity is pivotal, and understanding their biology and ecology is imperative for their fitness and long-term survival, particularly in the face of ongoing climatic oscillations. Our primary goal was to investigate the sexual reproduction level of the endangered Western Carpathian endemic Daphne arbuscula (Thymelaeaceae), which inhabits extreme rocky habitats, and to comprehend the influence of specific factors on its reproductive success. We conducted the research across four populations, varying in size and environmental conditions. Over two years, we monitored flower and fruit production, analyzed genetic variability within and among populations, and studied pollination mechanisms. Daphne arbuscula proved to be strictly self-incompatible, with significant variations in flower and fruit production among populations and seasons. The average fruit production percentage consistently remained below 50% across populations, indicating challenges in sexual reproduction. Cold and harsh weather during the reproductive phase had a substantial negative impact on sexual reproduction efficacy, leading to decreased fruit production. Nevertheless, several individuals in sheltered microhabitats displayed significantly higher fruit production, ranging from 60% to 83%, emphasizing the critical role of microhabitat heterogeneity in sustaining sexual reproduction in this species. We found no pronounced differences in genetic diversity within or among populations, suggesting that genetic factors may not critically influence the reproductive success of this endemic species. The implications of our findings might be of paramount importance for the long-term survival of D. arbuscula and offer valuable insights for the development of effective conservation strategies for this species.


Assuntos
Daphne , Flores , Polinização , Reprodução , Daphne/genética , Daphne/fisiologia , Flores/fisiologia , Flores/genética , Variação Genética , Ecossistema , Frutas/genética , Estações do Ano
3.
Planta ; 259(6): 149, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724681

RESUMO

MAIN CONCLUSION: The rice SnRK2 members SAPK4, SAPK5, SAPK7 and SAPK10 are positive regulators involved in the regulation of rice flowering, while other single mutants exhibited no effect on rice flowering. The rice SnRK2 family, comprising 10 members known as SAPK (SnRK2-Associated Protein Kinase), is pivotal in the abscisic acid (ABA) pathway and crucial for various biological processes, such as drought resistance and salt tolerance. Additionally, these members have been implicated in the regulation of rice heading date, a key trait influencing planting area and yield. In this study, we utilized gene editing technology to create mutants in the Songjing 2 (SJ2) background, enabling a comprehensive analyze the role of each SAPK member in rice flowering. We found that SAPK1, SAPK2, and SAPK3 may not directly participate in the regulatory network of rice heading date, while SAPK4, SAPK5, and SAPK7 play positive roles in rice flowering regulation. Notably, polygene deletion resulted in an additive effect on delaying flowering. Our findings corroborate the previous studies indicating the positive regulatory role of SAPK10 in rice flowering, as evidenced by delayed flowering observed in sapk9/10 double mutants. Moving forward, our future research will focus on analyzing the molecular mechanisms underlying SAPKs involvement in rice flowering regulation, aiming to enhance our understanding of the rice heading date relationship network and lay a theoretical foundation for breeding efforts to alter rice ripening dates.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/enzimologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Edição de Genes , Estresse Fisiológico/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Ácido Abscísico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Planta ; 259(6): 150, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727772

RESUMO

MAIN CONCLUSION: The hop phenological cycle was described in subtropical condition of Brazil showing that flowering can happen at any time of year and this was related to developmental molecular pathways. Hops are traditionally produced in temperate regions, as it was believed that vernalization was necessary for flowering. Nevertheless, recent studies have revealed the potential for hops to flower in tropical and subtropical climates. In this work, we observed that hops in the subtropical climate of Minas Gerais, Brazil grow and flower multiple times throughout the year, independently of the season, contrasting with what happens in temperate regions. This could be due to the photoperiod consistently being inductive, with daylight hours below the described threshold (16.5 h critical). We observed that when the plants reached 7-9 nodes, the leaves began to transition from heart-shaped to trilobed-shaped, which could be indicative of the juvenile to adult transition. This could be related to the fact that the 5th node (in plants with 10 nodes) had the highest expression of miR156, while two miR172s increased in the 20th node (in plants with 25 nodes). Hop flowers appeared later, in the 25th or 28th nodes, and the expression of HlFT3 and HlFT5 was upregulated in plants between 15 and 20 nodes, while the expression of HlTFL3 was upregulated in plants with 20 nodes. These results indicate the role of axillary meristem age in regulating this process and suggest that the florigenic signal should be maintained until the hop plants bloom. In addition, it is possible that the expression of TFL is not sufficient to inhibit flowering in these conditions and promote branching. These findings suggest that the reproductive transition in hop under inductive photoperiodic conditions could occur in plants between 15 and 20 nodes. Our study sheds light on the intricate molecular mechanisms underlying hop floral development, paving the way for potential advancements in hop production on a global scale.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Humulus , Fotoperíodo , Folhas de Planta , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Humulus/genética , Humulus/crescimento & desenvolvimento , Humulus/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Brasil , MicroRNAs/genética , MicroRNAs/metabolismo , Clima Tropical
5.
Physiol Plant ; 176(3): e14331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38710477

RESUMO

Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Pólen , Pólen/genética , Pólen/fisiologia , Gossypium/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiologia , Infertilidade das Plantas/genética , Filogenia
6.
PeerJ ; 12: e17273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708362

RESUMO

Gradual pollen presentation is a plant reproductive mechanism to improve pollination efficiency and accuracy and promote outcrossing. Vaccinium corymbosum 'Bluecrop' has a typical gradual pollen presentation mechanism. 'Bluecrop' exhibits an inverted bell-shaped flower with a white coloration. By investigating the flower syndrome, pollination characteristics, pollination efficiency, and breeding system of 'Bluecrop', this study aims to explore the adaptive significance of these traits. The results showed 'Bluecrop' released pollen gradually through anther poricidal dehiscence. Among different pollinators, Apis mellifera and Bombus can pollinate effectively, and the mechanism of gradual pollen presentation significantly improved the efficiency of pollen transfer. This characteristic limits the amount of pollen removed by the pollinators and prolongs pollen presentation, thus attracting more pollinators and thereby increasing male fitness. The nectar secretion of 'Bluecrop' is gradual, with a large nectar production and a long phase of nectar secretion, enhance visitation frequencies and the chances of successful pollination. At the same time, campanulate corolla can protect pollen as well as nectar from waste due to environmental factors and other effects. The breeding system of 'Bluecrop' relies mainly on outcrossing because of its low affinity for self-fertilization and good interaction with pollinating insects. Thus, the special floral syndrome and the mechanism of secondary pollen presentation are significant in improving pollination efficiency and promoting the reproductive success of 'Bluecrop' by outcrossing. It can provide a certain theoretical basis for the future propagation breeding of 'Bluecrop'.


Assuntos
Flores , Pólen , Polinização , Abelhas/fisiologia , Flores/genética , Flores/fisiologia , Animais , Mirtilos Azuis (Planta) , Néctar de Plantas , Melhoramento Vegetal
7.
Sci Rep ; 14(1): 11392, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762587

RESUMO

Uniparental reproduction is advantageous when lack of mates limits outcrossing opportunities in plants. Baker's law predicts an enrichment of uniparental reproduction in habitats colonized via long-distance dispersal, such as volcanic islands. To test it, we analyzed reproductive traits at multiple hierarchical levels and compared seed-set after selfing and crossing experiments in both island and mainland populations of Limonium lobatum, a widespread species that Baker assumed to be self-incompatible because it had been described as pollen-stigma dimorphic, i.e., characterized by floral morphs differing in pollen-surface morphology and stigma-papillae shape that are typically self-incompatible. We discovered new types and combinations of pollen and stigma traits hitherto unknown in the literature on pollen-stigma dimorphism and a lack of correspondence between such combinations and pollen compatibility. Contrary to previous reports, we conclude that Limonium lobatum comprises both self-compatible and self-incompatible plants characterized by both known and previously undescribed combinations of reproductive traits. Most importantly, plants with novel combinations are overrepresented on islands, selfed seed-set is higher in islands than the mainland, and insular plants with novel pollen-stigma trait-combinations disproportionally contribute to uniparental reproduction on islands. Our results thus support Baker's law, connecting research on reproductive and island biology.


Assuntos
Ilhas , Plumbaginaceae , Pólen , Polinização , Reprodução , Pólen/fisiologia , Reprodução/fisiologia , Plumbaginaceae/fisiologia , Polinização/fisiologia , Sementes/fisiologia , Flores/fisiologia , Fenótipo
8.
Science ; 384(6691): 124-130, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574141

RESUMO

Cleistogamy is a type of self-pollination that relies on the formation of a stigma-enclosing floral structure. We identify three homeodomain-leucine zipper IV (HD-Zip IV) genes that coordinately promote the formation of interlocking trichomes at the anther margin to unite neighboring anthers, generating a closed anther cone and cleistogamy (flower morphology necessitating strict self-pollination). These HD-Zip IV genes also control style length by regulating the transition from cell division to endoreduplication. The expression of these HD-Zip IV genes and their downstream gene, Style 2.1, was sequentially modified to shape the cleistogamy morphology during tomato evolution and domestication. Our results provide insights into the molecular basis of cleistogamy in modern tomato and suggest targets for improving fruit set and preventing pollen contamination in genetically modified crops.


Assuntos
Flores , Proteínas de Homeodomínio , Zíper de Leucina , Proteínas de Plantas , Polinização , Autofertilização , Solanum lycopersicum , Tricomas , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Flores/citologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Tricomas/citologia , Tricomas/fisiologia
9.
Physiol Plant ; 176(2): e14300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629194

RESUMO

The flower bud differentiation plays a crucial role in cherry yield and quality. In a preliminary study, we revealed the promotion of spermidine (Spd) in bud differentiation and quality. However, the molecular mechanism underlying Spd regulating cherry bud differentiation remains unclear. To address this research gap, we cloned CpSPDS2, a gene that encodes Spd synthase and is highly expressed in whole flowers and pistils of the Chinese cherry (cv. 'Manaohong'). Furthermore, an overexpression vector with this gene was constructed to transform tobacco plants. The findings demonstrated that transgenic lines exhibited higher Spd content, an earlier flowering time by 6 d, and more lateral buds and flowers than wild-type lines. Additionally, yeast one-hybrid assays and two-luciferase experiments confirmed that the R2R3-MYB transcription factor (CpMYB44) directly binds to and activates the CpSPDS2 promoter transcription. It is indicated that CpMYB44 promotes Spd accumulation via regulating CpSPDS2 expression, thus accelerating the flower growth. This research provides a basis for resolving the molecular mechanism of CpSPDS2 involved in cherry bud differentiation.


Assuntos
Prunus , Espermidina , Espermidina/metabolismo , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Prunus/genética , Flores/fisiologia
10.
Am Nat ; 203(5): E157-E174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38635358

RESUMO

AbstractAssessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in response to continuous climate drivers or how phenological shifts in response to warming conditions affect fitness. We leverage an unusual long-term dataset with repeated, individual measurements of phenology and reproduction in a long-lived alpine plant. We analyze phenotypic plasticity in flowering phenology in relation to two climate drivers, snowmelt timing and growing degree days (GDDs). Plants flower earlier with increased GDDs and earlier snowmelt, and directional selection also favors earlier flowering under these conditions. However, reproduction still declines with warming and early snowmelt, even when flowering is early. Furthermore, the steepness of this reproductive decline increases dramatically with warming conditions, resulting in very little fruit production regardless of flowering time once GDDs exceed approximately 225 degree days or snowmelt occurs before May 15. Even though advancing phenology confers a fitness advantage relative to stasis, these shifts are insufficient to maintain reproduction under warming, highlighting limits to the potential benefits of phenological plasticity under climate change.


Assuntos
Mudança Climática , Flores , Estações do Ano , Temperatura , Flores/fisiologia , Reprodução , Plantas
11.
Planta ; 259(6): 137, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683389

RESUMO

MAIN CONCLUSION: Self-incompatibility studies have revealed a potential use of Tunisian apple resources for crop improvement and modern breeding programs and a likely correlation between the pollen tube growth and flowering period. Apples [Malus domestica. Borkh] exhibit an S-RNase-based gametophytic self-incompatibility (GSI) system. Four primer combinations were used to S-genotype eighteen Tunisian local apple accessions and twelve introduced accessions that served as references. Within the Tunisian local accessions, S2, S3, S7, and S28 S-alleles were the most frequent and were assigned to 14 S-genotypes; among them, S7S28, S3S7, S2S5, and S2S3 were the most abundant. PCA plot showed that population structuring was affected by the S-alleles frequencies and revealed a modern origin of the Tunisian varieties rather than being ancient ones. Nonetheless, the results obtained with 17 SSR markers showed a separate grouping of local Tunisian accessions that calls into question the hypothesis discussed. Pollination experiments showed that the pollen started to germinate within 24 h of pollination but 48 h after pollination in the "El Fessi" accession. The first pollen tubes arrived in the styles within 36 h of pollination in two early flowering accessions known as "Arbi" and "Bokri", and after 72 h of pollination in late flowering "El Fessi" and 48 h after pollination in remaining accessions. The first pollen tube arrests were observed in accessions "Arbi" and "Bokri" within 84 h of pollination, within 108 h of pollination in "El Fessi" and within 108 h of pollination in remaining accessions. In the apple accession called "Boutabgaya," the pollen tubes reached the base of the style within 120 h of pollination without being aborted. Nevertheless, the self-compatible nature of "Boutabgaya" needs more studies to be confirmed. However, our results revealed the malfunction of the female component of the GSI in this accession. To conclude, this work paved the path for further studies to enhance the insight (i) into the relation between the flowering period and the pollen tube growth, (ii) self-compatible nature of "Boutabgaya", and (iii) the origin of the Tunisian apple.


Assuntos
Genótipo , Malus , Tubo Polínico , Polinização , Autoincompatibilidade em Angiospermas , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/fisiologia , Tubo Polínico/genética , Malus/genética , Malus/crescimento & desenvolvimento , Malus/fisiologia , Tunísia , Autoincompatibilidade em Angiospermas/genética , Alelos , Pólen/genética , Pólen/fisiologia , Pólen/crescimento & desenvolvimento , Ribonucleases/genética , Ribonucleases/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia
12.
Am J Bot ; 111(4): e16309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584339

RESUMO

PREMISE: Barriers at different reproductive stages contribute to reproductive isolation. Self-incompatibility (SI) systems that prevent self-pollination could also act to control interspecific pollination and contribute to reproductive isolation, preventing hybridization. Here we evaluated whether SI contributes to reproductive isolation among four co-occurring Opuntia species that flower at similar times and may hybridize with each other. METHODS: We assessed whether Opuntia cantabrigiensis, O. robusta, O. streptacantha, and O. tomentosa, were self-compatible and formed hybrid seeds in five manipulation treatments to achieve self-pollination, intraspecific cross-pollination, open pollination (control), interspecific crosses or apomixis, then recorded flowering phenology and synchrony. RESULTS: All species flowered in the spring with a degree of synchrony, so that two pairs of species were predisposed to interspecific pollination (O. cantabrigiensis with O. robusta, O. streptacantha with O. tomentosa). All species had distinct reproductive systems: Opuntia cantabrigiensis is self-incompatible and did not produce hybrid seeds as an interspecific pollen recipient; O. robusta is a dioecious species, which formed a low proportion of hybrid seeds; O. streptacantha and O. tomentosa are self-compatible and produced hybrid seeds. CONCLUSIONS: Opuntia cantabrigiensis had a strong pollen-pistil barrier, likely due to its self-incompatibility. Opuntia robusta, the dioecious species, is an obligate outcrosser and probably partially lost its ability to prevent interspecific pollen germination. Given that the self-compatible species can set hybrid seeds, we conclude that pollen-pistil interaction and high flowering synchrony represent weak barriers; whether reproductive isolation occurs later in their life cycle (e.g., germination or seedling survival) needs to be determined.


Assuntos
Flores , Hibridização Genética , Opuntia , Polinização , Isolamento Reprodutivo , Sementes , Autoincompatibilidade em Angiospermas , Simpatria , Autoincompatibilidade em Angiospermas/fisiologia , Flores/fisiologia , Sementes/fisiologia , Opuntia/fisiologia , Reprodução , Pólen/fisiologia , Especificidade da Espécie , Apomixia/fisiologia
13.
Naturwissenschaften ; 111(3): 26, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647655

RESUMO

In specialized plant-pollinator associations, partners may exhibit adaptive traits, which favor the maintenance of the interaction. The association between Calibrachoa elegans (Solanaceae) and its oligolectic bee pollinator, Hexantheda missionica (Colletidae), is mutualistic and forms a narrowly specialized pollination system. Flowers of C. elegans are pollinated exclusively by this bee species, and the bees restrict their pollen resources to this plant species. The pollen presentation schedules of C. elegans were evaluated at the population level to test the hypothesis that H. missionica females adjust their foraging behavior to the resource offering regime of C. elegans plants. For this, the number of new flowers and anthers opened per hour (as a proxy for pollen offering) was determined, and pollen advertisement was correlated with the frequency of flower visits during the day. Preferences of female bees for flowers of different stages were also investigated, and their efficiency as pollinators was evaluated. Pollen offering by C. elegans was found to be partitioned throughout the day through scattered flower openings. Females of H. missionica indeed adjusted their foraging activity to the most profitable periods of pollen availability. The females preferred new, pollen-rich flowers over old ones and gathered pollen and nectar selectively according to flower age. Such behaviors must optimize female bee foraging efficiency on flowers. Female bees set 93% of fruit after a single visit. These findings guarantee their importance as pollinators and the persistence of the specialized plant-pollinator association.


Assuntos
Comportamento Alimentar , Flores , Polinização , Solanaceae , Animais , Abelhas/fisiologia , Flores/fisiologia , Polinização/fisiologia , Feminino , Comportamento Alimentar/fisiologia , Solanaceae/fisiologia , Pólen/fisiologia
14.
New Phytol ; 242(5): 2312-2321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561636

RESUMO

Across temperate forests, many tree species produce flowers before their leaves emerge. This flower-leaf phenological sequence, known as hysteranthy, is generally described as an adaptation for wind pollination. However, this explanation does not address why hysteranthy is also common in biotically pollinated taxa. We quantified flower-leaf sequence variation in the American plums (Prunus, subg. Prunus sect. Prunocerasus), a clade of insect-pollinated trees, using herbaria specimens and Bayesian hierarchical modeling. We tested two common, but rarely interrogated hypotheses - that hysteranthy confers aridity tolerance and/or pollinator visibility - by modeling the associations between hysteranthy and related traits. To understand how these phenology-trait associations were sensitive to taxonomic scale and flower-leaf sequence classification, we then extended these analyses to all Prunus species in North America. Our findings across two taxonomic levels support the hypotheses that hysteranthy may help temporally partition hydraulic demand to reduce water stress and increase pollinator visibility - thereby reducing selective pressure on inflorescence size. Our results provide foundational insights into the evolution of flower-leaf sequences in the genus Prunus, with implications for understanding these patterns in biotically pollinated plants in general. Our approach suggests a path to advance these hypotheses to other clades, but teasing out drivers fully will require new experiments.


Assuntos
Flores , Folhas de Planta , Polinização , Prunus , Flores/fisiologia , Polinização/fisiologia , Folhas de Planta/fisiologia , Prunus/fisiologia , Prunus/genética , Animais , Teorema de Bayes
15.
New Phytol ; 242(5): 2322-2337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634161

RESUMO

Shifts among functional pollinator groups are commonly regarded as sources of floral morphological diversity (disparity) through the formation of distinct pollination syndromes. While pollination syndromes may be used for predicting pollinators, their predictive accuracy remains debated, and they are rarely used to test whether floral disparity is indeed associated with pollinator shifts. We apply classification models trained and validated on 44 functional floral traits across 252 species with empirical pollinator observations and then use the validated models to predict pollinators for 159 species lacking observations. In addition, we employ multivariate statistics and phylogenetic comparative analyses to test whether pollinator shifts are the main source of floral disparity in Melastomataceae. We find strong support for four well-differentiated pollination syndromes ('buzz-bee', 'nectar-foraging vertebrate', 'food-body-foraging vertebrate', 'generalist'). While pollinator shifts add significantly to floral disparity, we find that the most species-rich 'buzz-bee' pollination syndrome is most disparate, indicating that high floral disparity may evolve without pollinator shifts. Also, relatively species-poor clades and geographic areas contributed substantially to total disparity. Finally, our results show that machine-learning approaches are a powerful tool for evaluating the predictive accuracy of the pollination syndrome concept as well as for predicting pollinators where observations are missing.


Assuntos
Flores , Melastomataceae , Polinização , Polinização/fisiologia , Flores/fisiologia , Flores/anatomia & histologia , Melastomataceae/fisiologia , Abelhas/fisiologia , Animais , Filogenia , Especificidade da Espécie , Modelos Biológicos
17.
J Plant Res ; 137(3): 395-409, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38436743

RESUMO

The Chilean Puya species, Puya coerulea var. violacea and P. chilensis bear blue and pale-yellow flowers, respectively, while P. alpestris considered to be their hybrid-derived species has unique turquoise flowers. In this study, the chemical basis underlying the different coloration of the three Puya species was explored. We first isolated and identified three anthocyanins: delphinidin 3,3',5'-tri-O-glucoside, delphinidin 3,3'-di-O-glucoside and delphinidin 3-O-glucoside; seven flavonols: quercetin 3-O-rutinoside-3'-O-glucoside, quercetin 3,3'-di-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-rutinoside, myricetin 3,3',5'-tri-O-glucoside, myricetin 3,3'-di-O-glucoside and laricitrin 3,5'-di-O-glucoside; and six flavones: luteolin 4'-O-glucoside, apigenin 4'-O-glucoside, tricetin 4'-O-glucoside, tricetin 3',5'-di-O-glucoside, tricetin 3'-O-glucoside and selagin 5'-O-glucoside, which is a previously undescribed flavone, from their petals. We also compared compositions of floral flavonoid and their aglycone among these species, which suggested that the turquoise species P. alpestris has an essentially intermediate composition between the blue and pale-yellow species. The vacuolar pH was relatively higher in the turquoise (pH 6.2) and pale-yellow (pH 6.2) flower species, while that of blue flower species was usual (pH 5.2). The flower color was reconstructed in vitro using isolated anthocyanin, flavonol and flavone at neutral and acidic pH, and its color was analyzed by reflectance spectra and the visual modeling of their avian pollinators. The modeling demonstrated that the higher pH of the turquoise and pale-yellow species enhances the chromatic contrast and spectral purity. The precise regulation of flower color by flavonoid composition and vacuolar pH may be adapted to the visual perception of their avian pollinator vision.


Assuntos
Antocianinas , Flores , Polinização , Flores/fisiologia , Flores/química , Antocianinas/metabolismo , Polinização/fisiologia , Animais , Pigmentação , Pigmentos Biológicos , Flavonas/química , Aves/fisiologia , Chile , Flavonóis , Flavonoides/metabolismo , Especificidade da Espécie
18.
Ecology ; 105(5): e4284, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494344

RESUMO

Resource partitioning is considered a key factor in alleviating competitive interactions, enabling coexistence among consumer species. However, most studies have focused on resource partitioning between species, ignoring the potentially critical role of intraspecific variation in resource use. We investigated floral resource partitioning across species, colonies, and individuals in a species-rich bumblebee community in the diversification center of bumblebees. We used a total of 10,598 bumblebees belonging to 13 species across 5 years in the Hengduan Mountains of southwest China. First, we evaluated the influence of a comprehensive set of floral traits, including both those related to attractiveness (flower color and shape) and rewards (pollen, sugar ratio, nectar volume, sugar concentration, and amino acid content) on resource partitioning at the species level in bumblebee-plant networks. Then, we explored intraspecific resource partitioning on the colony and individual levels. Our results suggest that bumblebee species differ substantially in their use of the available floral resources, and that this mainly depends on flower attractiveness (floral color and shape). Interestingly, we also detected floral resource partitioning at the colony level within all commonest bumblebee species evaluated. In general, floral resource partitioning between bumblebee individuals decreased with species- and individual-level variation in body size (intertegular span). These results suggest that bumblebee species may coexist via the flexibility in their preferences for specific floral traits, which filters up to support the co-occurrence of high numbers of species and individuals in this global hotspot of species richness.


Assuntos
Flores , Especificidade da Espécie , Animais , Abelhas/fisiologia , Flores/fisiologia , China , Ecossistema
19.
New Phytol ; 242(2): 786-796, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451101

RESUMO

Molecular genetic understanding of flowering time regulation is crucial for sorghum development. GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (SbGhd7) is one of the six classical loci conferring photoperiod sensitivity of sorghum flowering. However, its functions remain poorly studied. The molecular functions of SbGhd7 were characterized. The gene regulatory network controlled by SbGhd7 was constructed and validated. The biological roles of SbGhd7 and its major targets were studied. SbGhd7 overexpression (OE) completely prevented sorghum flowering. Additionally, we show that SbGhd7 is a major negative regulator of flowering, binding to the promoter motif TGAATG(A/T)(A/T/C) and repressing transcription of the major florigen FLOWERING LOCUS T 10 (SbFT10) and floral activators EARLY HEADING DATE (SbEhd1), FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (SbFKF1) and EARLY FLOWERING 3 (SbELF3). Reinforcing the direct effect of SbGhd7, SbEhd1 OE activated the promoters of three functional florigens (SbFT1, SbFT8 and SbFT10), dramatically accelerating flowering. Our studies demonstrate that SbGhd7 is a major repressor of sorghum flowering by directly and indirectly targeting genes for flowering activation. The mechanism appears ancient. Our study extends the current model of floral transition regulation in sorghum and provides a framework for a comprehensive understanding of sorghum photoperiod response.


Assuntos
Sorghum , Sorghum/metabolismo , Proteínas de Plantas/metabolismo , Flores/fisiologia , Florígeno/metabolismo , Fotoperíodo , Regulação da Expressão Gênica de Plantas
20.
Sci Rep ; 14(1): 7127, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531911

RESUMO

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Assuntos
Polinização , Rosaceae , Gravidez , Feminino , Humanos , Polinização/fisiologia , Óvulo Vegetal , Peróxido de Hidrogênio , Melhoramento Vegetal , Placenta , Reprodução/fisiologia , Flores/fisiologia , Pólen/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA