Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.564
Filtrar
1.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725023

RESUMO

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Assuntos
Espectroscopia Dielétrica , Teste de Materiais , Fios Ortodônticos , Saliva Artificial , Aço Inoxidável , Zinco , Corrosão , Aço Inoxidável/química , Zinco/química , Saliva Artificial/química , Ligas Dentárias/química , Materiais Revestidos Biocompatíveis/química , Fluoretos/química , Concentração de Íons de Hidrogênio , Humanos , Propriedades de Superfície , Potenciometria
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731865

RESUMO

This study explored the feasibility of fluoride removal from simulated semiconductor industry wastewater and its recovery as calcium fluoride using fluidized bed crystallization. The continuous reactor showed the best performance (>90% fluoride removal and >95% crystallization efficiency) at a calcium-to-fluoride ratio of 0.6 within the first 40 days of continuous operation. The resulting particle size increased by more than double during this time, along with a 36% increase in the seed bed height, indicating the deposition of CaF2 onto the silica seed. The SEM-EDX analysis showed the size and shape of the crystals formed, along with the presence of a high amount of Ca-F ions. The purity of the CaF2 crystals was determined to be 91.1% though ICP-OES analysis. Following the continuous experiment, different process improvement strategies were explored. The addition of an excess amount of calcium resulted in the removal of an additional 6% of the fluoride; however, compared to this single-stage process, a two-stage approach was found to be a better strategy to achieve a low effluent concentration of fluoride. The fluoride removal reached 94% with this two-stage approach under the optimum conditions of 4 + 1 h HRT combinations and a [Ca2+]/[F-] ratio of 0.55 and 0.7 for the two reactors, respectively. CFD simulation showed the impact of the inlet diameter, bottom-angle shape, and width-to-height ratio of the reactor on the mixing inside the reactor and the possibility of further improvement in the reactor performance by optimizing the FBR configuration.


Assuntos
Fluoreto de Cálcio , Fluoretos , Águas Residuárias , Fluoreto de Cálcio/química , Fluoretos/química , Fluoretos/isolamento & purificação , Águas Residuárias/química , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cristalização
3.
Environ Geochem Health ; 46(6): 190, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695943

RESUMO

A magnetic nanocomposite of hydroxyapatite and biomass (HAp-CM) was synthesized through a combined ultrasonic and hydrothermal method, aiming for efficient adsorption of arsenic (As) and fluoride (F-) from drinking water in natural environments. The characterization of HAp-CM was carried out using TG, FTIR, XRD, SEM, SEM-EDS, and TEM techniques, along with the determination of pHpzc charge. FTIR analysis suggested that coordinating links are the main interactions that allow the formation of the nanocomposite. XRD data indicated that the crystalline structure of the constituent materials remained unaffected during the formation of HAp-CM. SEM-EDS analysis revelated a Ca/P molar ratio of 1.78. Adsorption assays conducted in batches demonstrated that As and F- followed a PSO kinetic model. Furthermore, As adsorption fitting well to the Langmuir model, while F- adsorption could be explained by both Langmuir and Freundlich models. The maximum adsorption capacity of HAp-CM was found to be 5.0 mg g-1 for As and 10.2 mg g-1 for F-. The influence of sorbent dosage, pH, and the presence of coexisting species on adsorption capacity was explored. The pH significantly affected the nanocomposite's efficiency in removing both pollutants. The presence of various coexisting species had different effects on F- removal efficiency, while As adsorption efficiency was generally enhanced, except in the case of PO43-. The competitive adsorption between F- and As on HAp-CM was also examined. The achieved results demonstrate that HAp-CM has great potential for use in a natural environment, particularly in groundwater remediation as a preliminary treatment for water consumption.


Assuntos
Arsênio , Durapatita , Fluoretos , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Fluoretos/química , Adsorção , Nanocompostos/química , Durapatita/química , Poluentes Químicos da Água/química , Arsênio/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Biomassa , Cinética , Água Potável/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Anal Chem ; 96(19): 7697-7705, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
5.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567721

RESUMO

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Assuntos
Pareamento de Bases , Escherichia coli , Fluoretos , Conformação de Ácido Nucleico , Riboswitch , Transcrição Gênica , Riboswitch/genética , Fluoretos/química , Escherichia coli/genética , Simulação de Dinâmica Molecular , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Dobramento de RNA , Magnésio/química , Sequência de Bases , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Thermus/genética , Thermus/enzimologia
6.
Bioconjug Chem ; 35(5): 665-673, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598424

RESUMO

Enhancing the accumulation and retention of small-molecule probes in tumors is an important way to achieve accurate cancer diagnosis and therapy. Enzyme-stimulated macrocyclization of small molecules possesses great potential for enhanced positron emission tomography (PET) imaging of tumors. Herein, we reported an 18F-labeled radiotracer [18F]AlF-RSM for legumain detection in vivo. The tracer was prepared by a one-step aluminum-fluoride-restrained complexing agent ([18F]AlF-RESCA) method with high radiochemical yield (RCY) (88.35 ± 3.93%) and radiochemical purity (RCP) (>95%). More notably, the tracer can be transformed into a hydrophobic macrocyclic molecule under the joint action of legumain and reductant. Simultaneously, the tracer could target legumain-positive tumors and enhance accumulation and retention in tumors, resulting in the amplification of PET imaging signals. The enhancement of radioactivity enables PET imaging of legumain activity with high specificity. We envision that, by combining this highly efficient 18F-labeled strategy with our intramolecular macrocyclization reaction, a range of radiofluorinated tracers can be designed for tumor PET imaging and early cancer diagnosis in the future.


Assuntos
Cisteína Endopeptidases , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Flúor/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/análise , Animais , Ciclização , Camundongos , Humanos , Compostos Radiofarmacêuticos/química , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Fluoretos/química , Camundongos Nus
7.
J Dent Res ; 103(5): 526-535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581240

RESUMO

Bioglass 45S5, a silica-based glass, has pioneered a new field of biomaterials. Bioglass 45S5 promotes mineralization through calcium ion release and is widely used in the dental field, including toothpaste formulations. However, the use of Bioglass 45S5 for bone grafting is limited owing to the induction of inflammation, as well as reduced degradation and ion release. Phosphate-based glasses exhibit higher solubility and ion release than silica-based glass. Given that these glasses can be synthesized at low temperatures (approximately 1,000°C), they can easily be doped with various metal oxides to confer therapeutic properties. Herein, we fabricated zinc- and fluoride-doped phosphate-based glass (multicomponent phosphate [MP] bioactive glass) and further doped aluminum oxide into the MP glass (4% Al-MP glass) to overcome the striking solubility of phosphate-based glass. Increased amounts of zinc and fluoride ions were detected in water containing the MP glass. Doping of aluminum oxide into the MP glass suppressed the striking dissolution in water, with 4% Al-MP glass exhibiting the highest stability in water. Compared with Bioglass 45S5, 4% Al-MP glass in water had a notably reduced particle size, supporting the abundant ion release of 4% Al-MP glass. Compared with Bioglass 45S5, 4% Al-MP glass enhanced the osteogenesis of mouse bone marrow-derived mesenchymal stem cells. Mouse macrophages cultured with 4% Al-MP glass displayed enhanced induction of anti-inflammatory M2 macrophages and reduced proinflammatory M1 macrophages, indicating M2 polarization. Upon implanting 4% Al-MP glass or Bioglass 45S5 in a mouse calvarial defect, 4% Al-MP glass promoted significant bone regeneration when compared with Bioglass 45S5. Hence, we successfully fabricated zinc- and fluoride-releasing bioactive glasses with improved osteogenic and anti-inflammatory properties, which could serve as a promising biomaterial for bone regeneration.


Assuntos
Substitutos Ósseos , Cerâmica , Fluoretos , Vidro , Zinco , Fluoretos/química , Animais , Camundongos , Cerâmica/química , Substitutos Ósseos/química , Vidro/química , Osteogênese/efeitos dos fármacos , Materiais Biocompatíveis/química , Teste de Materiais
8.
Methods Enzymol ; 696: 109-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658077

RESUMO

The use of molecular dynamics (MD) simulations to study biomolecular systems has proven reliable in elucidating atomic-level details of structure and function. In this chapter, MD simulations were used to uncover new insights into two phylogenetically unrelated bacterial fluoride (F-) exporters: the CLCF F-/H+ antiporter and the Fluc F- channel. The CLCF antiporter, a member of the broader CLC family, has previously revealed unique stoichiometry, anion-coordinating residues, and the absence of an internal glutamate crucial for proton import in the CLCs. Through MD simulations enhanced with umbrella sampling, we provide insights into the energetics and mechanism of the CLCF transport process, including its selectivity for F- over HF. In contrast, the Fluc F- channel presents a novel architecture as a dual topology dimer, featuring two pores for F- export and a central non-transported sodium ion. Using computational electrophysiology, we simulate the electrochemical gradient necessary for F- export in Fluc and reveal details about the coordination and hydration of both F- and the central sodium ion. The procedures described here delineate the specifics of these advanced techniques and can also be adapted to investigate other membrane protein systems.


Assuntos
Fluoretos , Simulação de Dinâmica Molecular , Fluoretos/química , Fluoretos/metabolismo , Antiporters/química , Antiporters/metabolismo , Sódio/metabolismo , Sódio/química , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/química , Ligação Proteica
9.
Methods Enzymol ; 696: 25-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658082

RESUMO

Solid-state nuclear magnetic resonance (NMR) methods can probe the motions of membrane proteins in liposomes at the atomic level, and propel the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. High-resolution crystallography snapshots have provided a structural basis for fluoride channels. NMR is a powerful tool to build upon these snapshots and depict a dynamic picture of fluoride channels in native-like lipid bilayers. In this contribution, we discuss solid-state and solution NMR experiments to detect fluoride binding and transport by fluoride channels. Ongoing developments in membrane protein sample preparation and ssNMR methodology, particularly in using 1H, 19F and 13C-detection schemes, offer additional opportunities to study structure and functional aspects of fluoride channels.


Assuntos
Fluoretos , Fluoretos/química , Fluoretos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética/métodos
10.
Methods Enzymol ; 696: 3-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658085

RESUMO

Tight regulation of molecules moving through the cell membrane is particularly important for free-living microorganisms because of their small cell volumes and frequent changes in the chemical composition of the extracellular environment. This is true for nutrients, but even more so for toxic molecules. Traditionally, the transport of these diverse molecules in microorganisms has been studied on cell populations rather than on single cells, mainly because of technical difficulties. The goal of this chapter is to make available a detailed method to prepare yeast spheroplasts to study the movement of fluoride ions across the plasma membrane of single cells by the patch-clamp technique. In this procedure, three steps are critical to achieve high resistance (GΩ) seals between the membrane and the glass electrode: (1) appropriate removal of the cell wall by enzymatic treatment; (2) balance between the osmotic strength of sealing solutions and cell membrane turgor; and (3) meticulous morphological inspection of spheroplasts suitable for gigaseal formation. We show now that this method, originally developed for Saccharomyces cerevisiae, can also be applied to Candida albicans, an opportunistic human pathogen.


Assuntos
Candida albicans , Fluoretos , Técnicas de Patch-Clamp , Saccharomyces cerevisiae , Esferoplastos , Saccharomyces cerevisiae/metabolismo , Candida albicans/metabolismo , Candida albicans/fisiologia , Fluoretos/química , Técnicas de Patch-Clamp/métodos , Esferoplastos/metabolismo , Membrana Celular/metabolismo , Canais Iônicos/metabolismo
11.
Methods Enzymol ; 696: 43-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658088

RESUMO

Fluoride (F-) export proteins, including F- channels and F- transporters, are widespread in biology. They contribute to cellular resistance against fluoride ion, which has relevance as an ancient xenobiotic, and in more modern contexts like organofluorine biosynthesis and degradation or dental medicine. This chapter summarizes quantitative methods to measure fluoride transport across membranes using fluoride-specific lanthanum-fluoride electrodes. Electrode-based measurements can be used to measure unitary fluoride transport rates by membrane proteins that have been purified and reconstituted into lipid vesicles, or to monitor fluoride efflux into living microbial cells. Thus, fluoride electrode-based measurements yield quantitative mechanistic insight into one of the major determinants of fluoride resistance in microorganisms, fungi, yeasts, and plants.


Assuntos
Fluoretos , Lantânio , Fluoretos/química , Fluoretos/metabolismo , Lantânio/química , Lantânio/metabolismo , Eletrodos , Transporte Biológico , Eletrodos Seletivos de Íons
12.
Methods Enzymol ; 696: 85-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658090

RESUMO

Fluorinated compounds, whether naturally occurring or from anthropogenic origin, have been extensively exploited in the last century. Degradation of these compounds by physical or biochemical processes is expected to result in the release of fluoride. Several fluoride detection mechanisms have been previously described. However, most of these methods are not compatible with high- and ultrahigh-throughput screening technologies, lack the ability to real-time monitor the increase of fluoride concentration in solution, or rely on costly reagents (such as cell-free expression systems). Our group recently developed "FluorMango" as the first completely RNA-based and direct fluoride-specific fluorogenic biosensor. To do so, we merged and engineered the Mango-III light-up RNA aptamer and the fluoride-specific aptamer derived from a riboswitch, crcB. In this chapter, we explain how this RNA-based biosensor can be produced in large scale before providing examples of how it can be used to quantitatively detect (end-point measurement) or monitor in real-time fluoride release in complex biological systems by translating it into measurable fluorescent signal.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes , Fluoretos , Técnicas Biossensoriais/métodos , Fluoretos/análise , Fluoretos/química , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Riboswitch , RNA/análise
13.
BMC Oral Health ; 24(1): 504, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685036

RESUMO

OBJECTIVE: To evaluate the effect of various surface coating methods on surface roughness, micromorphological analysis and fluoride release from contemporary resin-modified and conventional glass ionomer restorations. MATERIALS & METHODS: A total of 72 permanent human molars were used in this study. The teeth were randomly assigned into 2 groups according to type of restorative materials used; resin modified glass ionomer cement and conventional glass ionomer (SDI Limited. Bayswater Victoria, Australia). Each group was subdivided into 3 subgroups according to the application of coat material; Sub-group1: without application of coat; Sub-group2: manufacturer recommended coat was applied and sub-group3: customized (vaseline) coat was applied. Each group was then subdivided into two divisions according to the time of testing; immediate (after 24 h) and delayed (after 6 months of storage). Three specimens from each sub-group were selected for surface roughness test (AFM) and another 3 specimens for the micromorphological analysis using scanning electron microscope (SEM). For the fluoride release test, a total of 60 cylindrical discs were used (n = 60). The discs were randomly split into 2 groups according to type of restorative materials used (n = 30); resin modified glass ionomer cement and conventional glass ionomer. Each group was subdivided into 3 subgroups (n = 10) according to the application of the coat material; Sub-group1: without application of coat; Sub-group2: with the manufacturer recommended coat and sub-group3: with application of customized (vaseline) coat. Data for each test was then collected, tabulated, were collected, tabulated, and tested for the normality with Shapiro-Wilk test. Based on the outcome of normality test, the significant effects of variables were assessed using appropriate statistical analysis testing methods. RESULTS: Regarding the data obtained from surface roughness test, Shapiro-Wilk test showed normal distribution pattern of all values (p > 0.05). Accordingly, Two-way ANOVA outcome showed that the 'type of restoration' or 'test time' had statistically significant effect on the AFM test (p < 0.05). Regarding Fluoride specific ion electrode test 2-way ANOVA followed by Least Significant Difference (LSD) Post-hoc test revealed significant difference among the groups (p < 0.05). It showed that SDI GIC group after 14 days of measurement had the highest mean of fluoride release (36.38 ± 3.16 PPM) and SDI RMGIC after 30 days of measurement had the second highest mean of fluoride release (43.28 ± 1.89 PPM). Finally, regarding the micromorphological analysis using SEM, a slight difference was observed between the studied groups. CONCLUSIONS: Based on the results of this study, various coatings enhance surface roughness in the initial 24 h of restoration insertion. Different coat types seems that have no influence on fluoride release and the micromorphological features of the restoration/dentin interface.


Assuntos
Restauração Dentária Permanente , Fluoretos , Cimentos de Ionômeros de Vidro , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Humanos , Cimentos de Ionômeros de Vidro/química , Fluoretos/química , Restauração Dentária Permanente/métodos , Teste de Materiais , Microscopia de Força Atômica , Dente Molar , Cariostáticos/química
14.
Talanta ; 274: 125943, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564823

RESUMO

Fenton chemistry has aroused widespread concern due to its application in the green oxidation and mineralization of organic wastes. Inorganic pyrophosphatase (PPase) catalyzes the hydrolysis of pyrophosphate ions (PPi) and provides a thermodynamic driving force for many biosynthetic reactions. Fluoride (F-) is widely applied to fight against tooth decay and reduce cavities. The electrochemical determination of PPase activity and F- was realized based on Fenton chemistry in this work. Glassy carbon electrode modified with poly (azure A) and acetylene black (GCE/PAA-AB) was fabricated. Hydroxyl radicals (∙OH) that were generated from a Cu2+-catalyzed Fenton-type reaction could oxidize PAA in the near-neutral medium, leading to a great increase of the cathodic peak current (Ipc). A coordination reaction between PPi and Cu2+ exerted a negative effect on Fenton reaction and hindered the Ipc enhancement. Cu2+-PPi complex was decomposed due to the hydrolysis of PPi induced by PPase, which caused the reappearance of the notably increased current response. F- could effectively inhibit PPase activity. As a result, the stable Cu2+-PPi complex remained and the high Ipc suffered from the decline again. The Ipc difference was used for the highly sensitive determination of PPase activity in the content range of 0.001-20 mU mL-1 with a detection of limit (LOD) at 0.6 µU mL-1 and that of F- in the concentration range of 0.01-100 µM with a LOD at 7 nM. The proposed PPase and F- sensor displayed a good selectivity, stability and reproducibility, and a high accuracy.


Assuntos
Técnicas Eletroquímicas , Fluoretos , Ferro , Fluoretos/química , Ferro/química , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Cobre/química , Eletrodos , Pirofosfatases/metabolismo , Pirofosfatases/análise , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Limite de Detecção , Ensaios Enzimáticos/métodos
15.
Environ Sci Pollut Res Int ; 31(20): 29415-29433, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575821

RESUMO

Aqueous fluoride ( F - ) pollution is a global threat to potable water security. The present research envisions the development of novel adsorbents from indigenous Limonia acidissima L. (fruit pericarp) for effective aqueous defluoridation. The adsorbents were characterized using instrumental analysis, e.g., TGA-DTA, ATR-FTIR, SEM-EDS, and XRD. The batch-mode study was performed to investigate the influence of experimental variables. The artificial neural network (ANN) model was employed to validate the adsorption. The dataset was fed to a backpropagation learning algorithm of the ANN (BPNN) architecture. The four-ten-one neural network model was considered to be functioning correctly with an absolute-relative-percentage error of 0.633 throughout the learning period. The results easily fit the linearly transformed Langmuir isotherm model with a correlation coefficient ( R 2 ) > 0.997. The maximum F - removal efficiency was found to be 80.8 mg/g at the optimum experimental condition of pH 7 and a dosage of 6 g/L at 30 min. The ANN model and experimental data provided a high degree of correlation ( R 2 = 0.9964), signifying the accuracy of the model in validating the adsorption experiments. The effects of interfering ions were studied with real F - water. The pseudo-second-order kinetic model showed a good fit to the equilibrium dataset. The performance of the adsorbent was also found satisfactory with field samples and can be considered a potential adsorbent for aqueous defluoridation.


Assuntos
Fluoretos , Redes Neurais de Computação , Poluentes Químicos da Água , Purificação da Água , Fluoretos/química , Adsorção , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Água/química
16.
Environ Sci Pollut Res Int ; 31(18): 27388-27402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512573

RESUMO

In aluminum electrolysis, the iron-rich cover material is formed on the cover material and the steel rod connecting the carbon anode. Due to the high iron content in the iron-rich cover material, it differs from traditional cover material and thus requires harmless recycling and treatment. A process was proposed and used in this study to recovery F, Al, and Fe elements from the iron-rich cover material. This process involved aluminum sulfate solution leaching for fluorine recovery and alkali-acid synergistic leaching for α-Al2O3 and Fe2O3 recovery were obtained. The optimal leaching rates for F, Na, Ca, Fe, and Si were 93.92, 96.25, 94.53, 4.48, and 28.87%, respectively. The leaching solution and leaching residue were obtained. The leaching solution was neutralized to obtain the aluminum hydroxide fluoride hydrate (AHFH, AlF1.5(OH)1.5·(H2O)0.375). AHFH was calcined to form a mixture of AlF3 and Al2O3 with a purity of 96.14%. The overall recovery rate of F in the entire process was 92.36%. Additionally, the leaching residue was sequentially leached with alkali and acid to obtain the acid leach residue α-Al2O3. The pH of the acid-leached solution was adjusted to produce a black-brown precipitate, which was converted to Fe2O3 under a high-temperature calcination, and the recovery rate of Fe in the whole process was 94.54%. Therefore, this study provides a new method for recovering F, Al, and Fe in iron-rich cover material, enabling the utilization of aluminum hazardous waste sources.


Assuntos
Óxido de Alumínio , Alumínio , Eletrólise , Compostos Férricos , Fluoretos , Compostos Férricos/química , Alumínio/química , Fluoretos/química , Óxido de Alumínio/química , Ferro/química , Compostos de Alumínio/química , Reciclagem
17.
J Dent ; 143: 104906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428715

RESUMO

OBJECTIVE: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. METHODS: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). RESULTS: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). CONCLUSIONS: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release. CLINICAL SIGNIFICANCE: Novel composites containing fluoride-doped calcium phosphates may be promising to modulate bacteria growth, promote remineralisation and reduce the risk of cytotoxicity related to monomers' elution.


Assuntos
Fluoretos , Fosfatos , Fosfatos/farmacologia , Fosfatos/química , Fluoretos/farmacologia , Fluoretos/química , Teste de Materiais , Resinas Compostas/farmacologia , Resinas Compostas/química , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Fluoreto de Cálcio , Antibacterianos/farmacologia
18.
J Phys Chem B ; 128(11): 2697-2706, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38447081

RESUMO

CLCF fluoride/proton antiporters move fluoride ions out of bacterial cells, leading to fluoride resistance in these bacteria. However, many details about their operating mechanisms remain unclear. Here, we report a combined quantum-mechanical/molecular-mechanical (QM/MM) study of a CLCF homologue from Enterococci casseliflavus (Eca), in accord with the previously proposed windmill mechanism. Our multiscale modeling sheds light on two critical steps in the transport cycle: (i) the external gating residue E118 pushing a fluoride in the external binding site into the extracellular vestibule and (ii) an incoming fluoride reconquering the external binding site by forcing out E118. Both steps feature competitions for the external binding site between the negatively charged carboxylate of E118 and the fluoride. Remarkably, the displaced E118 by fluoride accepts a proton from the nearby R117, initiating the next transport cycle. We also demonstrate the importance of accurate quantum descriptions of fluoride solvation. Our results provide clues to the mysterious E318 residue near the central binding site, suggesting that the transport activities are unlikely to be disrupted by the glutamate interacting with a well-solvated fluoride at the central binding site. This differs significantly from the structurally similar CLC chloride/proton antiporters, where a fluoride trapped deep in the hydrophobic pore causes the transporter to be locked down. A free-energy barrier of 10-15 kcal/mol was estimated via umbrella sampling for a fluoride ion traveling through the pore to repopulate the external binding site.


Assuntos
Antiporters , Prótons , Antiporters/química , Antiporters/metabolismo , Fluoretos/química , Modelos Moleculares , Proteínas de Membrana Transportadoras/metabolismo , Cloretos/química , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Transporte de Íons
19.
Analyst ; 149(9): 2728-2737, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38525963

RESUMO

This work presents the synthesis and characterization of an innovative F,S-doped carbon dots/CuONPs hybrid nanostructure obtained by a direct mixture between F,S-doped carbon dots obtained electrochemically and copper nitrate alcoholic solution. The hybrid nanostructures synthesized were characterized by absorption spectroscopy in the Ultraviolet region (UV-vis), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and different electrochemical techniques. The fluoride and sulfur-doped carbon dots/CuONPs nanostructures were used to prepare a non-enzymatic biosensor on a printed carbon electrode, exhibiting excellent electrocatalytic activity for the simultaneous determination of NADH, dopamine, and uric acid in the presence of ascorbic acid with a detection limit of 20, 80, and 400 nmol L-1, respectively. The non-enzymatic biosensors were also used to determine NADH, dopamine, and uric acid in plasma, and they did not suffer significant interference from each other.


Assuntos
Técnicas Biossensoriais , Carbono , Cobre , Dopamina , Técnicas Eletroquímicas , Limite de Detecção , NAD , Ácido Úrico , Ácido Úrico/sangue , Ácido Úrico/química , Técnicas Biossensoriais/métodos , Dopamina/sangue , Dopamina/análise , Carbono/química , NAD/química , NAD/sangue , Cobre/química , Técnicas Eletroquímicas/métodos , Humanos , Enxofre/química , Fluoretos/química , Pontos Quânticos/química , Nanoestruturas/química , Eletrodos
20.
Methods ; 225: 13-19, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38438060

RESUMO

A new molecular structure 1 has been developed on naphthalimide motif. The amine and triazole binding groups have been employed at the 4-position of naphthalimide to explore the sensing behavior of molecule 1. Single crystal x-ray diffraction and other spectroscopic techniques confirm the identity of 1. Compound 1 exhibits high selectivity and sensitivity for Cu2+ ions in CH3CN. The binding of Cu2+ shows âˆ¼ 70-fold enhancement in emission at 520 nm. The binding follows 1:1 interaction and the detection limit is determined to be 6.49 × 10-7 M. The amine-triazole binding site in 1 also corroborates the detection of F- through a colour change in CH3CN. Initially H-bonding and then deprotonation of amine -NH- in the presence of F- are the sequential steps involved in F- recognition with a detection limit of 4.13 × 10-7 M. Compound 1 is also sensible to CN- like F- ion and they are distinguished by Fe3+ ion. Cu2+-ensemble of 1 fluorimetrically recognizes F- among the tested anions and vice-versa. The collaborative effect of amine and triazole motifs in the binding of both Cu2+ and F-/CN- has been explained by DFT calculation.


Assuntos
Colorimetria , Cobre , Naftalimidas , Espectrometria de Fluorescência , Naftalimidas/química , Cobre/química , Cobre/análise , Colorimetria/métodos , Espectrometria de Fluorescência/métodos , Cianetos/análise , Cianetos/química , Limite de Detecção , Fluoretos/análise , Fluoretos/química , Corantes Fluorescentes/química , Cristalografia por Raios X/métodos , Ligação de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA