Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 812
Filtrar
1.
Drug Deliv ; 31(1): 2372269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38956885

RESUMO

Acne is a common chronic inflammatory disorder of the sebaceous gland in the hair follicle. Commonly used external medications cause skin irritation, and the transdermal capacity is weak, making it difficult to penetrate the cuticle skin barrier. Hair follicles can aid in the breakdown of this barrier. As nanomaterials progress, polymer-based nanocarriers are routinely used for hair follicle drug delivery to treat acne and other skin issues. Based on the physiological and anatomical characteristics of hair follicles, this paper discusses factors affecting hair follicle delivery by polymer nanocarriers, summarizes the common combination technology to improve the targeting of hair follicles by carriers, and finally reviews the most recent research progress of different polymer nanodrug-delivery systems for the treatment of acne by targeting hair follicles.


Assuntos
Acne Vulgar , Portadores de Fármacos , Folículo Piloso , Polímeros , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Acne Vulgar/tratamento farmacológico , Humanos , Polímeros/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas , Administração Cutânea , Animais , Sistemas de Liberação de Fármacos por Nanopartículas/química
2.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000592

RESUMO

Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.


Assuntos
Folículo Piloso , Hidroxiprostaglandina Desidrogenases , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Derme/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Células Cultivadas , Via de Sinalização Wnt/efeitos dos fármacos , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Cicatrização/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia
3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928239

RESUMO

Aging (senescence) is an unavoidable biological process that results in visible manifestations in all cutaneous tissues, including scalp skin and hair follicles. Previously, we evaluated the molecular function of adenosine in promoting alopecia treatment in vitro. To elucidate the differences in the molecular mechanisms between minoxidil (MNX) and adenosine, gene expression changes in dermal papilla cells were examined. The androgen receptor (AR) pathway was identified as a candidate target of adenosine for hair growth, and the anti-androgenic activity of adenosine was examined in vitro. In addition, ex vivo examination of human hair follicle organ cultures revealed that adenosine potently elongated the anagen stage. According to the severity of alopecia, the ratio of the two peaks (terminal hair area/vellus hair area) decreased continuously. We further investigated the adenosine hair growth promoting effect in vivo to examine the hair thickness growth effects of topical 5% MNX and the adenosine complex (0.75% adenosine, 1% penthenol, and 2% niacinamide; APN) in vivo. After 4 months of administration, both the MNX and APN group showed significant increases in hair density (MNX + 5.01% (p < 0.01), APN + 6.20% (p < 0.001)) and thickness (MNX + 5.14% (p < 0.001), APN + 10.32% (p < 0.001)). The inhibition of AR signaling via adenosine could have contributed to hair thickness growth. We suggest that the anti-androgenic effect of adenosine, along with the evaluation of hair thickness distribution, could help us to understand hair physiology and to investigate new approaches for drug development.


Assuntos
Adenosina , Alopecia , Folículo Piloso , Cabelo , Minoxidil , Receptores Androgênicos , Transdução de Sinais , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Alopecia/patologia , Humanos , Masculino , Receptores Androgênicos/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Minoxidil/farmacologia , Feminino , Animais , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo
4.
Int J Nanomedicine ; 19: 5173-5191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855733

RESUMO

Purpose: Acne vulgaris is a chronic inflammatory skin disorder centered on hair follicles, making hair follicle-targeted delivery of anti-acne drugs a promising option for acne treatment. However, current researches have only focused on the delivering to healthy hair follicles, which are intrinsically different from pathologically clogged hair follicles in acne vulgaris. Patients and Methods: Azelaic acid (AZA) micro/nanocrystals with different particle sizes were prepared by wet media milling or high-pressure homogenization. An experiment on AZA micro/nanocrystals delivering to healthy hair follicles was carried out, with and without the use of physical enhancement techniques. More importantly, it innovatively designed an experiment, which could reveal the ability of AZA micro/nanocrystals to penetrate the constructed clogged hair follicles. The anti-inflammatory and antibacterial effects of AZA micro/nanocrystals were evaluated in vitro using a RAW264.7 cell model stimulated by lipopolysaccharide and a Cutibacterium acnes model. Finally, both the anti-acne effects and skin safety of AZA micro/nanocrystals and commercial products were compared in vivo. Results: In comparison to commercial products, 200 nm and 500 nm AZA micro/nanocrystals exhibited an increased capacity to target hair follicles. In the combination group of AZA micro/nanocrystals and ultrasound, the ability to penetrate hair follicles was further remarkably enhanced (ER value up to 9.6). However, toward the clogged hair follicles, AZA micro/nanocrystals cannot easily penetrate into by themselves. Only with the help of 1% salicylic acid, AZA micro/nanocrystals had a great potential to penetrate clogged hair follicle. It was also shown that AZA micro/nanocrystals had anti-inflammatory and antibacterial effects by inhibiting pro-inflammatory factors and Cutibacterium acnes. Compared with commercial products, the combination of AZA micro/nanocrystals and ultrasound exhibited an obvious advantage in both skin safety and in vivo anti-acne therapeutic efficacy. Conclusion: Hair follicle-targeted delivery of AZA micro/nanocrystals provided a satisfactory alternative in promoting the treatment of acne vulgaris.


Assuntos
Acne Vulgar , Antibacterianos , Ácidos Dicarboxílicos , Folículo Piloso , Nanopartículas , Acne Vulgar/tratamento farmacológico , Animais , Camundongos , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Folículo Piloso/efeitos dos fármacos , Células RAW 264.7 , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Tamanho da Partícula , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Pele/efeitos dos fármacos , Pele/metabolismo
5.
Eur J Pharm Biopharm ; 200: 114346, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823541

RESUMO

Tazarotene is a widely prescribed topical retinoid for acne vulgaris and plaque psoriasis and is associated with skin irritation, dryness, flaking, and photosensitivity. In vitro permeation of tazarotene was studied across the dermatomed human and full-thickness porcine skin. The conversion of tazarotene to the active form tazarotenic acid was studied in various skin models. Tazarotene-loaded PLGA nanoparticles were prepared using the nanoprecipitation technique to target skin and hair follicles effectively. The effect of formulation and processing variables on nanoparticle properties, such as particle size and drug loading, was investigated. The optimized nanoparticle batches with particle size <500 µm were characterized further for FT-IR analysis, which indicated no interactions between tazarotene and PLGA. Scanning electron microscopy analysis showed uniform, spherical, and non-agglomerated nanoparticles. In vitro release study using a dialysis membrane indicated a sustained release of 40-70 % for different batches over 36 h, following a diffusion-based release mechanism based on the Higuchi model. In vitro permeation testing (IVPT) in full-thickness porcine skin showed significantly enhanced follicular and skin delivery from nanoparticles compared to solution. The presence of tazarotenic acid in the skin from tazarotene nanoparticles indicated the effectiveness of nanoparticle formulations in retaining bioconversion ability and targeting follicular delivery.


Assuntos
Nanopartículas , Ácidos Nicotínicos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Absorção Cutânea , Pele , Ácidos Nicotínicos/administração & dosagem , Ácidos Nicotínicos/química , Ácidos Nicotínicos/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Suínos , Nanopartículas/química , Humanos , Absorção Cutânea/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos dos fármacos , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/química , Portadores de Fármacos/química , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Liberação Controlada de Fármacos , Administração Cutânea , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Acne Vulgar/tratamento farmacológico , Composição de Medicamentos/métodos , Dermatopatias/tratamento farmacológico
7.
J Ethnopharmacol ; 333: 118405, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38844249

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ecliptea herba, a traditional Chinese herbal medicine for hair loss, was first recorded in the Tang Dynasty's 'Qian Jin Yue Ling', of which the active ingredients and mechanisms of action in the treatment of chemotherapy-induced hair loss remain poorly investigated. AIM OF THE STUDY: To investigate the effects of the petroleum ether extract of Eclipta (PEE) on alopecia and follicle damage and elucidate its potential therapeutic mechanisms using the integration of network pharmacology, bioinformatics, and experimental validation. MATERIALS AND METHODS: UPLC-MS was used to analyse the chemical composition of PEE. A network pharmacology approach was employed to establish the 'components-targets-pathways' network of PEE to explore potential therapeutic pathways and targets. Molecular docking was used for validation, and the mechanism of PEE in treating chemotherapy-induced alopecia (CIA) was elucidated using in vitro and in vivo on CIA models. RESULTS: UPLC-MS analysis of PEE revealed 185 components, while network pharmacology and molecular docking analyses revealed potential active compounds and their target molecules, suggesting the involvement of core genes, such as TP53, ESR1, AKT1, IL6, TNF, and EGFR. The key components included wedelolactone, dimethyl-wedelolactone, luteoloside, linarin, and hispidulin. In vivo, PEE promoted hair growth, restored the number of hair follicles, and reduced follicle apoptosis. Conversely, in vitro, PEE enhanced cell viability, reduced apoptosis, and protected HaCaT cells from damage induced by 4-hydroperoxycyclophosphamide (4-HC). CONCLUSIONS: PEE alleviated hair follicle damage in CIA mice by inhibiting the P53/Fas pathway, which may be associated with inhibiting hair follicle cell apoptosis. This study provides a novel therapeutic strategy for treating cyclophosphamide-induced hair loss.


Assuntos
Alopecia , Eclipta , Simulação de Acoplamento Molecular , Farmacologia em Rede , Proteína Supressora de Tumor p53 , Alopecia/induzido quimicamente , Alopecia/tratamento farmacológico , Animais , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Eclipta/química , Camundongos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Células HaCaT , Ciclofosfamida/toxicidade , Alcanos
8.
In Vivo ; 38(4): 1767-1774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936924

RESUMO

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Assuntos
Autofagia , Produtos Biológicos , Folículo Piloso , Extratos Vegetais , Células-Tronco , Autofagia/efeitos dos fármacos , Humanos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/citologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Diferenciação Celular/efeitos dos fármacos
9.
J Cell Mol Med ; 28(12): e18486, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923380

RESUMO

Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.


Assuntos
Antioxidantes , Folículo Piloso , Estresse Oxidativo , Transdução de Sinais , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Cabelo/efeitos dos fármacos , Alopecia/metabolismo , Alopecia/tratamento farmacológico , Produtos Biológicos/farmacologia
10.
Molecules ; 29(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38792149

RESUMO

This narrative review aims to examine the therapeutic potential and mechanism of action of plant extracts in preventing and treating alopecia (baldness). We searched and selected research papers on plant extracts related to hair loss, hair growth, or hair regrowth, and comprehensively compared the therapeutic efficacies, phytochemical components, and modulatory targets of plant extracts. These studies showed that various plant extracts increased the survival and proliferation of dermal papilla cells in vitro, enhanced cell proliferation and hair growth in hair follicles ex vivo, and promoted hair growth or regrowth in animal models in vivo. The hair growth-promoting efficacy of several plant extracts was verified in clinical trials. Some phenolic compounds, terpenes and terpenoids, sulfur-containing compounds, and fatty acids were identified as active compounds contained in plant extracts. The pharmacological effects of plant extracts and their active compounds were associated with the promotion of cell survival, cell proliferation, or cell cycle progression, and the upregulation of several growth factors, such as IGF-1, VEGF, HGF, and KGF (FGF-7), leading to the induction and extension of the anagen phase in the hair cycle. Those effects were also associated with the alleviation of oxidative stress, inflammatory response, cellular senescence, or apoptosis, and the downregulation of male hormones and their receptors, preventing the entry into the telogen phase in the hair cycle. Several active plant extracts and phytochemicals stimulated the signaling pathways mediated by protein kinase B (PKB, also called AKT), extracellular signal-regulated kinases (ERK), Wingless and Int-1 (WNT), or sonic hedgehog (SHH), while suppressing other cell signaling pathways mediated by transforming growth factor (TGF)-ß or bone morphogenetic protein (BMP). Thus, well-selected plant extracts and their active compounds can have beneficial effects on hair health. It is proposed that the discovery of phytochemicals targeting the aforementioned cellular events and cell signaling pathways will facilitate the development of new targeted therapies for alopecia.


Assuntos
Alopecia , Cabelo , Compostos Fitoquímicos , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Alopecia/tratamento farmacológico , Alopecia/prevenção & controle , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Animais , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos
11.
Drug Discov Today ; 29(6): 104013, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705510

RESUMO

Androgenetic alopecia (AGA) significantly impacts the self-confidence and mental well-being of people. Recent research has revealed that thyroid receptor ß (TRß) agonists can activate hair follicles and effectively stimulate hair growth. This review aims to comprehensively elucidate the specific mechanism of action of TRß in treating AGA from various perspectives, highlighting its potential as a drug target for combating AGA. Moreover, this review provides a thorough summary of the research advances in TRß agonist candidates with anti-AGA efficacy and outlines the structure-activity relationships (SARs) of TRß agonists. We hope that this review will provide practical information for the development of effective anti-alopecia drugs.


Assuntos
Alopecia , Receptores beta dos Hormônios Tireóideos , Humanos , Alopecia/tratamento farmacológico , Animais , Receptores beta dos Hormônios Tireóideos/agonistas , Receptores beta dos Hormônios Tireóideos/metabolismo , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos/métodos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Terapia de Alvo Molecular
12.
Nano Lett ; 24(20): 6174-6182, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739468

RESUMO

Accumulated reactive oxygen species (ROS) and their resultant vascular dysfunction in androgenic alopecia (AGA) hinder hair follicle survival and cause permanent hair loss. However, safe and effective strategies to rescue hair follicle viability to enhance AGA therapeutic efficiency remain challenging. Herein, we fabricated a quercetin-encapsulated (Que) and polydopamine-integrated (PDA@QLipo) nanosystem that can reshape the perifollicular microenvironment to initial hair follicle regeneration for AGA treatment. Both the ROS scavenging and angiogenesis promotion abilities of PDA@QLipo were demonstrated. In vivo assays revealed that PDA@QLipo administrated with roller-microneedles successfully rejuvenated the "poor" perifollicular microenvironment, thereby promoting cell proliferation, accelerating hair follicle renewal, and facilitating hair follicle recovery. Moreover, PDA@QLipo achieved a higher hair regeneration coverage of 92.5% in the AGA mouse model than minoxidil (87.8%), even when dosed less frequently. The nanosystem creates a regenerative microenvironment by scavenging ROS and augmenting neovascularity for hair regrowth, presenting a promising approach for AGA clinical treatment.


Assuntos
Alopecia , Folículo Piloso , Indóis , Polímeros , Quercetina , Espécies Reativas de Oxigênio , Alopecia/tratamento farmacológico , Alopecia/patologia , Quercetina/farmacologia , Quercetina/administração & dosagem , Quercetina/química , Animais , Indóis/química , Indóis/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Polímeros/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Humanos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Modelos Animais de Doenças , Masculino
13.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775976

RESUMO

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Assuntos
Alopecia , Folículo Piloso , Cabelo , Fatores de Transcrição , Animais , Masculino , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Humanos , Alopecia/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/administração & dosagem , Camundongos Nus , Camundongos Pelados , Modelos Animais de Doenças , Glucocorticoides/farmacologia
14.
FEBS Open Bio ; 14(6): 955-967, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711215

RESUMO

Patterned hair loss (PHL) or androgenetic alopecia is a condition affecting about 50% of people worldwide. Several pharmacological medications have been developed over the years, but few studies have investigated their effectiveness. Therefore, new, safer and more effective strategies are required. Recent investigations showed that Annurca apple extract application could induce keratin production and promote hair growth thanks to the high amount of procyanidin B2 contained in. Hence, this study aimed to investigate the role of an Annurca apple extract in preventing PHL by testing it on human follicle dermal papilla cells (HFDPCs) for the first time. Treatment of HFDPCs with Annurca apple extract counteracted intracellular reactive oxygen species accumulation by increasing the activity of antioxidant enzymes such as superoxide dismutase 2 and catalase. Furthermore, treatment with Annurca apple extract increased ß-catenin and fibroblast growth factor 2, which are involved in hair growth stimulation. These data suggest that Annurca apple extract may be a potential therapeutically useful nutraceutical product for preventing or treating hair loss by reducing oxidative stress and inducing the expression of hair growth-related factors.


Assuntos
Alopecia , Malus , Estresse Oxidativo , Extratos Vegetais , Espécies Reativas de Oxigênio , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Humanos , Malus/química , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Proantocianidinas/farmacologia , Catequina/farmacologia , Superóxido Dismutase/metabolismo , Células Cultivadas , Biflavonoides/farmacologia , Catalase/metabolismo
15.
Arch Dermatol Res ; 316(6): 290, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809465

RESUMO

Enz_MoriL is a naturally occurring substance extracted from the leaves of Morus alba L. through enzymatic conversion. Historically, M. alba L. has been recognized for its potential to promote hair regrowth. However, the precise mechanism by which Enz_MoriL affects human hair follicle dermal papilla cells (hDPCs) remains unclear. The aim of this study was to investigate the molecular basis of Enz_MoriL's effect on hair growth in hDPCs. Interferon-gamma (IFN-γ) was used to examine the effects of Enz_MoriL on hDPCs during the anagen and catagen phases, as well as under conditions mimicking alopecia areata (AA). Enz_MoriL demonstrated the ability to promote cell proliferation in both anagen and catagen stages. It increased the levels of active ß-catenin in the catagen stage induced by IFN-γ, leading to its nuclear translocation. This effect was achieved by increasing the phosphorylation of GSK3ß and decreasing the expression of DKK-1. This stimulation induced proliferation in hDPCs and upregulated the expression of the Wnt family members 3a, 5a, and 7a at the transcript level. Additionally, Enz_MoriL suppressed JAK1 and STAT3 phosphorylation, contrasting with IFN-γ, which induced them in the catagen stage. In conclusion, Enz_MoriL directly induced signals for anagen re-entry into hDPCs by affecting the Wnt/ß-catenin pathway and enhancing the production of growth factors. Furthermore, Enz_MoriL attenuated and reversed the interferon-induced AA-like environment by blocking the JAK-STAT pathway in hDPCs.


Assuntos
Alopecia em Áreas , Proliferação de Células , Folículo Piloso , Interferon gama , Via de Sinalização Wnt , beta Catenina , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Proliferação de Células/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Interferon gama/metabolismo , beta Catenina/metabolismo , Alopecia em Áreas/metabolismo , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/patologia , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Janus Quinases/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proteína Wnt-5a/metabolismo , Janus Quinase 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo
17.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790256

RESUMO

Much research has been conducted to determine how hair regeneration is regulated, as this could provide therapeutic, cosmetic, and even psychological interventions for hair loss. The current study focused on the hair growth effect and effective utilization of fatty oil obtained from Bryde's whales through a high-throughput DNA microarray approach in conjunction with immunohistochemical observations. The research also examined the mechanisms and factors involved in hair growth. In an experiment using female C57BL/6J mice, the vehicle control group (VC: propylene glycol: ethanol: water), the positive control group (MXD: 3% minoxidil), and the experimental group (WO: 20% whale oil) were topically applied to the dorsal skin of the mouse. The results showed that 3% MXD and 20% WO were more effective than VC in promoting hair growth, especially 20% WO. Furthermore, in hematoxylin and eosin-stained dorsal skin tissue, an increase in the number of hair follicles and subcutaneous tissue thickness was observed with 20% WO. Whole-genome transcriptome analysis also confirmed increases for 20% WO in filaggrin (Flg), a gene related to skin barrier function; fibroblast growth factor 21 (Fgf21), which is involved in hair follicle development; and cysteine-rich secretory protein 1 (Crisp1), a candidate gene for alopecia areata. Furthermore, the results of KEGG pathway analysis indicated that 20% WO may have lower stress and inflammatory responses than 3% MXD. Therefore, WO is expected to be a safe hair growth agent.


Assuntos
Cabelo , Óleos , Animais , Feminino , Camundongos , Biologia Computacional/métodos , Proteínas Filagrinas , Perfilação da Expressão Gênica/métodos , Cabelo/crescimento & desenvolvimento , Cabelo/efeitos dos fármacos , Cabelo/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Minoxidil/administração & dosagem , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Baleias , Óleos/administração & dosagem
18.
Environ Int ; 186: 108638, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593689

RESUMO

Microplastics (MPs) are pervasive pollutants in the natural environment and contribute to increased levels of illness in both animals and humans. However, thespecific impacts of MPs on skin damage and alopeciaare not yet well understood. In this study, we have examined the effects of two types of polystyrene MPs (pristine and aged) on skin and hair follicle damage in mice. UV irradiation changed the chemical and physical properties of the aged MPs, including functional groups, surface roughness, and contact angles. In both in vivo and in vitro experiments, skin and cell injuries related to oxidative stress, apoptosis, tight junctions (TJs), alopecia, mitochondrial dysfunction, and other damages were observed. Mechanistically, MPs and aged MPs can induce TJs damage via the oxidative stress pathway and inhibition of antioxidant-related proteins, and this can lead to alopecia. The regulation of cell apoptosis was also observed, and this is involved in the ROS-mediated mitochondrial signaling pathway. Importantly, aged MPs showed exacerbated toxicity, which may be due to their elevated surface irregularities and altered chemical compositions. Collectively, this study suggests a potential therapeutic approach for alopecia and hair follicle damage caused by MPs pollution.


Assuntos
Alopecia , Apoptose , Microplásticos , Estresse Oxidativo , Poliestirenos , Pele , Junções Íntimas , Alopecia/induzido quimicamente , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Animais , Camundongos , Poliestirenos/toxicidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Folículo Piloso/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
19.
Biomed Pharmacother ; 174: 116503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565060

RESUMO

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Assuntos
Alopecia , Chifres de Veado , Proteína Morfogenética Óssea 4 , Folículo Piloso , Cabelo , Animais , Chifres de Veado/química , Alopecia/tratamento farmacológico , Alopecia/patologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Camundongos , Masculino , Proteína Morfogenética Óssea 4/metabolismo , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Regeneração/efeitos dos fármacos , Cervos , Proteína Smad5/metabolismo
20.
In Vivo ; 38(3): 1199-1202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688645

RESUMO

BACKGROUND/AIM: Hair-follicle keratinocytes contain high levels of cysteine, which is derived from methionine, rapidly proliferate, and form the hair shaft. The high proliferation rate of hair-follicle keratinocytes resembles that of aggressive cancer cells. In the present study, we determined the effect of a methionine-deficient diet on hair loss (alopecia) in mice with or without homocysteine supplementation. MATERIALS AND METHODS: Mice were fed a normal rodent diet (2020X, ENVIGO) (Group 1); a methionine-choline-deficient diet (TD.90262, ENVIGO) (Group 2); a methionine-choline-deficient diet with a 10 mg/kg/day supply of homocysteine administered by intra-peritoneal (i.p.) injection for 2 weeks (Group 3). In Group 2, mice were fed a methionine-choline-deficient diet for an additional 2 weeks but with 10 mg/kg/day of i.p. l-homocysteine and the mice were observed for two additional weeks. Subsequently, the mice were fed a standard diet that included methionine. Hair loss was monitored by photography. RESULTS: After 14 days, hair loss was observed in Group 2 mice on a methionine-restricted diet but not in Group 3 mice on the methionine-restricted diet which received i.p. homocysteine. In Group 2, at 2 weeks after methionine restriction, hair loss was not rescued by homocysteine supplementation. However, after restoration of methionine in the diet, hair growth resumed. Thus, after 2 weeks of methionine restriction, only methionine restored hair loss, not homocysteine. CONCLUSION: Hair maintenance requires methionine in the diet. Future experiments will determine the effects of methionine restriction on hair-follicle stem cells.


Assuntos
Folículo Piloso , Cabelo , Homocisteína , Metionina , Animais , Metionina/deficiência , Metionina/metabolismo , Metionina/administração & dosagem , Camundongos , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Homocisteína/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Camundongos Endogâmicos C57BL , Alopecia/metabolismo , Alopecia/etiologia , Alopecia/patologia , Modelos Animais de Doenças , Dieta , Queratinócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA