Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Extremophiles ; 28(3): 32, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023751

RESUMO

Hyperthermophilic archaean Methanocaldococcus sp. FS406-22 (hereafter FS406) is a hydrogenotrophic methanogen isolated from a deep-sea hydrothermal vent. To better understand the energetic requirements of hydrogen oxidation under extreme conditions, the thermodynamic characterization of FS406 incubations is necessary and notably underexplored. In this work, we quantified the bioenergetics of FS406 incubations at a range of temperatures (65, 76, and 85 â„ƒ) and hydrogen concentrations (1.1, 1.4, and 2.1 mm). The biomass yields (C-mol of biomass per mol of H2 consumed) ranged from 0.02 to 0.19. Growth rates ranged from 0.4 to 1.5 h-1. Gibbs energies of incubation based on macrochemical equations of cell growth ranged from - 198 kJ/C-mol to - 1840 kJ/C-mol. Enthalpies of incubation determined from calorimetric measurements ranged from - 4150 kJ/C-mol to - 36333 kJ/C-mol. FS406 growth rates were most comparable to hyperthermophilic methanogen Methanocaldococcus jannaschii. Maintenance energy calculations from the thermodynamic parameters of FS406 and previously determined heterotrophic methanogen data revealed that temperature is a primary determinant rather than an electron donor. This work provides new insights into the thermodynamic underpinnings of a hyperthermophilic hydrothermal vent methanogen and helps to better constrain the energetic requirements of life in extreme environments.


Assuntos
Metabolismo Energético , Methanocaldococcus , Methanocaldococcus/metabolismo , Termodinâmica , Hidrogênio/metabolismo , Fontes Hidrotermais/microbiologia
2.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954064

RESUMO

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Assuntos
Hidrogênio , Metagenoma , Metano , Microbiologia do Solo , Enxofre , Metano/metabolismo , Hidrogênio/metabolismo , Itália , Enxofre/metabolismo , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Ilhas , Filogenia
3.
Antonie Van Leeuwenhoek ; 117(1): 93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954062

RESUMO

A Gram-negative, rod-shaped, non-motile, aerobic bacterium, designated as strain TK19101T, was isolated from the intermediate seawater of yellow vent in the shallow-sea hydrothermal system located near Kueishantao Island. The strain was found to grow at 10-40 °C (optimum, 35 °C), at pH 6.0-8.0 (optimum, 7.0), and in 0-5% (w/v) NaCl (optimum, 1%). Strain TK19101T was catalase-positive and oxidase-positive. The predominant fatty acids (> 10%) in strain TK19101T cells were C16:0, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c), and C18:0. The predominant isoprenoid quinone of strain TK19101T was ubiquinone-10. The polar lipids of strain TK19101T comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phospholipid, and unknown polar lipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TK19101T belonged to the genus Mesobacterium. Strain TK19101T exhibited highest 16S rRNA gene sequence similarity value to Mesobacterium pallidum MCCC M24557T (97.48%). The estimated average nucleotide identity and digital DNA-DNA hybridization values between strain TK19101T and the closest related species Mesobacterium pallidum MCCC M24557T were 74.88% and 20.30%, respectively. The DNA G + C content was 63.49 mol%. On the basis of the analysis of 16S rRNA gene sequences, genotypic and phylogenetic data, strain TK19101T has a unique phylogenetic status and represents a novel species of genus Mesobacterium, for which the name Mesobacterium hydrothermale sp. nov. is proposed. The type strain is TK19101T (= MCCC 1K08936T = KCTC 8354T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Fontes Hidrotermais , Filogenia , RNA Ribossômico 16S , Água do Mar , RNA Ribossômico 16S/genética , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Ilhas , Fosfolipídeos/análise , Análise de Sequência de DNA , China
4.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39007295

RESUMO

This study delves into the genomic features of 10 Vibrio strains collected from deep-sea hydrothermal vents in the Pacific Ocean, providing insights into their evolutionary history and ecological adaptations. Through sequencing and pan-genome analysis involving 141 Vibrio species, we found that deep-sea strains exhibit larger genomes with unique gene distributions, suggesting adaptation to the vent environment. The phylogenomic reconstruction of the investigated isolates revealed the presence of 2 main clades: The first is monophyletic, consisting exclusively of Vibrio alginolyticus, while the second forms a monophyletic clade comprising both Vibrio antiquarius and Vibrio diabolicus species, which were previously isolated from deep-sea vents. All strains carry virulence and antibiotic resistance genes related to those found in human pathogenic Vibrio species which may play a wider ecological role other than host infection in these environments. In addition, functional genomic analysis identified genes potentially related to deep-sea survival and stress response, alongside candidate genes encoding for novel antimicrobial agents. Ultimately, the pan-genome we generated represents a valuable resource for future studies investigating the taxonomy, evolution, and ecology of Vibrio species.


Assuntos
Genoma Bacteriano , Fontes Hidrotermais , Filogenia , Vibrio , Vibrio/genética , Fontes Hidrotermais/microbiologia , Evolução Molecular , Adaptação Fisiológica/genética , Oceano Pacífico
5.
Microbes Environ ; 39(5)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38839370

RESUMO

Microbiologically influenced corrosion refers to the corrosion of metal materials caused or promoted by microorganisms. Although some novel iron-corrosive microorganisms have been discovered in various manmade and natural freshwater and seawater environments, microbiologically influenced corrosion in the deep sea has not been investigated in detail. In the present study, we collected slime-like precipitates composed of corrosion products and microbial communities from a geochemical reactor set on an artificial hydrothermal vent for 14.5 months, and conducted culture-dependent and -independent microbial community ana-lyses with corrosive activity measurements. After enrichment cultivation at 37, 50, and 70°C with zero-valent iron particles, some of the microbial consortia showed accelerated iron dissolution, which was approximately 10- to 50-fold higher than that of the abiotic control. In a comparative ana-lysis based on the corrosion acceleration ratio and amplicon sequencing of the 16S rRNA gene, three types of corrosion were estimated: the methanogen-induced type, methanogen-sulfate-reducing bacteria cooperative type, and sulfate-reducing Firmicutes-induced type. The methanogen-induced and methanogen-sulfate-reducing bacteria cooperative types were observed at 50°C, while the sulfate-reducing Firmicutes-induced type was noted at 37°C. The present results suggest the microbial components associated with microbiologically influenced corrosion in deep-sea hydrothermal systems, providing important insights for the development of future deep-sea resources with metal infrastructures.


Assuntos
Bactérias , Fontes Hidrotermais , Ferro , Consórcios Microbianos , RNA Ribossômico 16S , Água do Mar , Corrosão , Ferro/metabolismo , Ferro/química , Água do Mar/microbiologia , Água do Mar/química , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Fontes Hidrotermais/microbiologia , Filogenia
6.
Nat Microbiol ; 9(6): 1526-1539, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839975

RESUMO

Most autotrophic organisms possess a single carbon fixation pathway. The chemoautotrophic symbionts of the hydrothermal vent tubeworm Riftia pachyptila, however, possess two functional pathways: the Calvin-Benson-Bassham (CBB) and the reductive tricarboxylic acid (rTCA) cycles. How these two pathways are coordinated is unknown. Here we measured net carbon fixation rates, transcriptional/metabolic responses and transcriptional co-expression patterns of Riftia pachyptila endosymbionts by incubating tubeworms collected from the East Pacific Rise at environmental pressures, temperature and geochemistry. Results showed that rTCA and CBB transcriptional patterns varied in response to different geochemical regimes and that each pathway is allied to specific metabolic processes; the rTCA is allied to hydrogenases and dissimilatory nitrate reduction, whereas the CBB is allied to sulfide oxidation and assimilatory nitrate reduction, suggesting distinctive yet complementary roles in metabolic function. Furthermore, our network analysis implicates the rTCA and a group 1e hydrogenase as key players in the physiological response to limitation of sulfide and oxygen. Net carbon fixation rates were also exemplary, and accordingly, we propose that co-activity of CBB and rTCA may be an adaptation for maintaining high carbon fixation rates, conferring a fitness advantage in dynamic vent environments.


Assuntos
Ciclo do Carbono , Fontes Hidrotermais , Poliquetos , Simbiose , Fontes Hidrotermais/microbiologia , Animais , Poliquetos/metabolismo , Oxirredução , Ciclo do Ácido Cítrico , Sulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrogenase/metabolismo , Hidrogenase/genética , Crescimento Quimioautotrófico , Perfilação da Expressão Gênica , Nitratos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
7.
Mar Genomics ; 75: 101106, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735671

RESUMO

Pseudoalteromonas sp. CuT4-3, a copper resistant bacterium, was isolated from deep-sea hydrothermal sulfides on the Southwest Indian Ridge (SWIR), is an aerobic, mesophilic and rod-shaped bacterium belonging to the family Pseudoalteromonadaceae (class Gammaproteobacteria, order Alteromonadales). In this study, we present the complete genome sequence of strain CuT4-3, which consists of a single circular chromosome comprising 3,660,538 nucleotides with 41.05% G + C content and two circular plasmids comprising 792,064 nucleotides with 40.36% G + C content and 65,436 nucleotides with 41.50% G + C content. In total, 4078 protein coding genes, 105 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain CuT4-3 identified numerous genes related to heavy metal resistance (especially copper) and EPS production. The genome of strain CuT4-3 will be helpful for further understanding of its adaptive strategies, particularly its ability to resist heavy metal, in the deep-sea hydrothermal vent environment.


Assuntos
Cobre , Fontes Hidrotermais , Pseudoalteromonas , Cobre/metabolismo , Cobre/toxicidade , Genoma Bacteriano , Fontes Hidrotermais/microbiologia , Pseudoalteromonas/genética , Sequenciamento Completo do Genoma
8.
mSystems ; 9(6): e0113523, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38747602

RESUMO

Sulfur-oxidizing bacteria (SOB) have developed distinct ecological strategies to obtain reduced sulfur compounds for growth. These range from specialists that can only use a limited range of reduced sulfur compounds to generalists that can use many different forms as electron donors. Forming intimate symbioses with animal hosts is another highly successful ecological strategy for SOB, as animals, through their behavior and physiology, can enable access to sulfur compounds. Symbioses have evolved multiple times in a range of animal hosts and from several lineages of SOB. They have successfully colonized a wide range of habitats, from seagrass beds to hydrothermal vents, with varying availability of symbiont energy sources. Our extensive analyses of sulfur transformation pathways in 234 genomes of symbiotic and free-living SOB revealed widespread conservation in metabolic pathways for sulfur oxidation in symbionts from different host species and environments, raising the question of how they have adapted to such a wide range of distinct habitats. We discovered a gene family expansion of soxY in these genomes, with up to five distinct copies per genome. Symbionts harboring only the "canonical" soxY were typically ecological "specialists" that are associated with specific host subfamilies or environments (e.g., hydrothermal vents, mangroves). Conversely, symbionts with multiple divergent soxY genes formed versatile associations across diverse hosts in various marine environments. We hypothesize that expansion and diversification of the soxY gene family could be one genomic mechanism supporting the metabolic flexibility of symbiotic SOB enabling them and their hosts to thrive in a range of different and dynamic environments.IMPORTANCESulfur metabolism is thought to be one of the most ancient mechanisms for energy generation in microorganisms. A diverse range of microorganisms today rely on sulfur oxidation for their metabolism. They can be free-living, or they can live in symbiosis with animal hosts, where they power entire ecosystems in the absence of light, such as in the deep sea. In the millions of years since they evolved, sulfur-oxidizing bacteria have adopted several highly successful strategies; some are ecological "specialists," and some are "generalists," but which genetic features underpin these ecological strategies are not well understood. We discovered a gene family that has become expanded in those species that also seem to be "generalists," revealing that duplication, repurposing, and reshuffling existing genes can be a powerful mechanism driving ecological lifestyle shifts.


Assuntos
Oxirredução , Sulfetos , Simbiose , Animais , Adaptação Fisiológica/genética , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Fontes Hidrotermais/microbiologia , Família Multigênica , Filogenia , Sulfetos/metabolismo , Enxofre/metabolismo , Simbiose/genética , Bivalves
9.
Syst Appl Microbiol ; 47(2-3): 126507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38703419

RESUMO

Deep-sea hydrothermal vents host archaeal and bacterial thermophilic communities, including taxonomically and functionally diverse Thermoproteota. Despite their prevalence in high-temperature submarine communities, Thermoproteota are chronically under-represented in genomic databases and issues have emerged regarding their nomenclature, particularly within the Aeropyrum-Thermodiscus-Caldisphaera. To resolve some of these problems, we identified 47 metagenome-assembled genomes (MAGs) within this clade, from 20 previously published deep-sea hydrothermal vent and submarine volcano metagenomes, and 24 MAGs from public databases. Using phylogenomic analysis, Genome Taxonomy Database Toolkit (GTDB-Tk) taxonomic assessment, 16S rRNA gene phylogeny, average amino acid identity (AAI) and functional gene patterns, we re-evaluated of the taxonomy of the Aeropyrum-Thermodiscus-Caldisphaera. At least nine genus-level clades were identified with two or more MAGs. In accordance with SeqCode requirements and recommendations, we propose names for three novel genera, viz. Tiamatella incendiivivens, Hestiella acidicharens and Calypsonella navitae. A fourth genus was also identified related to Thermodiscus maritimus, for which no available sequenced genome exists. We propose the novel species Thermodiscus eudorianus to describe our high-quality Thermodiscus MAG, which represents the type genome for the genus. All three novel genera and T. eudorianus are likely anaerobic heterotrophs, capable of fermenting protein-rich carbon sources, while some Tiamatella, Calypsonella and T. eudorianus may also reduce polysulfides, thiosulfate, sulfur and/or selenite, and the likely acidophile, Hestiella, may reduce nitrate and/or perchlorate. Based on phylogenomic evidence, we also propose the family Acidilobaceae be amended to include Caldisphaera, Aeropyrum, Thermodiscus and Stetteria and the novel genera described here.


Assuntos
Fontes Hidrotermais , Metagenoma , Filogenia , RNA Ribossômico 16S , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Genoma Bacteriano/genética , Archaea/genética , Archaea/classificação , DNA Bacteriano/genética , Aeropyrum/genética , Aeropyrum/classificação , Genômica , DNA Arqueal/genética , Bactérias/genética , Bactérias/classificação , Genoma Arqueal
10.
PLoS One ; 19(5): e0284642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718041

RESUMO

The GO DNA repair system protects against GC → TA mutations by finding and removing oxidized guanine. The system is mechanistically well understood but its origins are unknown. We searched metagenomes and abundantly found the genes encoding GO DNA repair at the Lost City Hydrothermal Field (LCHF). We recombinantly expressed the final enzyme in the system to show MutY homologs function to suppress mutations. Microbes at the LCHF thrive without sunlight, fueled by the products of geochemical transformations of seafloor rocks, under conditions believed to resemble a young Earth. High levels of the reductant H2 and low levels of O2 in this environment raise the question, why are resident microbes equipped to repair damage caused by oxidative stress? MutY genes could be assigned to metagenome-assembled genomes (MAGs), and thereby associate GO DNA repair with metabolic pathways that generate reactive oxygen, nitrogen and sulfur species. Our results indicate that cell-based life was under evolutionary pressure to cope with oxidized guanine well before O2 levels rose following the great oxidation event.


Assuntos
Reparo do DNA , Guanina , Metagenoma , Oxirredução , Guanina/metabolismo , Fontes Hidrotermais/microbiologia
11.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38632042

RESUMO

Dissolved inorganic carbon has been hypothesized to stimulate microbial chemoautotrophic activity as a biological sink in the carbon cycle of deep subsurface environments. Here, we tested this hypothesis using quantitative DNA stable isotope probing of metagenome-assembled genomes (MAGs) at multiple 13C-labeled bicarbonate concentrations in hydrothermal fluids from a 750-m deep subsurface aquifer in the Biga Peninsula (Turkey). The diversity of microbial populations assimilating 13C-labeled bicarbonate was significantly different at higher bicarbonate concentrations, and could be linked to four separate carbon-fixation pathways encoded within 13C-labeled MAGs. Microbial populations encoding the Calvin-Benson-Bassham cycle had the highest contribution to carbon fixation across all bicarbonate concentrations tested, spanning 1-10 mM. However, out of all the active carbon-fixation pathways detected, MAGs affiliated with the phylum Aquificae encoding the reverse tricarboxylic acid (rTCA) pathway were the only microbial populations that exhibited an increased 13C-bicarbonate assimilation under increasing bicarbonate concentrations. Our study provides the first experimental data supporting predictions that increased bicarbonate concentrations may promote chemoautotrophy via the rTCA cycle and its biological sink for deep subsurface inorganic carbon.


Assuntos
Bicarbonatos , Ciclo do Carbono , Isótopos de Carbono , Metagenoma , Microbiota , Bicarbonatos/metabolismo , Isótopos de Carbono/metabolismo , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Carbono/metabolismo , Fontes Hidrotermais/microbiologia , Água Subterrânea/microbiologia , Crescimento Quimioautotrófico , Archaea/genética , Archaea/metabolismo
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366040

RESUMO

Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.


Assuntos
Fontes Hidrotermais , Animais , Biomassa , Fontes Hidrotermais/microbiologia , Comportamento Predatório , Filogenia , Bactérias/genética
13.
Antonie Van Leeuwenhoek ; 117(1): 24, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217723

RESUMO

A novel mesophilic bacterial strain, designated S502T, was isolated from a deep-sea hydrothermal vent at Suiyo Seamount, Japan. Cells were Gram-positive, asporogenous, motile, and curved rods, measuring 1.6-5.6 µm in length. The strain was an obligate anaerobe that grew fermentatively on complex substrates such as yeast extract and Bacto peptone. Elemental sulfur stimulated the growth of the strain, and was reduced to hydrogen sulfide. The strain grew within a temperature range of 10-23 °C (optimum at 20 °C), pH range of 4.8-8.3 (optimum at 7.4), and a NaCl concentration range of 1.0-4.0% (w/v) (optimum at 3.0%, w/v). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the class Clostridia, with Fusibacter paucivorans strain SEBR 4211T (91.1% sequence identity) being its closest relative. The total size of the genome of the strain was 3.12 Mbp, and a G + C content was 28.2 mol%. The highest values for average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) value of strain S502T with relatives were 67.5% (with Marinisporobacter balticus strain 59.4MT), 51.5% (with M. balticus strain 59.4MT), and 40.9% (with Alkaliphilus serpentinus strain LacTT), respectively. Based on a combination of phylogenetic, genomic, and phenotypic characteristics, we propose strain S502T to represent a novel genus and species, Helicovermis profundi gen. nov., sp. nov., with the type strain S502T (= DSM 112048T = JCM 39167T).


Assuntos
Fontes Hidrotermais , Fontes Hidrotermais/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Bactérias Anaeróbias/genética , Firmicutes , Clostridium/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
14.
Nat Microbiol ; 9(3): 657-668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287146

RESUMO

Active hydrothermal vents are oases for productivity in the deep ocean, but the flow of dissolved substrates that fuel such abundant life ultimately ceases, leaving behind inactive mineral deposits. The rates of microbial activity on these deposits are largely unconstrained. Here we show primary production occurs on inactive hydrothermal deposits and quantify its contribution to new organic carbon production in the deep ocean. Measured incorporation of 14C-bicarbonate shows that microbial communities on inactive deposits fix inorganic carbon at rates comparable to those on actively venting deposits. Single-cell uptake experiments and nanoscale secondary ion mass spectrometry showed chemoautotrophs comprise a large fraction (>30%) of the active microbial cells. Metagenomic and lipidomic surveys of inactive deposits further revealed that the microbial communities are dominated by Alphaproteobacteria and Gammaproteobacteria using the Calvin-Benson-Bassham pathway for carbon fixation. These findings establish inactive vent deposits as important sites for microbial activity and organic carbon production on the seafloor.


Assuntos
Fontes Hidrotermais , Microbiota , Fontes Hidrotermais/microbiologia , Filogenia , Carbono/metabolismo , Oceanos e Mares
15.
FEMS Microbiol Ecol ; 100(2)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38200713

RESUMO

The discharge of hydrothermal vents on the seafloor provides energy sources for dynamic and productive ecosystems, which are supported by chemosynthetic microbial populations. These populations use the energy gained by oxidizing the reduced chemicals contained within the vent fluids to fix carbon and support multiple trophic levels. Hydrothermal discharge is ephemeral and chemical composition of such fluids varies over space and time, which can result in geographically distinct microbial communities. To investigate the foundational members of the community, microbial growth chambers were placed within the hydrothermal discharge at Axial Seamount (Juan de Fuca Ridge), Magic Mountain Seamount (Explorer Ridge), and Kama'ehuakanaloa Seamount (Hawai'i hotspot). Campylobacteria were identified within the nascent communities, but different amplicon sequence variants were present at Axial and Kama'ehuakanaloa Seamounts, indicating that geography in addition to the composition of the vent effluent influences microbial community development. Across these vent locations, dissolved iron concentration was the strongest driver of community structure. These results provide insights into nascent microbial community structure and shed light on the development of diverse lithotrophic communities at hydrothermal vents.


Assuntos
Fontes Hidrotermais , Microbiota , Água do Mar/microbiologia , Biodiversidade , Fontes Hidrotermais/microbiologia , Processos Autotróficos , Filogenia
16.
Appl Environ Microbiol ; 90(2): e0204123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38193671

RESUMO

Zetaproteobacteria have been reported in different marine and terrestrial environments all over the globe. They play an essential role in marine iron-rich microbial mats, as one of their autotrophic primary producers, oxidizing Fe(II) and producing Fe-oxyhydroxides with different morphologies. Here, we study and compare the Zetaproteobacterial communities of iron-rich microbial mats from six different sites of the Lucky Strike Hydrothermal Field through the use of the Zetaproteobacterial operational taxonomic unit (ZetaOTU) classification. We report for the first time the Zetaproteobacterial core microbiome of these iron-rich microbial mats, which is composed of four ZetaOTUs that are cosmopolitan and essential for the development of the mats. The study of the presence and abundance of different ZetaOTUs among sites reveals two clusters, which are related to the lithology and permeability of the substratum on which they develop. The Zetaproteobacterial communities of cluster 1 are characteristic of poorly permeable substrata, with little evidence of diffuse venting, while those of cluster 2 develop on hydrothermal slabs or deposits that allow the percolation and outflow of diffuse hydrothermal fluids. In addition, two NewZetaOTUs 1 and 2 were identified, which could be characteristic of anthropic iron and unsedimented basalt, respectively. We also report significant correlations between the abundance of certain ZetaOTUs and that of iron oxide morphologies, indicating that their formation could be taxonomically and/or environmentally driven. We identified a new morphology of Fe(III)-oxyhydroxides that we named "corals." Overall, our work contributes to the knowledge of the biogeography of this bacterial class by providing additional data from the Atlantic Ocean, a lesser-studied ocean in terms of Zetaproteobacterial diversity.IMPORTANCEUp until now, Zetaproteobacterial diversity studies have revealed possible links between Zetaproteobacteria taxa, habitats, and niches. Here, we report for the first time the Zetaproteobacterial core microbiome of iron-rich mats from the Lucky Strike Hydrothermal Field (LSHF), as well as two new Zetaproteobacterial operational taxonomic units (NewZetaOTUs) that could be substratum specific. We highlight that the substratum on which iron-rich microbial mats develop, especially because of its permeability to diffuse hydrothermal venting, has an influence on their Zetaproteobacterial communities. Moreover, our work adds to the knowledge of the biogeography of this bacterial class by providing additional data from the hydrothermal vent sites along the Mid-Atlantic Ridge. In addition to the already described iron oxide morphologies, we identify in our iron-rich mats a new morphology that we named corals. Finally, we argue for significant correlations between the relative abundance of certain ZetaOTUs and that of iron oxide morphologies, contributing to the understanding of the drivers of iron oxide production in iron-oxidizing bacteria.


Assuntos
Fontes Hidrotermais , Microbiota , Compostos Férricos , Ferro/análise , Açores , Bactérias/genética , Proteobactérias , Fontes Hidrotermais/microbiologia
17.
Microbiome ; 11(1): 270, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049915

RESUMO

BACKGROUND: Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS: We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS: Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.


Assuntos
Epsilonproteobacteria , Fontes Hidrotermais , Ecossistema , Temperatura , Prótons , Carbono/metabolismo , DNA , Fontes Hidrotermais/microbiologia , Filogenia
18.
Microbes Environ ; 38(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38104970

RESUMO

Strictly hydrogen- and sulfur-oxidizing chemolithoautotrophic bacteria, particularly members of the phyla Campylobacterota and Aquificota, have a cosmopolitan distribution in deep-sea hydrothermal fields. The successful cultivation of these microorganisms in liquid media has provided insights into their physiological, evolutionary, and ecological characteristics. Notably, recent population genetic studies on Sulfurimonas (Campylobacterota) and Persephonella (Aquificota) revealed geographic separation in their populations. Advances in this field of research are largely dependent on the availability of pure cultures, which demand labor-intensive liquid cultivation procedures, such as dilution-to-extinction, given the longstanding assumption that many strictly or facultatively anaerobic chemolithoautotrophs cannot easily form colonies on solid media. We herein describe a simple and cost-effective approach for cultivating these chemolithoautotrophs on solid media. The results obtained suggest that not only the choice of gelling agent, but also the gas phase composition significantly affect the colony-forming ratio of diverse laboratory strains. The use of gellan gum as a gelling agent combined with high concentrations of H2 and CO2 in a pouch bag promoted the formation of colonies. This contrasted with the absence of colony formation on an agar-solidified medium, in which thiosulfate served as an electron donor, nitrate as an electron acceptor, and bicarbonate as a carbon source, placed in anaerobic jars under an N2 atmosphere. Our method efficiently isolated chemolithoautotrophs from a deep-sea vent sample, underscoring its potential value in research requiring pure cultures of hydrogen- and sulfur-oxidizing chemolithoautotrophs.


Assuntos
Fontes Hidrotermais , Água do Mar , Água do Mar/microbiologia , Hidrogênio , Bactérias/genética , Meios de Cultura , Oxirredução , Enxofre , Filogenia , Fontes Hidrotermais/microbiologia , RNA Ribossômico 16S/genética
19.
mSystems ; 8(6): e0054323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37921472

RESUMO

IMPORTANCE: Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.


Assuntos
Fontes Hidrotermais , Ferro , Água do Mar/microbiologia , Hidrogênio , Fontes Hidrotermais/microbiologia , Proteobactérias/genética , Oxirredução , Compostos Férricos
20.
Chem Biodivers ; 20(12): e202301345, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985414

RESUMO

Marine actinomycetes are known for their production of remarkable organic molecules, particularly those featuring polyoxygenated long-chain backbones. Determining the absolute configurations of these compounds remains a challenging task even today. In this study, we successfully established the planar structures and absolute configurations of two highly flexible amide alkaloids from Streptomyces sp. WU20: kueishanamides A (1) and B (2). These compounds possess a C13 linear backbone and each contains five stereogenic carbon centers. Our approach involved a combination of spectroscopic and computational methods, including J-based configurational analysis and VCD calculations, ensuring the unambiguous determination of their configurations. Kueishanamide A (1) and kueishanamide B (2) showed moderate antifungal activity against pathogenic fungus Crytococcus neoformans, with MIC values of 25 µg/mL each.


Assuntos
Fontes Hidrotermais , Streptomyces , Antibacterianos/química , Streptomyces/química , Fontes Hidrotermais/microbiologia , Antifúngicos/farmacologia , Antifúngicos/química , Fungos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA