Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.123
Filtrar
1.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727958

RESUMO

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Assuntos
Fosfatases de Especificidade Dupla , Inflamação , Lipopolissacarídeos , MicroRNAs , Ligamento Periodontal , Células-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células-Tronco/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/genética , Células Cultivadas
2.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721693

RESUMO

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla , Glucose , Inflamação , MAP Quinase Quinase Quinase 5 , Neurônios , Oxigênio , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
3.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Masculino , Exossomos/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Próstata/patologia , Próstata/metabolismo , Dor Pélvica , Inflamação/genética , Inflamação/patologia , Camundongos , Sistema de Sinalização das MAP Quinases
4.
Eur J Med Res ; 29(1): 272, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720365

RESUMO

BACKGROUND: Cell cycle protein-dependent kinase inhibitor protein 3 (CDKN3), as a member of the protein kinase family, has been demonstrated to exhibit oncogenic properties in several tumors. However, there are no pan-carcinogenic analyses for CDKN3. METHODS: Using bioinformatics tools such as The Cancer Genome Atlas (TCGA) and the UCSC Xena database, a comprehensive pan-cancer analysis of CDKN3 was conducted. The inverstigation encompassed the examination of CDKN3 function actoss 33 different kinds of tumors, as well as the exploration of gene expressions, survival prognosis status, clinical significance, DNA methylation, immune infiltration, and associated signal pathways. RESULTS: CDKN3 was significantly upregulated in most of tumors and correlated with overall survival (OS) of patients. Methylation levels of CDKN3 differed significantly between tumors and normal tissues. In addition, infiltration of CD4 + T cells, cancer-associated fibroblasts, macrophages, and endothelial cells were associated with CDKN3 expression in various tumors. Mechanistically, CDKN3 was associated with P53, PI3K-AKT, cell cycle checkpoints, mitotic spindle checkpoint, and chromosome maintenance. CONCLUSION: Our pan-cancer analysis conducted in the study provides a comprehensive understanding of the involvement of CDKN3 gene in tumorigenesis. The findings suggest that targeting CDKN3 may potentially lead to novel therapeutic strategies for the treatment of tumors.


Assuntos
Biomarcadores Tumorais , Proteínas Inibidoras de Quinase Dependente de Ciclina , Neoplasias , Humanos , Neoplasias/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Metilação de DNA , Biologia Computacional/métodos , Fosfatases de Especificidade Dupla
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38790096

RESUMO

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Assuntos
Fosfatases de Especificidade Dupla , Macrófagos , NF-kappa B , Transdução de Sinais , Animais , Camundongos , Células RAW 264.7 , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamação/genética , Inflamação/metabolismo , Técnicas de Silenciamento de Genes , Mycobacterium bovis/imunologia , Citocinas/metabolismo , Citocinas/genética
6.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565943

RESUMO

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Assuntos
Movimento Celular , Sobrevivência Celular , Fosfatases de Especificidade Dupla , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Movimento Celular/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular Tumoral , Raios Ultravioleta/efeitos adversos , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
7.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674085

RESUMO

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Doenças das Plantas , Verticillium , Resistência à Doença , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Genoma de Planta , Gossypium/genética , Gossypium/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/efeitos dos fármacos , Verticillium/fisiologia
8.
Br J Haematol ; 204(5): 1862-1871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613165

RESUMO

Peripheral T-cell lymphomas (PTCL) are morphologically and biologically heterogeneous and a subset expresses CD30, including anaplastic large cell lymphomas (ALCL) and a minority of PTCL, not otherwise specified (PTCL, NOS). ALCL with ALK translocations (ALCL, ALK+) are readily identified by routine diagnostic methods, but differentiating ALCL without ALK translocation (ALCL, ALK-) and PTCL, NOS expressing CD30 (PTCL CD30+) can be challenging. Furthermore, rare PTCL co-express CD30 and CD15 (PTCL CD30+CD15+); some resemble ALCL, ALK- while others resemble classic Hodgkin lymphoma. To explore the relationship between PTCL CD30+CD15+ and ALCL, ALK-, we analysed 19 cases of PTCL with CD30 expression, previously diagnosed as ALCL, ALK- (nine cases) and PTCL CD30+CD15+ (10 cases) for DUSP22/IRF4 rearrangements, coding RNA expression and selected transcriptome analysis using the NanoString nCounter gene expression analysis platform. Unsupervised clustering showed no clear segregation between ALCL, ALK- and PTCL CD30+CD15+. Three cases previously classified as PTCL CD30+CD15+ showed DUSP22/IRF4 rearrangements, favouring a diagnosis of ALCL, ALK-. Our results suggest that cases previously designated PTCL CD30+CD15+, likely fall within the spectrum of ALCL, ALK-; additionally, a subset of ALCL, ALK- with DUSP22/IRF4 rearrangement expresses CD15, consistent with previous reports and expands the immunophenotypic spectrum of this lymphoma subgroup.


Assuntos
Quinase do Linfoma Anaplásico , Antígeno Ki-1 , Antígenos CD15 , Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Linfoma Anaplásico de Células Grandes/diagnóstico , Antígeno Ki-1/metabolismo , Antígeno Ki-1/genética , Antígeno Ki-1/análise , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Linfoma de Células T Periférico/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Antígenos CD15/análise , Antígenos CD15/metabolismo , Idoso , Fosfatases de Especificidade Dupla/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Adulto Jovem , Rearranjo Gênico
9.
NPJ Biofilms Microbiomes ; 10(1): 22, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480743

RESUMO

Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Adiposidade , Temperatura Baixa , Fosfatases de Especificidade Dupla/metabolismo , Microbioma Gastrointestinal/fisiologia , Obesidade
10.
Cell Cycle ; 23(3): 279-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38445655

RESUMO

Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.


Assuntos
Ciclosporina , Lipopolissacarídeos , MicroRNAs , Proteínas Quinases Ativadas por Mitógeno , Humanos , Ciclosporina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Perfilação da Expressão Gênica , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Células HaCaT , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Psoríase/genética , Psoríase/tratamento farmacológico
11.
Cardiovasc Ther ; 2024: 5583961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495810

RESUMO

Endothelial-to-mesenchymal transition (EndMT) is the process by which endothelial cells lose their endothelial properties and acquire mesenchymal characteristics. Dual-specific protein phosphatase 22 (DUSP22) inactivates various protein kinases and transcription factors by dephosphorylating serine/threonine residues: hence, it plays a key role in many diseases. The aim of this study was to explore the functional role of DUSP22 in EndMT. In the transforming growth factor-ß-induced EndMT model in human umbilical vein endothelial cells (HUVECs), we observed a downregulation of DUSP22 expression. This DUSP22 deficiency could aggravate EndMT. Conversely, the overexpression of DUSP22 could ameliorate EndMT. We used signaling pathway inhibitors to verify our results and found that DUSP22 could regulate EndMT through the smad2/3 and the mitogen-activated protein kinase (MAPK) signaling pathways. In summary, DUSP22 ameliorates EndMT in HUVECs in vitro through the smad2/3 and MAPK signaling pathways.


Assuntos
Sistema de Sinalização das MAP Quinases , Fosfoproteínas Fosfatases , Humanos , Regulação para Baixo , Fosfatases de Especificidade Dupla/genética , Transição Endotélio-Mesênquima , Células Endoteliais da Veia Umbilical Humana , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética
12.
J Cell Mol Med ; 28(4)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363001

RESUMO

Periodontal disease is a risk factor for head and neck squamous cell carcinoma (HNSCC), and Porphyromonas gingivalis, a major periodontal pathogen, has been identified as a specific and potentially independent microbial factor that increases the risk of cancer mortality. Gene expression in HNSCC due to P. gingivalis infection and how changes in gene expression affect the prognosis of HNSCC patients are not clarified. When P. gingivalis was cultured with HNSCC cells, it efficiently adhered to these cells and enhanced their invasive ability. A transcriptome analysis of P. gingivalis -infected HNSCC cells showed that genes related to migration, including CCL20, CITED2, CTGF, C8orf44-SGK3, DUSP10, EGR3, FUZ, HBEGF, IL1B, IL24, JUN, PLAU, PTGS2, P2RY1, SEMA7A, SGK1 and SIX2, were highly up- or down-regulated. The expression of up-regulated genes was examined using the expression data of HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database, and the expression of 5 genes, including PLAU, was found to be higher in cancer tissue than in solid normal tissue. An analysis of protein-protein interactions revealed that these 5 genes formed a dense network. A Cox regression analysis showed that high PLAU expression levels were associated with a poor prognosis in patients with TCGA-HNSCC. Furthermore, the prognostic impact correlated with tumour size and the presence or absence of lymph node metastasis. Collectively, these results suggest the potential of PLAU as a molecular prognostic marker in HNSCC patients. Further in vivo and in vitro studies are needed to verify the findings of this study.


Assuntos
Neoplasias de Cabeça e Pescoço , Proteínas de Membrana , Porphyromonas gingivalis , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Biomarcadores Tumorais/genética , Fosfatases de Especificidade Dupla/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/microbiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Porphyromonas gingivalis/isolamento & purificação , Prognóstico , Proteínas Repressoras/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Transativadores/genética , Proteínas de Membrana/genética
13.
Oncogene ; 43(16): 1178-1189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396293

RESUMO

Dual-specificity phosphatase 8 (DUSP8) plays an important role as a selective c-Jun N-terminal kinase (JNK) phosphatase in mitogen-activated protein kinase (MAPK) signaling. In this study, we found that DUSP8 is silenced by miR-147b in patients with lung adenocarcinoma (LUAD), which correlates with poor overall survival. Overexpression of DUSP8 resulted in a tumor-suppressive phenotype in vitro and in vivo experimental models, whereas silencing DUSP8 with a siRNA approach abrogated the tumor-suppressive properties. We found that miR-147b is a posttranscriptional regulator of DUSP8 that is highly expressed in patients with LUAD and is associated with lower survival. NanoString analysis revealed that the MAPK signaling pathway is mainly affected by overexpression of miR-147b, leading to increased proliferation and migration and decreased apoptosis in vitro. Moreover, induction of miR-147b promotes tumor progression in vitro and in vivo experimental models. Knockdown of miR-147b restored DUSP8, decreased tumor progression in vitro, and increased apoptosis via JNK phosphorylation. These results suggest that miR-147b plays a key role in regulating MAPK signaling in LUAD. The link between DUSP8 and miR-147b may provide novel approaches for the treatment of lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/genética , MicroRNAs/genética , Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Proteínas Quinases Ativadas por Mitógeno , Proliferação de Células/genética , Linhagem Celular Tumoral , Fosfatases de Especificidade Dupla/genética
14.
Nat Commun ; 15(1): 532, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225265

RESUMO

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.


Assuntos
Fosfatases de Especificidade Dupla , Ubiquitina-Proteína Ligases , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
15.
Geroscience ; 46(3): 3135-3147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200357

RESUMO

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.


Assuntos
Encéfalo , Fosfatases de Especificidade Dupla , Artéria Cerebral Média , Animais , Ratos , Envelhecimento , Encéfalo/irrigação sanguínea , Cognição , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Artéria Cerebral Média/metabolismo
16.
Biomolecules ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38254666

RESUMO

DUSP4 is a member of the DUSP (dual-specificity phosphatase) subfamily that is selective to the mitogen-activated protein kinases (MAPK) and has been implicated in a range of biological processes and functions in Alzheimer's disease (AD). In this study, we utilized the stereotactic delivery of adeno-associated virus (AAV)-DUSP4 to overexpress DUSP4 in the dorsal hippocampus of 5xFAD and wildtype (WT) mice, then used mass spectrometry (MS)-based proteomics along with the label-free quantification to profile the proteome and phosphoproteome in the hippocampus. We identified protein expression and phosphorylation patterns modulated in 5xFAD mice and examined the sex-specific impact of DUSP4 overexpression on the 5xFAD proteome/phosphoproteome. In 5xFAD mice, a substantial number of proteins were up- or down-regulated in both male and female mice in comparison to age and sex-matched WT mice, many of which are involved in AD-related biological processes, such as activated immune response or suppressed synaptic activities. Many proteins in pathways, such as immune response were found to be suppressed in response to DUSP4 overexpression in male 5xFAD mice. In contrast, such a shift was absent in female mice. For the phosphoproteome, we detected an array of phosphorylation sites regulated in 5xFAD compared to WT and modulated via DUSP4 overexpression in each sex. Interestingly, 5xFAD- and DUSP4-associated phosphorylation changes occurred in opposite directions. Strikingly, both the 5xFAD- and DUSP4-associated phosphorylation changes were found to be mostly in neurons and play key roles in neuronal processes and synaptic functions. Site-centric pathway analysis revealed that both the 5xFAD- and DUSP4-associated phosphorylation sites were enriched for a number of kinase sets in females but only a limited number of sets of kinases in male mice. Taken together, our results suggest that male and female 5xFAD mice responded to DUSP4 overexpression via shared and sex-specific molecular mechanisms, which might underly similar reductions in amyloid pathology in both sexes while learning deficits were reduced in only females with DUSP4 overexpression. Finally, we validated our findings with the sex-specific AD-associated proteomes in human cohorts and further developed DUSP4-centric proteomic network models and signaling maps for each sex.


Assuntos
Doença de Alzheimer , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno , Proteoma , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Dependovirus , Fosfatases de Especificidade Dupla/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Proteômica , Transdução de Sinais
17.
Plant Physiol ; 194(4): 2600-2615, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38060678

RESUMO

Starch granule morphological homogeneity presents a gap in starch research. Transitory starch granules in wild-type plants are discoid, regardless of species. Notably, while the shape of starch granules can differ among mutants, it typically remains homogeneous within a genotype. We found an Arabidopsis thaliana mutant, dpe2sex4, lacking both the cytosolic disproportionating enzyme 2 (DPE2) and glucan phosphatase SEX4, showing an unprecedented bimodal starch granule diameter distribution when grown under a light/dark rhythm. dpe2sex4 contained 2 types of starch granules: large granules and small granules. In contrast to the double starch initiation in wheat (Triticum aestivum) endosperm, where A-type granules are initiated first and B-type granules are initiated later, dpe2sex4 small and large granules developed simultaneously in the same chloroplast. Compared with the large granules, the small granules had more branched amylopectin and less surface starch-phosphate, thus having a more compact structure that may hinder starch synthesis. During plant aging, the small granules barely grew. In in vitro experiments, fewer glucosyl residues were incorporated in small granules. Under continuous light, dpe2sex4 starch granules were morphologically homogeneous. Omitting the dark phase after a 2-wk light/dark cycle by moving plants into continuous light also reduced morphological variance between these 2 types of granules. These data shed light on the impact of starch phosphorylation on starch granule morphology homogeneity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosforilação , Mutação/genética , Fosfatases de Especificidade Dupla/genética
18.
Exp Cell Res ; 434(2): 113869, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38049081

RESUMO

Mycobacterium tuberculosis (Mtb) reprograms FAs metabolism of macrophages during infection and affects inflammatory reaction eventually, however, the mechanism remains poorly understood. Here we show that Mycobacterium bovis (BCG) induces DUSP5 expression through TLR2-MAPKs signaling pathway and promotes fatty acid oxidation (FAO). Silencing DUSP5 by adeno-associated virus vector (AAV) ameliorates lung injury and DUSP5 knockdown reduces the expression of IL-1ß, IL-6 and inactivated NF-κB signaling in BCG-infected macrophages. Of note, DUSP5 specific siRNA increases the content of free fatty acids (FFAs) and triglyceride (TG), but represses the expression of FAO associated enzymes such as CPT1A and PPARα, suggesting DUSP5 mediated FAO during BCG infection. Moreover, Inhibiting FAO by pharmacological manner suppresses IL-1ß, IL-6, TNF-α expression and relieves lung damage. Taken together, our data indicates DUSP5 mediates FAO reprogramming and promotes inflammatory response to BCG infection.


Assuntos
Mycobacterium bovis , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais , Fosfatases de Especificidade Dupla/genética , Ácidos Graxos
19.
Comput Biol Med ; 168: 107750, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38029531

RESUMO

OBJECTIVE: Gliomas are a heterogeneous group of brain tumors with distinct biological and clinical properties, leading to significant mortality and morbidity. Emerging evidence shows telomere maintenance has implicated in glioma susceptibility and prognosis. In this study, we comprehensively analyzed gene signatures related to telomere maintenance in glioma and their predictive values for predicting the prognosis and drug sensitivity in glioma. METHODS: We initially identified telomere-related genes differentially expressed between low-grade glioma (LGG) and glioblastoma (GBM) and accordingly developed a risk model by univariate and multivariate Cox analysis to assess the expressions of telomere-related genes across the risk groups. Finally, to assess these genes in immune function the anti-tumor medications often used in the clinical treatment of glioma, we computed immune cell infiltration analysis and drug sensitivity analysis. RESULTS: The consensus clustering analysis identified 20 telomere-related genes which split LGG patients into two distinct subtypes. The patient survival, the expressions of key telomere-related DEGs, and immune cell infiltration significantly differed between Cluster 1 and Cluster 2. The LASSO risk model [riskScore=(0.086)*HOXA7+(0.242)*WEE1+(0.247)*IGF2BP3+(0.052)*DUSP10] showed significant differences regarding the 1-, 3-, 5-year overall survival, immune cell infiltration, and drug sensitivity between high- and low-risk groups. The predictive nomogram constructed to quantify the survival probability of each sample at 1, 3, and 5 years was consistent with the actual patient survival. CONCLUSION: Our comprehensive characterization of telomere-associated gene signatures in glioma reveals their possible roles in the development, tumor microenvironment, and prognosis. The study provides some suggestive relationships between four telomere-related genes (HOXA7, WEE1, IGF2BP3, and DUSP10) and glioma prognosis.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/tratamento farmacológico , Glioma/genética , Telômero/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Análise por Conglomerados , Microambiente Tumoral , Fosfatases de Especificidade Dupla , Fosfatases da Proteína Quinase Ativada por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA