Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727958

RESUMO

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Assuntos
Fosfatases de Especificidade Dupla , Inflamação , Lipopolissacarídeos , MicroRNAs , Ligamento Periodontal , Células-Tronco , Proteínas Quinases p38 Ativadas por Mitógeno , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células-Tronco/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Periodontite/genética , Periodontite/metabolismo , Periodontite/patologia , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/genética , Células Cultivadas
2.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721693

RESUMO

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Assuntos
Apoptose , Fosfatases de Especificidade Dupla , Glucose , Inflamação , MAP Quinase Quinase Quinase 5 , Neurônios , Oxigênio , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Camundongos , Células Cultivadas , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Glucose/metabolismo , Inflamação/metabolismo , Inflamação/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Neurônios/patologia , Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno
3.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724995

RESUMO

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Assuntos
Células Epiteliais , Exossomos , MicroRNAs , Prostatite , Células Estromais , Masculino , Exossomos/metabolismo , Prostatite/genética , Prostatite/patologia , Prostatite/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Estromais/metabolismo , Células Estromais/patologia , Animais , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Próstata/patologia , Próstata/metabolismo , Dor Pélvica , Inflamação/genética , Inflamação/patologia , Camundongos , Sistema de Sinalização das MAP Quinases
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38790096

RESUMO

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Assuntos
Fosfatases de Especificidade Dupla , Macrófagos , NF-kappa B , Transdução de Sinais , Animais , Camundongos , Células RAW 264.7 , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , NF-kappa B/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Inflamação/genética , Inflamação/metabolismo , Técnicas de Silenciamento de Genes , Mycobacterium bovis/imunologia , Citocinas/metabolismo , Citocinas/genética
5.
Oncogene ; 43(21): 1608-1619, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565943

RESUMO

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Assuntos
Movimento Celular , Sobrevivência Celular , Fosfatases de Especificidade Dupla , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Movimento Celular/genética , Sobrevivência Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Linhagem Celular Tumoral , Raios Ultravioleta/efeitos adversos , Sistema de Sinalização das MAP Quinases/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo
6.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674085

RESUMO

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Doenças das Plantas , Verticillium , Resistência à Doença , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Genoma de Planta , Gossypium/genética , Gossypium/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/efeitos dos fármacos , Verticillium/fisiologia
7.
NPJ Biofilms Microbiomes ; 10(1): 22, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480743

RESUMO

Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.


Assuntos
Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Adiposidade , Temperatura Baixa , Fosfatases de Especificidade Dupla/metabolismo , Microbioma Gastrointestinal/fisiologia , Obesidade
8.
Cell Cycle ; 23(3): 279-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38445655

RESUMO

Studies indicate that mitogen-activated protein kinases (MAPKs) are activated and overexpressed in psoriatic lesions. The aim of the study was to assess changes in the expression pattern of genes encoding MAPKs and microRNA (miRNA) molecules potentially regulating their expression in human adult low-calcium high-temperature (HaCaT) keratinocytes exposed to bacterial lipopolysaccharide A (LPS) and cyclosporine A (CsA). HaCaT cells were treated with 1 µg/mL LPS for 8 h, followed by treatment with 100 ng/mL cyclosporine A for 2, 8, or 24 h. Untreated cells served as controls. The molecular analysis consists of microarray, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay analyses. The statistical analysis of the obtained results was performed using Transcriptome Analysis Console and STATISTICA 13.5 PL with the statistical significance threshold of p < 0.05. Changes in the expression profile of six mRNAs: dual-specificity phosphatase 1 (DUSP1), dual-specificity phosphatase 4 (DUSP4), mitogen-activated protein kinase kinase 2 (MAP2K2), mitogen-activated protein kinase kinase 7 (MAP2K7), mitogen-activated protein kinase kinase kinase 2 (MAP3K2) and mitogen-activated protein kinase 9 (MAPK9) in cell culture exposed to LPS or LPS and the drug compared to the control. We observed that under the LPS and cyclosporine treatment, the expression o/ miR-34a, miR-1275, miR-3188, and miR-382 changed significantly (p < 0.05). We demonstrated a potential relationship between DUSP1 and miR-34a; DUSP4 and miR-34a, miR-382, and miR-3188; MAPK9 and miR-1275, MAP2K7 and mir-200-5p; MAP3K2 and mir-200-5p, which may be the subject of further research in the context of psoriasis.


Assuntos
Ciclosporina , Lipopolissacarídeos , MicroRNAs , Proteínas Quinases Ativadas por Mitógeno , Humanos , Ciclosporina/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Fosfatase 1 de Especificidade Dupla/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Perfilação da Expressão Gênica , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Células HaCaT , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Psoríase/genética , Psoríase/tratamento farmacológico
9.
Nat Commun ; 15(1): 532, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225265

RESUMO

DUSP22 is a dual-specificity phosphatase that inhibits T cell activation by inactivating the kinase Lck. Here we show that the E3 ubiquitin ligase UBR2 is a positive upstream regulator of Lck during T-cell activation. DUSP22 dephosphorylates UBR2 at specific Serine residues, leading to ubiquitin-mediated UBR2 degradation. UBR2 is also modified by the SCF E3 ubiquitin ligase complex via Lys48-linked ubiquitination at multiple Lysine residues. Single-cell RNA sequencing analysis and UBR2 loss of function experiments showed that UBR2 is a positive regulator of proinflammatory cytokine expression. Mechanistically, UBR2 induces Lys63-linked ubiquitination of Lck at Lys99 and Lys276 residues, followed by Lck Tyr394 phosphorylation and activation as part of TCR signalling. Inflammatory phenotypes induced by TCR-triggered Lck activation or knocking out DUSP22, are attenuated by genomic deletion of UBR2. UBR2-Lck interaction and Lck Lys63-linked ubiquitination are induced in the peripheral blood T cells of human SLE patients, which demonstrate the relevance of the UBR2-mediated regulation of inflammation to human pathology. In summary, we show here an important regulatory mechanism of T cell activation, which finetunes the balance between T cell response and aggravated inflammation.


Assuntos
Fosfatases de Especificidade Dupla , Ubiquitina-Proteína Ligases , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
10.
Geroscience ; 46(3): 3135-3147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200357

RESUMO

Vascular aging influences hemodynamics, elevating risks for vascular diseases and dementia. We recently demonstrated that knockout (KO) of Dusp5 enhances cerebral and renal hemodynamics and cognitive function. This improvement correlates with elevated pPKC and pERK1/2 levels in the brain and kidneys. Additionally, we observed that Dusp5 KO modulates the passive mechanical properties of cerebral and renal arterioles, associated with increased myogenic tone at low pressure, enhanced distensibility, greater compliance, and reduced stiffness. The present study evaluates the structural and mechanical properties of the middle cerebral artery (MCA) in Dusp5 KO rats. We found that vascular smooth muscle cell layers and the collagen content in the MCA wall are comparable between Dusp5 KO and control rats. The internal elastic lamina in the MCA of Dusp5 KO rats exhibits increased thickness, higher autofluorescence intensity, smaller fenestrae areas, and fewer fenestrations. Despite an enhanced myogenic response and tone of the MCA in Dusp5 KO rats, other passive mechanical properties, such as wall thickness, cross-sectional area, wall-to-lumen ratio, distensibility, incremental elasticity, circumferential wall stress, and elastic modulus, do not significantly differ between strains. These findings suggest that while Dusp5 KO has a limited impact on altering the structural and mechanical properties of MCA, its primary role in ameliorating hemodynamics and cognitive functions is likely attributable to its enzymatic activity on cerebral arterioles. Further research is needed to elucidate the specific enzymatic mechanisms and explore potential clinical applications in the context of vascular aging.


Assuntos
Encéfalo , Fosfatases de Especificidade Dupla , Artéria Cerebral Média , Animais , Ratos , Envelhecimento , Encéfalo/irrigação sanguínea , Cognição , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Artéria Cerebral Média/metabolismo
11.
Mol Carcinog ; 63(2): 314-325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37937915

RESUMO

Protein kinase B (AKT) plays a pivotal in regulating cell migration, proliferation, apoptosis, and survival, making it a prominent target for anticancer therapy. While the kinase activity of AKT has been extensively explored, its dephosphorylation have largely remained uncharted. Herein, we aimed to unravel the molecular mechanisms governing AKT dephosphorylation, with a specific emphasis on dual-specificity phosphatases DUSP22. Our investigation sought to shed light on the potential of DUSP22 as a potential therapeutic target for non-small cell lung cancer (NSCLC). To determine the expression level of DUSP22 in NSCLC cell lines, the gene expression profiling interactive analysis (GEPIA) and Oncomine database were searched. Additionally, the effect of DUSP22 on patient survival was analyzed with Kaplan-Meier database. Antitumor effects of DUSP22 were tested in A549 and H1299 cell lines. Experiments are based on: (1) cell viability determined by the cell counting kit-8 assay and colony-formation assay; (2) cell migratory ability assessed through the scratch assay and the transwell migration assay; (3) the mechanism behind the antitumor effects of DUSP22 dissected with co-immunoprecipitation (Co-IP) and in vitro kinase assays. Our study revealed a significant downregulation of DUSP22 in both NSCLC cell lines and tissues. Meanwhile, survival rate analysis results demonstrated that reduced DUSP22 expression was correlated with poorer overall survival in lung cancer patients. Moreover, DUSP22 exhibited an inhibitory effect on the cell viability and migratory capacity of A549 and H1299 cells. This inhibition was accompanied by the decrease in the phosphorylation of AKT and p38. Mechanistically, the phosphatase domain of DUSP22 interacted with AKT, resulting in the inhibition of AKT phosphorylation. This inhibitory effect was contingent upon the phosphatase activity of DUSP22. These findings provide compelling evidence that DUSP22 directly interacted with AKT, leading to the dephosphorylation of AKT at S473 and T308 residues, ultimately curbing the proliferation and migration of lung cancer cells. Additionally, our results also highlight a preclinical rationale for utilizing DUSP22 as a prognostic marker in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Neoplasias Pulmonares/patologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37967942

RESUMO

Abnormal trophoblast function is associated with diseases such as recurrent spontaneous abortion, pre-eclampsia, and preterm birth, and endangers maternal and fetal health. However, the underlying regulatory mechanisms remain unclear. In this study, we found DOCK1 expression is decreased in the placental villi of patients with recurrent spontaneous abortion, and that its expression determined the invasive properties of extravillous trophoblasts (EVTs), highlighting a previously unknown role of DOCK1 in regulating EVT function. Furthermore, DOCK1 deficiency disturbed the ubiquitinated degradation of DUSP4, leading to its accumulation. This caused inactivation of the ERK signaling pathway, resulting in inadequate EVT migration and invasion. DOCK1 was implicated in regulating the ubiquitin levels of DUSP4, possibly by modulating the E3 ligase enzyme HUWE1. The results of our in vivo experiments confirmed that the DOCK1 inhibitor TBOPP caused miscarriage in mice by inactivating the DUSP4/ERK pathway. Collectively, our results revealed the crucial role of DOCK1 in the regulation of EVT function via the DUSP4-ERK pathway and a basis for the development of novel treatments for adverse pregnancy outcomes caused by trophoblast dysfunction.


Assuntos
Aborto Espontâneo , Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Animais , Camundongos , Trofoblastos/metabolismo , Resultado da Gravidez , Placenta/metabolismo , Aborto Espontâneo/metabolismo , Primeiro Trimestre da Gravidez , Sistema de Sinalização das MAP Quinases , Nascimento Prematuro/metabolismo , Fatores de Transcrição/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Supressoras de Tumor/metabolismo
13.
J Biomed Sci ; 30(1): 94, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071325

RESUMO

BACKGROUND: ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS: We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS: RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS: Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.


Assuntos
Carcinoma Endometrioide , Proteínas Nucleares , Feminino , Humanos , Camundongos , Animais , Regulação para Baixo , Proteínas Nucleares/genética , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/metabolismo , Carcinoma Endometrioide/patologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Int J Mol Sci ; 24(24)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38139370

RESUMO

The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.


Assuntos
Fosfatases de Especificidade Dupla , Proteínas Quinases Ativadas por Mitógeno , Fosfatases de Especificidade Dupla/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Macrófagos Associados a Tumor/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Mitógenos , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo
15.
Malays J Pathol ; 45(3): 425-440, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38155384

RESUMO

The onset of obstetric antiphospholipid syndrome (APS) occurs when antiphospholipid antibodies act upon the placenta. During pregnancy, APS exhibits traits such as vascular thrombosis, inflammation, and hindered trophoblast implantation. The involvement of microRNA expression has been proposed as a genetic factor contributing to the syndrome's development. MicroRNAs play a role in regulating gene expression in various cellular processes, including the formation of placental tissue. Therefore, additional research is needed to explore the control of placental miRNA in APS. In this study, we aimed to profile miRNA expressions from placenta tissue of patients with APS. Differentially expressed miRNAs were determined for its targeted genes and pathways. Agilent microarray platform was used to measure placental microRNA expressions between normal placental tissue and those obtained from patients with APS. Differentially expressed miRNAs were detected using GeneSpring GX software 14.2 and sequences were mapped using TargetScan software to generate the predicted target genes. Pathway analysis for the genes was then performed on PANTHER and REACTOME software. Selected miRNAs and their associated genes of interest were validated using qPCR. Microarray findings revealed, 9 downregulated and 21 upregulated miRNAs expressed in placenta of patients with APS. Quantitative expressions of 3 selected miRNAs were in agreement with the microarray findings, however only miR-525-5p expression was statistically significant. Pathway analysis revealed that the targeted genes of differentially expressed miRNAs were involved in several hypothesised signalling pathways such as the vascular endothelial (VE) growth factor (VEGF) and inflammatory pathways. VE-cadherin, ras homolog member A (RHOA) and tyrosine kinase receptor (KIT) showed significant downregulation while Retinoblastoma gene (RET), Dual specificity protein phosphatase 10 (DUSP10) and B-lymphocyte kinase (BLK) genes were significantly upregulated. These preliminary findings suggest the involvement of miRNAs and identified novel associated genes involvement in the mechanism of obstetric APS, particularly through the alteration of vascular-associated regulators and the inflammatory signalling cascade.


Assuntos
Síndrome Antifosfolipídica , MicroRNAs , Humanos , Feminino , Gravidez , Síndrome Antifosfolipídica/genética , Placenta/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
16.
BMC Cancer ; 23(1): 1086, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946160

RESUMO

BACKGROUND: Upregulation of the mitogen-activated protein kinase (MAPK) cascade is common in hepatocellular carcinoma (HCC). Neuroblastoma RAS viral oncogene homolog (NRAS) is mutated in a small percentage of HCC and is hitherto considered insufficient for hepatocarcinogenesis. We aimed to characterize the process of N-Ras-dependent carcinogenesis in the liver and to identify potential therapeutic vulnerabilities. METHODS: NRAS V12 plasmid was delivered into the mouse liver via hydrodynamic tail vein injection (HTVI). The resulting tumours, preneoplastic lesions, and normal tissue were characterized by NanoString® gene expression analysis, Western Blot, and Immunohistochemistry (IHC). The results were further confirmed by in vitro analyses of HCC cell lines. RESULTS: HTVI with NRAS V12 plasmid resulted in the gradual formation of preneoplastic and neoplastic lesions in the liver three months post-injection. These lesions mostly showed characteristics of HCC, with some exceptions of spindle cell/ cholangiocellular differentiation. Progressive upregulation of the RAS/RAF/MEK/ERK signalling was detectable in the lesions by Western Blot and IHC. NanoString® gene expression analysis of preneoplastic and tumorous tissue revealed a gradual overexpression of the cancer stem cell marker CD133 and Dual Specificity Phosphatases 4 and 6 (DUSP4/6). In vitro, transfection of HCC cell lines with NRAS V12 plasmid resulted in a coherent upregulation of DUSP4 and DUSP6. Paradoxically, this upregulation in PLC/PRF/5 cells was accompanied by a downregulation of phosphorylated extracellular-signal-regulated kinase (pERK), suggesting an overshooting compensation. Silencing of DUSP4 and DUSP6 increased proliferation in HCC cell lines. CONCLUSIONS: Contrary to prior assumptions, the G12V NRAS mutant form is sufficient to elicit hepatocarcinogenesis in the mouse. Furthermore, the upregulation of the MAPK cascade was paralleled by the overexpression of DUSP4, DUSP6, and CD133 in vivo and in vitro. Therefore, DUSP4 and DUSP6 might fine-tune the excessive MAPK activation, a mechanism that can potentially be harnessed therapeutically.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/patologia
17.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909329

RESUMO

Dual-specificity phosphatase 8 (DUSP8) is a MAPK phosphatase that dephosphorylates and inactivates the kinase JNK. DUSP8 is highly expressed in T cells; however, the in vivo role of DUSP8 in T cells remains unclear. Using T cell-specific Dusp8 conditional KO (T-Dusp8 cKO) mice, mass spectrometry analysis, ChIP-Seq, and immune analysis, we found that DUSP8 interacted with Pur-α, stimulated interleukin-9 (IL-9) gene expression, and promoted Th9 differentiation. Mechanistically, DUSP8 dephosphorylated the transcriptional repressor Pur-α upon TGF-ß signaling, leading to the nuclear export of Pur-α and subsequent IL-9 transcriptional activation. Furthermore, Il-9 mRNA levels were induced in Pur-α-deficient T cells. In addition, T-Dusp8-cKO mice displayed reduction of IL-9 and Th9-mediated immune responses in the allergic asthma model. Reduction of Il-9 mRNA levels in T cells and allergic responses of T-Dusp8-cKO mice was reversed by Pur-α knockout. Remarkably, DUSP8 protein levels and the DUSP8-Pur-α interaction were indeed increased in the cytoplasm of T cells from people with asthma and patients with atopic dermatitis. Collectively, DUSP8 induces TGF-ß-stimulated IL-9 transcription and Th9-induced allergic responses by inhibiting the nuclear translocation of the transcriptional repressor Pur-α. DUSP8 may be a T-cell biomarker and therapeutic target for asthma and atopic dermatitis.


Assuntos
Asma , Dermatite Atópica , Hipersensibilidade , Animais , Humanos , Camundongos , Transporte Ativo do Núcleo Celular , Asma/genética , Fosfatases de Especificidade Dupla/metabolismo , Inflamação , Interleucina-9 , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
18.
Clin Transl Med ; 13(11): e1475, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962020

RESUMO

BACKGOUND: Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS: CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS: The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS: Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Animais , Humanos , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Fosfatases de Especificidade Dupla/metabolismo , Células Epiteliais/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Transdução de Sinais/genética , Proteína Smad4/genética , Proteína Smad4/metabolismo
19.
Int Heart J ; 64(6): 1133-1139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38030294

RESUMO

Given the potential role of microRNA (miRNA) in the pathological process of ischemic heart disease, clinical patients with acute myocardial infarction (AMI) were recruited and serum miR-127-3p levels in the patients were tested. In vitro, the effects of miR-127-3p on cardiomyocyte apoptosis and inflammation induced by hypoxia and reoxygenation (H/R) were also elucidated in AC16 cells.Collection of serum samples from 113 AMI patients and 104 healthy controls was done. Human cardiomyocyte cell line AC16 was exposed to the H/R condition for the cell function experiments. qRT-PCR was applied for mRNA detection, and cell viability and apoptosis were evaluated. To assess inflammatory response, an enzyme-linked immunosorbent assay was carried out. For the target gene analysis, luciferase reporter assay was accomplished.MiR-127-3p was significantly reduced in the serum of AMI patients, which was negatively correlated with CDKN3 mRNA levels. Serum miR-127-3p was negatively correlated with Scr, cTnI, CK-MB, IL-6, and TNF-α. CDKN3 serves as a target gene of miR-127-3p, its mRNA levels were reduced by miR-127-3p overexpression. H/R treatment caused the suppression of cell viability and the promotion of cell apoptosis, which was changeover by miR-127-3p overexpression. Furthermore, MiR-127-3p overexpression inhibited cell inflammatory response. The rescue experiments revealed that CDKN3 overexpression canceled the protective influence of miR-127-3p against cardiomyocyte injury and inflammatory response.MiR-127-3p can alleviate AMI-induced cardiomyocyte apoptosis and cardiac dysfunction, which is related to its anti-inflammatory effect and its downstream CDKN3 gene.


Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia/metabolismo , Apoptose/genética , RNA Mensageiro/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Fosfatases de Especificidade Dupla/metabolismo
20.
Front Immunol ; 14: 1197356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564646

RESUMO

Introduction: The unfolded protein response (UPR) has emerged as an important signaling pathway mediating anti-viral defenses to Respiratory Syncytial Virus (RSV) infection. Earlier we found that RSV replication predominantly activates the evolutionarily conserved Inositol Requiring Enzyme 1α (IRE1α)-X-Box Binding Protein 1 spliced (XBP1s) arm of the Unfolded Protein Response (UPR) producing inflammation, metabolic adaptation and cellular plasticity, yet the mechanisms how the UPR potentiates inflammation are not well understood. Methods: To understand this process better, we examined the genomic response integrating RNA-seq and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analyses. These data were integrated with an RNA-seq analysis conducted on RSV-infected small airway cells ± an IRE1α RNAse inhibitor. Results: We identified RSV induced expression changes in ~3.2K genes; of these, 279 required IRE1α and were enriched in IL-10/cytokine signaling pathways. From this data set, we identify those genes directly under XBP1s control by CUT&RUN. Although XBP1s binds to ~4.2 K high-confidence genomic binding sites, surprisingly only a small subset of IL10/cytokine signaling genes are directly bound. We further apply CUT&RUN to find that RSV infection enhances XBP1s loading on 786 genomic sites enriched in AP1/Fra-1, RELA and SP1 binding sites. These control a subset of cytokine regulatory factor genes including IFN response factor 1 (IRF1), CSF2, NFKB1A and DUSP10. Focusing on the downstream role of IRF1, selective knockdown (KD) and overexpression experiments demonstrate IRF1 induction controls type I and -III interferon (IFN) and IFN-stimulated gene (ISG) expression, demonstrating that ISG are indirectly regulated by XBP1 through IRF1 transactivation. Examining the mechanism of IRF1 activation, we observe that XBP1s directly binds a 5' enhancer sequence whose XBP1s loading is increased by RSV. The functional requirement for the enhancer is demonstrated by targeting a dCas9-KRAB silencer, reducing IRF1 activation. Chromatin immunoprecipitation shows that XBP1 is required, but not sufficient, for RSV-induced recruitment of activated phospho-Ser2 Pol II to the enhancer. Discussion: We conclude that XBP1s is a direct activator of a core subset of IFN and cytokine regulatory genes in response to RSV. Of these IRF1 is upstream of the type III IFN and ISG response. We find that RSV modulates the XBP1s binding complex on the IRF1 5' enhancer whose activation is required for IRF1 expression. These findings provide novel insight into how the IRE1α-XBP1s pathway potentiates airway mucosal anti-viral responses.


Assuntos
Endorribonucleases , Infecções por Vírus Respiratório Sincicial , Humanos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferons/metabolismo , Inflamação , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA