Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 816
Filtrar
1.
PLoS One ; 18(5): e0285318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167239

RESUMO

Hypoxia, an inevitable feature of locally advanced solid tumors, has been known as an adverse prognostic factor, a driver of an aggressive phenotype, and an unfavorable factor in therapies. Myo-inositol trispyrophosphate (ITPP) is a hemoglobin modifier known to both increase O2 release and normalize microvasculature. Our goal was to measure the tumor oxygen partial pressure dynamic changes and timing of the therapeutic window after ITPP systemic administration. Two syngeneic tumor models in mice, B16 melanoma and 4T1 breast carcinoma, were used, with varying ITPP dose schedules. Tissue oxygenation level was measured over several days in situ in live animals by Electron Paramagnetic Resonance oximetry with implanted OxyChip used as a constant sensor of the local pO2 value. Both B16 and 4T1 tumors became more normoxic after ITPP treatment, with pO2 levels elevated by 10-20 mm Hg compared to the control. The increase in pO2 was either transient or sustained, and the underlying mechanism relied on shifting hypoxic tumor areas to normoxia. The effect depended on ITPP delivery intervals regarding the tumor type and growth rate. Moreover, hypoxic tumors before treatment responded better than normoxic ones. In conclusion, the ITPP-generated oxygen therapeutic window may be valuable for anti-tumor therapies requiring oxygen, such as radio-, photo- or immunotherapy. Furthermore, such a combinatory treatment can be especially beneficial for hypoxic tumors.


Assuntos
Hipóxia , Oxigênio , Camundongos , Animais , Oxigênio/uso terapêutico , Hipóxia/tratamento farmacológico , Fosfatos de Inositol/farmacologia , Hemoglobinas
2.
J Cell Mol Med ; 27(6): 879-890, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36852461

RESUMO

Tumour evolution and efficacy of treatments are controlled by the microenvironment, the composition of which is primarily dependent on the angiogenic reaction to hypoxic stress. Tumour angiogenesis normalization is a challenge for adjuvant therapy strategies to chemo-, radio- and immunotherapeutics. Myo-inositol trispyrophosphate (ITPP) appears to provide the means to alleviate hypoxia in the tumour site by a double molecular mechanism. First, it modifies the properties of red blood cells (RBC) to release oxygen (O2 ) in the hypoxic sites more easily, leading to a rapid and stable increase in the partial pressure of oxygen (pO2 ). And second, it activates the endothelial phosphatase and tensin homologue deleted on Chromosome 10 (PTEN). The hypothesis that stable normalization of the vascular system is due to the PTEN, a tumour suppressor and phosphatase which controls the proper angiogenic reaction was ascertained. Here, by direct biochemical measurements of PTEN competitive activity in relation to PIP2 production, we show that the kinetics are complex in terms of the activation/inhibition effects of ITPP with an inverted consequence towards the kinase PI3K. The use of the surface plasmon resonance (SPR) technique allowed us to demonstrate that PTEN binds inositol derivatives differently but weakly. This method permitted us to reveal that PTEN is highly sensitive to the local concentration conditions, especially that ITPP increases the PTEN activity towards PIP3, and importantly, that PTEN affinity for ITPP is considerably increased by the presence of PIP3, as occurs in vivo. Our approach demonstrates the validity of using ITPP to activate PTEN for stable vessel normalization strategies.


Assuntos
Fosfatos de Inositol , Oxigênio , Humanos , Oxigênio/metabolismo , Fosfatos de Inositol/farmacologia , Hipóxia/metabolismo , Monoéster Fosfórico Hidrolases , PTEN Fosfo-Hidrolase
3.
Planta ; 257(2): 46, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695941

RESUMO

MAIN CONCLUSION: The IPK1 genes, which code for 2-kinases that can synthesize Ins(1,2,4,5,6)P5 from Ins(1,4,5,6)P4, are expressed throughout cotton plants, resulting in the highest Ins(1,2,4,5,6)P5 concentrations in young leaves and flower buds. Cotton leaves contain large amounts of Ins(1,2,4,5,6)P5 and InsP6 compared to plants not in the Malvaceae family. The inositol polyphosphate pathway has been linked to stress tolerance in numerous plant species. Accordingly, we sought to determine why cotton and other Malvaceae have such high levels of these inositol phosphates. We have quantified the levels of InsP5 and InsP6 in different tissues of cotton plants and determined the expression of IPK1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene) in vegetative and reproductive tissues. Gossypium hirsutum was found to contain four IPK1 genes that were grouped into two pair (AB, CD) where each pair consists of very similar sequences that were measured together. More IPK1AB is expressed in leaves than in roots, whereas more IPK1CD is expressed in roots than in leaves. Leaves and flower buds have more InsP5 and InsP6 than stems and roots. Leaves and roots contain more InsP5 than InsP6, whereas flower buds and stems contain more InsP6 than InsP5. Dark-grown seedlings contain more InsP5 and InsP6 than those grown under lights, and the ratio of InsP5 to InsP6 is greater in the light-grown seedlings. During 35 days of the life cycle of the third true leaf, InsP5 and InsP6 gradually decreased by more than 50%. Silencing IPK1AB and IPK1CD with Cotton Leaf Crumple Virus-induced gene silencing (VIGS) resulted in plants with an intense viral phenotype, reduced IPK1AB expression and lowered amounts of InsP5. The results are consistent with Ins(1,2,4,5,6)P5 synthesis from Ins(1,4,5,6)P4 by IPK1. This study detailed the central role of IPK1 in cotton inositol polyphosphate metabolism, which has potential to be harnessed to improve the resistance of plants to different kinds of stress.


Assuntos
Gossypium , Ácido Fítico , Ácido Fítico/metabolismo , Gossypium/genética , Gossypium/metabolismo , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacologia
4.
Cell Rep ; 37(5): 109932, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731613

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Inositol 1,4,5-Trifosfato/farmacologia , Animais , Galinhas , Agonismo Parcial de Drogas , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/farmacologia , Fatores de Tempo
5.
Sci Rep ; 11(1): 18002, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504231

RESUMO

Pulmonary hypertension (PH) initially results in compensatory right ventricular (RV) hypertrophy, but eventually in RV failure. This transition is poorly understood, but may be triggered by hypoxia. Measurements of RV oxygen tension (pO2) in PH are lacking. We hypothesized that RV hypoxia occurs in monocrotaline-induced PH in rats and that myo-inositol trispyrophosphate (ITPP), facilitating oxygen dissociation from hemoglobin, can relieve it. Rats received monocrotaline (PH) or saline (control) and 24 days later echocardiograms, pressure-volume loops were obtained and myocardial pO2 was measured using a fluorescent probe. In PH mean pulmonary artery pressure more than doubled (35 ± 5 vs. 15 ± 2 in control), RV was hypertrophied, though its contractility was augmented. RV and LV pO2 was 32 ± 5 and 15 ± 8 mmHg, respectively, in control rats. In PH RV pO2 was reduced to 18 ± 9 mmHg, while LV pO2 was unchanged. RV pO2 correlated with RV diastolic wall stress (negatively) and LV systolic pressure (positively). Acute ITPP administration did not affect RV or LV pO2 in control animals, but increased RV pO2 to 26 ± 5 mmHg without affecting LV pO2 in PH. RV oxygen balance is impaired in PH and as such can be an important target for PH therapy. ITPP may be one of such potential therapies.


Assuntos
Cardiotônicos/farmacologia , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipóxia/tratamento farmacológico , Fosfatos de Inositol/farmacologia , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Cardiotônicos/administração & dosagem , Modelos Animais de Doenças , Hemoglobinas/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/induzido quimicamente , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Monocrotalina/administração & dosagem , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Ratos , Ratos Wistar , Resultado do Tratamento , Disfunção Ventricular Direita/induzido quimicamente , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia
6.
J Cell Mol Med ; 25(7): 3284-3299, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33624446

RESUMO

Pathologic angiogenesis directly responds to tumour hypoxia and controls the molecular/cellular composition of the tumour microenvironment, increasing both immune tolerance and stromal cooperation with tumour growth. Myo-inositol-trispyrophosphate (ITPP) provides a means to achieve stable normalization of angiogenesis. ITPP increases intratumour oxygen tension (pO2 ) and stabilizes vessel normalization through activation of endothelial Phosphatase-and-Tensin-homologue (PTEN). Here, we show that the tumour reduction due to the ITPP-induced modification of the tumour microenvironment by elevating pO2 affects the phenotype and properties of the immune infiltrate. Our main observations are as follows: a relative change in the M1 and M2 macrophage-type proportions, increased proportions of NK and CD8+ T cells, and a reduction in Tregs and Th2 cells. We also found, in vivo and in vitro, that the impaired access of PD1+ NK cells to tumour cells is due to their adhesion to PD-L1+ /PD-L2+ endothelial cells in hypoxia. ITPP treatment strongly reduced PD-L1/PD-L2 expression on CD45+/CD31+ cells, and PD1+ cells were more numerous in the tumour mass. CTLA-4+ cell numbers were stable, but level of expression decreased. Similarly, CD47+ cells and expression were reduced. Consequently, angiogenesis normalization induced by ITPP is the mean to revert immunosuppression into an antitumor immune response. This brings a key adjuvant effect to improve the efficacy of chemo/radio/immunotherapeutic strategies for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Hipóxia Celular , Fosfatos de Inositol/farmacologia , Neovascularização Patológica/tratamento farmacológico , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Fosfatos de Inositol/uso terapêutico , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/imunologia , PTEN Fosfo-Hidrolase/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Células Tumorais Cultivadas
7.
Int J Radiat Oncol Biol Phys ; 110(4): 1222-1233, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33587991

RESUMO

PURPOSE: Tumor hypoxia is a major limiting factor for successful radiation therapy outcomes, with hypoxic cells being up to 3-fold more radiation resistant than normoxic cells; tumor hypoxia creates a tumor microenvironment that is hostile to immune response. Thus, pharmaceutical-induced tumor oxygenation before radiation therapy represents an interesting method to enhance the efficacy of radiation therapy. Myo-inositol trispyrophosphate (ITPP) triggers a decrease in the affinity of oxygen to hemoglobin, which leads to an increased release of oxygen upon tissue demand, including in hypoxic tumors. METHODS AND MATERIALS: The combined treatment modality of high-dose bolus ITPP with a single high-dose fraction of ionizing radiation (IR) was investigated for its mechanics and efficacy in multiple preclinical animal tumor models in immunocompromised and immunocompetent mice. The dynamics of tumor oxygenation were determined by serial hypoxia-oriented bioimaging. Initial and residual DNA damage and the integrity of the tumor vasculature were quantified on the immunohistochemical level in response to the different treatment combinations. RESULTS: ITPP application did not affect tumor growth as a single treatment modality, but it rapidly induced tumor oxygenation, as demonstrated by in vivo imaging, and significantly reduced tumor growth when combined with IR. An immunohistochemical analysis of γH2AX foci demonstrated increased initial and residual IR-induced DNA damage as the primary mechanism for radiosensitization within initially hypoxic but ITPP-oxygenated tumor regions. Scheduling experiments revealed that ITPP increases the efficacy of ionizing radiation only when applied before radiation therapy. Irradiation alone damaged the tumor vasculature and increased tumor hypoxia, which were both prevented by combined treatment with ITPP. Interestingly, the combined treatment modality also promoted increased immune cell infiltration. CONCLUSIONS: ITPP-mediated tumor oxygenation and vascular protection triggers immediate and delayed processes to enhance the efficacy of ionizing radiation for successful radiation therapy.


Assuntos
Fosfatos de Inositol/farmacologia , Oxigênio/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Hipóxia Tumoral/efeitos dos fármacos
8.
Nat Metab ; 3(1): 75-89, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33462516

RESUMO

NADPH has long been recognized as a key cofactor for antioxidant defence and reductive biosynthesis. Here we report a metabolism-independent function of NADPH in modulating epigenetic status and transcription. We find that the reduction of cellular NADPH levels, achieved by silencing malic enzyme or glucose-6-phosphate dehydrogenase, impairs global histone acetylation and transcription in both adipocytes and tumour cells. These effects can be reversed by supplementation with exogenous NADPH or by inhibition of histone deacetylase 3 (HDAC3). Mechanistically, NADPH directly interacts with HDAC3 and interrupts the association between HDAC3 and its co-activator nuclear receptor corepressor 2 (Ncor2; SMRT) or Ncor1, thereby impairing HDAC3 activation. Interestingly, NADPH and the inositol tetraphosphate molecule Ins(1,4,5,6)P4 appear to bind to the same domains on HDAC3, with NADPH having a higher affinity towards HDAC3 than Ins(1,4,5,6)P4. Thus, while Ins(1,4,5,6)P4 promotes formation of the HDAC3-Ncor complex, NADPH inhibits it. Collectively, our findings uncover a previously unidentified and metabolism-independent role of NADPH in controlling epigenetic change and gene expression by acting as an endogenous inhibitor of HDAC3.


Assuntos
Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , NADP/farmacologia , Correpressor 1 de Receptor Nuclear/metabolismo , Correpressor 2 de Receptor Nuclear/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Histonas/metabolismo , Humanos , Fosfatos de Inositol/farmacologia , Malato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Células NIH 3T3 , Correpressor 1 de Receptor Nuclear/biossíntese , Correpressor 1 de Receptor Nuclear/genética , Correpressor 2 de Receptor Nuclear/biossíntese , Correpressor 2 de Receptor Nuclear/genética
9.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374769

RESUMO

Chronic inflammation is one of the most common and well-recognized risk factors for human cancer, including colon cancer. Inflammatory bowel disease (IBD) is defined as a longstanding idiopathic chronic active inflammatory process in the colon, including ulcerative colitis and Crohn's disease. Importantly, patients with IBD have a significantly increased risk for the development of colorectal carcinoma. Dietary inositol and its phosphates, as well as phospholipid derivatives, are well known to benefit human health in diverse pathologies including cancer prevention. Inositol phosphates including InsP3, InsP6, and other pyrophosphates, play important roles in cellular metabolic and signal transduction pathways involved in the control of cell proliferation, differentiation, RNA export, DNA repair, energy transduction, ATP regeneration, and numerous others. In the review, we highlight the biologic function and health effects of inositol and its phosphates including the nature and sources of these molecules, potential nutritional deficiencies, their biologic metabolism and function, and finally, their role in the prevention of colitis-induced carcinogenesis.


Assuntos
Colite/complicações , Neoplasias do Colo/prevenção & controle , Fosfatos de Inositol/farmacologia , Inositol/farmacologia , Animais , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Humanos
10.
IUBMB Life ; 72(11): 2282-2289, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32893983

RESUMO

While searching for a counterpart to cyclic AMP, a new compound was found to inhibit adenylate cyclase. It was identified as prostaglandyl-(15-4')-myo-inositol (1':2'-cyclic)-phosphate (cyclic PIP). The substrates for its biosynthesis are prostaglandin E (PGE) and the novel inositol phosphate, guanosine diphospho-4-myo-inositol 1:2-cyclic phosphate (n-IP). The basic regulatory properties of cyclic PIP are to inhibit dose-dependently protein kinase A (PKA) and to seven-fold activate protein ser/thr phosphatase holoenzyme. These regulations occur as rapidly as the activation of PKA by cyclic AMP. Such regulatory properties are essential for the meticulous regulation of the equilibrium between the phospho- and de-phospho-form of interconvertible enzymes. The synthesis of cyclic PIP is stimulated by insulin and noradrenaline (α-receptor action). The insulin-stimulated cyclic PIP synthase is active in a tyrosine-phosphorylated state. A comparable characterization of the adrenaline-stimulated cyclic PIP synthase is still incomplete. In streptozotocin-diabetic rats, the hormonal stimulation of cyclic PIP synthesis decreases with time. Cyclic PIP synthesis is activated by biguanides as metformin two to four-fold and by antihypertensive drugs two-fold. Inhibition of cyclic PIP synthesis leads to a metabolic state as observed in early-stage type-2 diabetes. In summary, all living cells synthesize cyclic PIP, which switches on anabolism, whereas cyclic AMP triggers catabolism.


Assuntos
AMP Cíclico/antagonistas & inibidores , Diabetes Mellitus/patologia , Fosfatos de Inositol/farmacologia , Prostaglandinas E/farmacologia , Animais , Diabetes Mellitus/metabolismo , Humanos
11.
Nat Commun ; 11(1): 721, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024848

RESUMO

Myo-inositol hexakisphosphate (IP6) is a natural product known to inhibit vascular calcification (VC), but with limited potency and low plasma exposure following bolus administration. Here we report the design of a series of inositol phosphate analogs as crystallization inhibitors, among which 4,6-di-O-(methoxy-diethyleneglycol)-myo-inositol-1,2,3,5-tetrakis(phosphate), (OEG2)2-IP4, displays increased in vitro activity, as well as more favorable pharmacokinetic and safety profiles than IP6 after subcutaneous injection. (OEG2)2-IP4 potently stabilizes calciprotein particle (CPP) growth, consistently demonstrates low micromolar activity in different in vitro models of VC (i.e., human serum, primary cell cultures, and tissue explants), and largely abolishes the development of VC in rodent models, while not causing toxicity related to serum calcium chelation. The data suggest a mechanism of action independent of the etiology of VC, whereby (OEG2)2-IP4 disrupts the nucleation and growth of pathological calcification.


Assuntos
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacologia , Calcificação Vascular/tratamento farmacológico , 6-Fitase/metabolismo , Adenina/efeitos adversos , Animais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Etilenoglicol/química , Humanos , Injeções Subcutâneas , Fosfatos de Inositol/farmacocinética , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Ratos Sprague-Dawley , Uremia/tratamento farmacológico , Uremia/fisiopatologia , Calcificação Vascular/induzido quimicamente , Difração de Raios X
12.
J Med Chem ; 63(6): 3238-3251, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32052631

RESUMO

Analogues of the Ca2+-releasing intracellular messenger d-myo-inositol 1,4,5-trisphosphate [1, Ins(1,4,5)P3] are important synthetic targets. Replacement of the α-glucopyranosyl motif in the natural product mimic adenophostin 2 by d-chiro-inositol in d-chiro-inositol adenophostin 4 increased the potency. Similar modification of the non-nucleotide Ins(1,4,5)P3 mimic ribophostin 6 may increase the activity. d-chiro-Inositol ribophostin 10 was synthesized by coupling as building blocks suitably protected ribose 12 with l-(+)-3-O-trifluoromethylsulfonyl-6-O-p-methoxybenzyl-1,2:4,5-di-O-isopropylidene-myo-inositol 11. Separable diastereoisomeric 3-O-camphanate esters of (±)-6-O-p-methoxy-benzyl-1,2:4,5-di-O-isopropylidene-myo-inositol allowed the preparation of 11. Selective trans-isopropylidene deprotection in coupled 13, then monobenzylation gave separable regioisomers 15 and 16. p-Methoxybenzyl group deprotection of 16, phosphitylation/oxidation, then deprotection afforded 10, which was a full agonist in Ca2+-release assays; its potency and binding affinity for Ins(1,4,5)P3R were similar to those of adenophostin. Both 4 and 10 elicited a store-operated Ca2+ current ICRAC in patch-clamped cells, unlike Ins(1,4,5)P3 consistent with resistance to metabolism. d-chiro-Inositol ribophostin is the most potent small-molecule Ins(1,4,5)P3 receptor agonist without a nucleobase yet synthesized.


Assuntos
Receptores de Inositol 1,4,5-Trifosfato/agonistas , Fosfatos de Inositol/farmacologia , Ribosemonofosfatos/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Galinhas , Humanos , Fosfatos de Inositol/síntese química , Estrutura Molecular , Ratos , Ribosemonofosfatos/síntese química , Relação Estrutura-Atividade
13.
J Cell Mol Med ; 24(3): 2272-2283, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957267

RESUMO

Heart failure is a consequence of progression hypoxia-dependent tissue damages. Therapeutic approaches to restore and/or protect the healthy cardiac tissue have largely failed and remain a major challenge of regenerative medicine. The myo-inositol trispyrophosphate (ITPP) is a modifier of haemoglobin which enters the red blood cells and modifies the haemoglobin properties, allowing for easier and better delivery of oxygen by the blood. Here, we show that this treatment approach in an in vivo model of myocardial infarction (MI) results in an efficient protection from heart failure, and we demonstrate the recovery effect on post-MI left ventricular remodelling in the rat model. Cultured cardiomyocytes used to study the molecular mechanism of action of ITPP in vitro displayed the fast stimulation of HIF-1 upon hypoxic conditions. HIF-1 overexpression was prevented by ITPP when incorporated into red blood cells applied in a model of blood-perfused cardiomyocytes coupling the dynamic shear stress effect to the enhanced O2 supply by modification of haemoglobin ability to release O2 in hypoxia. ITPP treatment appears a breakthrough strategy for the efficient and safe treatment of hypoxia- or ischaemia-induced injury of cardiac tissue.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Hipóxia/tratamento farmacológico , Fosfatos de Inositol/farmacologia , Oxigênio/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Contagem de Eritrócitos/métodos , Eritrócitos/metabolismo , Feminino , Hemoglobinas/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Wistar
14.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817119

RESUMO

Phytate (myo-inositol hexaphosphate, InsP6) is an important component of seeds, legumes, nuts, and whole cereals. Although this molecule was discovered in 1855, its biological effects as an antinutrient was first described in 1940. The antinutrient effect of phytate results because it can decrease the bioavailability of important minerals under certain circumstances. However, during the past 30 years, researchers have identified many important health benefits of phytate. Thus, 150 years have elapsed since the discovery of phytate to the first descriptions of its beneficial effects. This long delay may be due to the difficulty in determining phytate in biological media, and because phytate dephosphorylation generates many derivatives (InsPs) that also have important biological functions. This paper describes the role of InsP6 in blocking the development of pathological calcifications. Thus, in vitro studies have shown that InsP6 and its hydrolysates (InsPs), as well as pyrophosphate, bisphosphonates, and other polyphosphates, have high capacity to inhibit calcium salt crystallization. Oral or topical administration of phytate in vivo significantly decreases the development of pathological calcifications, although the details of the underlying mechanism are uncertain. Moreover, oral or topical administration of InsP6 also leads to increased urinary excretion of mixtures of different InsPs; in the absence of InsP6 administration, only InsP2 occurs at detectable levels in urine.


Assuntos
Calcinose/tratamento farmacológico , Calcinose/patologia , Ácido Fítico/uso terapêutico , Animais , Cálcio , Cristalização , Humanos , Fosfatos de Inositol/farmacologia , Ácido Fítico/administração & dosagem
15.
Eur Rev Med Pharmacol Sci ; 23(5): 2293-2301, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30915778

RESUMO

OBJECTIVE: To evaluate, in overweight/obese PCOS women, which of three distinct treatment modalities achieved the greatest clinical benefits in terms of clinical and body composition outcomes. PATIENTS AND METHODS: Forty-three polycystic ovary syndrome (PCOS) overweight/obese patients were randomly treated for 6 months with: only diet (Group 1, n = 21); diet and myo-inositol (MI) 4 g + folic acid 400 µg daily (group 2, n = 10); diet in association with MI 1.1 g + D-chiroinositol (DCI) 27.6 mg + folic acid 400 µg daily (group 3, n = 13). Menstrual cycle, Ferriman-Gallwey score, body mass index (BMI), waist circumference, hip circumference, waist-hip ratio (WHR), and body composition by bioimpedentiometry were measured at baseline, 3 and 6 months. RESULTS: Body weight, BMI, waist and hip circumferences decreased significantly in all groups. There was a significant difference between the 3 groups regarding the restoration of menstrual regularity (p = 0.02) that was obtained in all patients only in-group 3. CONCLUSIONS: MI+DCI in association with diet seems to accelerate the weight loss and the fat mass reduction with a slight increase of percent lean mass, and this treatment contributes significantly in restoring the regularity of the menstrual cycle.


Assuntos
Ácido Fólico/administração & dosagem , Fosfatos de Inositol/administração & dosagem , Inositol/administração & dosagem , Obesidade/dietoterapia , Sobrepeso/dietoterapia , Síndrome do Ovário Policístico/terapia , Polissacarídeos/administração & dosagem , Adulto , Composição Corporal/efeitos dos fármacos , Dietoterapia , Feminino , Ácido Fólico/farmacologia , Humanos , Inositol/farmacologia , Fosfatos de Inositol/farmacologia , Menstruação/efeitos dos fármacos , Obesidade/complicações , Sobrepeso/complicações , Síndrome do Ovário Policístico/etiologia , Polissacarídeos/farmacologia , Resultado do Tratamento , Circunferência da Cintura/efeitos dos fármacos , Relação Cintura-Quadril , Adulto Jovem
16.
J Cell Mol Med ; 23(3): 1908-1916, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30575283

RESUMO

Tumour hypoxia is a well-established factor of resistance in radiation therapy (RT). Myo-inositol trispyrophosphate (ITPP) is an allosteric effector that reduces the oxygen-binding affinity of haemoglobin and facilitates the release of oxygen by red blood cells. We investigated herein the oxygenation effect of ITPP in six tumour models and its radiosensitizing effect in two of these models. The evolution of tumour pO2 upon ITPP administration was monitored on six models using 1.2 GHz Electron Paramagnetic Resonance (EPR) oximetry. The effect of ITPP on tumour perfusion was assessed by Hoechst staining and the oxygen consumption rate (OCR) in vitro was measured using 9.5 GHz EPR. The therapeutic effect of ITPP with and without RT was evaluated on rhabdomyosarcoma and 9L-glioma rat models. ITPP enhanced tumour oxygenation in six models. The administration of 2 g/kg ITPP once daily for 2 days led to a tumour reoxygenation for at least 4 days. ITPP reduced the OCR in six cell lines but had no effect on tumour perfusion when tested on 9L-gliomas. ITPP plus RT did not improve the outcome in rhabdomyosarcomas. In 9L-gliomas, some of tumours receiving the combined treatment were cured while other tumours did not benefit from the treatment. ITPP increased oxygenation in six tumour models. A decrease in OCR could contribute to the decrease in tumour hypoxia. The association of RT with ITPP was beneficial for a few 9L-gliomas but was absent in the rhabdomyosarcomas.


Assuntos
Fosfatos de Inositol/farmacologia , Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Hemoglobinas/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Nus , Oximetria/métodos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Roedores
17.
J Neurosci ; 38(35): 7622-7634, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30037836

RESUMO

In the hemaphroditic sea snail, Aplysia californica, reproduction is initiated when the bag cell neurons secrete egg-laying hormone during a protracted afterdischarge. A source of depolarization for the afterdischarge is a voltage-gated, nonselective cation channel, similar to transient receptor potential (TRP) channels. Once the afterdischarge is triggered, phospholipase C (PLC) is activated to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). We previously reported that a DAG analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), activates a prominent, inward whole-cell cationic current that is enhanced by IP3 To examine the underlying mechanism, we investigated the effect of exogenous OAG and IP3, as well as PLC activation, on cation channel activity and voltage dependence in excised, inside-out patches from cultured bag cell neurons. OAG transiently elevated channel open probability (PO) when applied to excised patches; however, coapplication of IP3 prolonged the OAG-induced response. In patches exposed to OAG and IP3, channel voltage dependence was left-shifted; this was also observed with OAG, but not to the same extent. Introducing the PLC activator, m-3M3FBS, to patches increased channel PO, suggesting PLC may be physically linked to the channels. Accordingly, blocking PLC with U-73122 ablated the m-3M3FBS-induced elevation in PO Treatment with m-3M3FBS left-shifted cation channel voltage dependence to a greater extent than exogenous OAG and IP3 Finally, OAG and IP3 potentiated the stimulatory effect of PKC, which is also associated with the channel. Thus, the PLC-PKC signaling system is physically localized such that PIP2 breakdown products liberated during the afterdischarge modulate the cation channel and temporally influence neuronal activity.SIGNIFICANCE STATEMENT Using excised patches from Aplysia bag cell neurons, we present the first evidence of a nonselective cation channel physically associating with phospholipase C (PLC) at the single-channel level. PLC-mediated breakdown of phospholipids generates diacylglycerol and inositol trisphosphate, which activate the cation channel. This is mimicked by exogenous lipids; furthermore, these second messengers left-shift channel voltage dependence and enhance the response of the channel to protein kinase C. PLC-mediated lipid signaling controls single-channel currents to ensure depolarization is maintained for an extended period of firing, termed the afterdischarge, when the bag cell neurons secrete egg-laying hormone to trigger reproduction.


Assuntos
Aplysia/enzimologia , Canais Iônicos/fisiologia , Fosfatidilinositóis/metabolismo , Fosfolipases Tipo C/fisiologia , Animais , Cálcio/metabolismo , Cátions/metabolismo , Células Cultivadas , Diglicerídeos/metabolismo , Diglicerídeos/farmacologia , Hidrólise , Fosfatos de Inositol/metabolismo , Fosfatos de Inositol/farmacologia , Hormônios de Invertebrado/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo
18.
PLoS One ; 13(4): e0195067, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614122

RESUMO

90Sr, which was released into the atmosphere and the ocean following the Chernobyl and Fukushima Daiichi nuclear power plant disasters, is an important nuclear fission element. Compounds that inhibit the absorption of 90Sr into the bloodstream and enhance its elimination can be beneficial in decreasing the absorbed radiation dose in people exposed to 90Sr. Recently, we prepared complexes of myo-inositol-hexakisphosphate (InsP6) with zinc or lanthanum as decorporation agents. These complexes, called Zn-InsP6 and La-InsP6 respectively, are insoluble in water and can potentially chelate additional metal cations. Hypothesizing that these complexes can assist the excretion of 90Sr from the body, we evaluated them using 85Sr instead of 90Sr. In in vitro binding experiments, Zn-InsP6 showed higher strontium adsorption capacity than La-InsP6. We then performed in vivo biodistribution experiments of Zn-InsP6 in mice after oral administration of 85SrCl2. Mice treated with Zn-InsP6 showed significantly lower bone accumulation of radioactivity than mice in a non-treatment control group. Zn-InsP6 adsorbed radiostrontium in the gastrointestinal tract, inhibited this ion's absorption into the bloodstream, and enhanced its excretion in the feces. Therefore, Zn-InsP6 appears to be a promising 90Sr "decorporation" agent.


Assuntos
Fosfatos de Inositol/química , Fosfatos de Inositol/farmacologia , Lantânio/química , Radioisótopos de Estrôncio/metabolismo , Zinco/química , Administração Oral , Adsorção/efeitos dos fármacos , Animais , Cálcio/metabolismo , Camundongos , Sódio/metabolismo , Radioisótopos de Estrôncio/administração & dosagem , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
19.
J Cancer Res Ther ; 14(1): 208-212, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29516987

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of the Akt inhibitor Src-homology 5 (SH-5) on the proliferation and apoptosis of laryngeal squamous cell carcinoma cells (LSCC; Hep-2 cells) and to elucidate the possible mechanisms of such effects. MATERIALS AND METHODS: Hep-2 cells were treated with different concentrations of the Akt inhibitor SH-5. The inhibitory effect of SH-5 on cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, whereas apoptosis was detected by flow cytometric based on Annexin V/propidium iodide (PI) staining. In addition, the expression level of Akt protein was evaluated by Western blot analysis. RESULTS: MTT assay results revealed that SH-5 inhibited the proliferation of Hep-2 cells, with its greatest effect being observed at 2 µM. Apoptosis of Hep-2 cells increased following treatment with SH-5. Treatment of Hep-2 cells with SH-5 decreased the expression of Akt, and this effect was statistically significantly when compared with that in controls (P < 0.05). CONCLUSION: SH-5 inhibited proliferation and induced apoptosis in the LSCC cell line Hep-2. These effects may be caused by inhibition of the phosphoinositide 3-kinase-Akt signaling pathway. We believe that our data will provide useful insights into LSCC target treatment and future researchn.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Fosfatos de Inositol/farmacologia , Neoplasias Laríngeas/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos
20.
Pregnancy Hypertens ; 10: 107-112, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29153661

RESUMO

PKB/Akt and MAP/ERK are intracellular kinases regulating cell survival, proliferation and metabolism and as such hold a strategical role in preeclampsia. In fact intracellular pathways related to immunological alterations, endothelial dysfunction and insulin resistance in preeclampsia converge on these molecules. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. To evaluate the pathophysiological significance of this response, the effect of myo-inositol and d-chiro inositol on the activation of PKB/Akt and MAPK/ERK was assessed in human endothelial cells in vitro. Time-course and dose-response analyses of phosphorylation following incubation with inositols showed an approximately 6-fold and 15-fold increase for myo-inositol and d-chiro inositol (p<0.05), respectively. Both inositols promoted a significantly higher PKB/Akt and MAPK/ERK phosphorylation than insulin. Thus, exogenously administered inositols can activate PKB/Akt and MAPK/ERK in human endothelial cells in vitro. The increased production of d-chiro inositol phosphoglycans (IPG-P) during preeclampsia may thus represent a compensatory response, potentially promoting cell survival and metabolism.


Assuntos
Endotélio Vascular/metabolismo , Fosfatos de Inositol/farmacologia , Antagonistas da Insulina/farmacologia , Resistência à Insulina , Fosforilação/efeitos dos fármacos , Polissacarídeos/farmacologia , Pré-Eclâmpsia/metabolismo , Adulto , Feminino , Humanos , Pré-Eclâmpsia/patologia , Gravidez , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA