Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 449
Filtrar
1.
Curr Microbiol ; 81(8): 248, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951187

RESUMO

Myxococcus xanthus synthesizes polyphosphates (polyPs) with polyphosphate kinase 1 (Ppk1) and degrades short- and long-chain polyPs with the exopolyphosphatases, Ppx1 and Ppx2, respectively. M. xanthus polyP:AMP phosphotransferase (Pap) generates ADP from AMP and polyPs. Pap expression is induced by an elevation in intracellular polyP concentration. M. xanthus synthesized polyPs during the stationary phase; the ppk1 mutant died earlier than the wild-type strain after the stationary phase. In addition, M. xanthus cells cultured in phosphate-starved medium, H2O2-supplemented medium, or amino acid-deficient medium increased the intracellular polyP levels by six- to ninefold after 6 h of incubation. However, the growth of ppk1 and ppx2 mutants in phosphate-starved medium and H2O2-supplemented medium was not significantly different from that of wild-type strain, nor was there a significant difference in fruiting body formation and sporulation in starvation condition. During development, no difference was observed in the adenylate energy charge (AEC) values in the wild-type, ppk1 mutant, and pap mutant strains until the second day of development. However, after day 3, the ppk1 and pap mutants had a lower ADP ratio and a higher AMP ratio compared to wild-type strain, and as a result, the AEC values of these mutants were lower than those of the wild-type strain. Spores of ppk1 and pap mutants in the nutrient medium germinated later than those of the wild-type strain. These results suggested that polyPs produced during development may play an important role in cellular energy homeostasis of the spores by being used to convert AMP to ADP via Pap.


Assuntos
Myxococcus xanthus , Polifosfatos , Esporos Bacterianos , Polifosfatos/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Meios de Cultura/química
2.
Appl Environ Microbiol ; 90(5): e0229023, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619267

RESUMO

The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Bactérias , Polifosfatos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Polifosfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
3.
J Am Soc Nephrol ; 35(4): 441-455, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38317282

RESUMO

SIGNIFICANCE STATEMENT: Kidneys are gatekeepers of systemic inorganic phosphate balance because they control urinary phosphate excretion. In yeast and plants, inositol hexakisphosphate kinases (IP6Ks) are central to regulate phosphate metabolism, whereas their role in mammalian phosphate homeostasis is mostly unknown. We demonstrate in a renal cell line and in mice that Ip6k1 and Ip6k2 are critical for normal expression and function of the major renal Na + /Pi transporters NaPi-IIa and NaPi-IIc. Moreover, Ip6k1/2-/- mice also show symptoms of more generalized kidney dysfunction. Thus, our results suggest that IP6Ks are essential for phosphate metabolism and proper kidney function in mammals. BACKGROUND: Inorganic phosphate is an essential mineral, and its plasma levels are tightly regulated. In mammals, kidneys are critical for maintaining phosphate homeostasis through mechanisms that ultimately regulate the expression of the Na + /Pi cotransporters NaPi-IIa and NaPi-IIc in proximal tubules. Inositol pyrophosphate 5-IP 7 , generated by IP6Ks, is a main regulator of phosphate metabolism in yeast and plants. IP6Ks are conserved in mammals, but their role in phosphate metabolism in vivo remains unexplored. METHODS: We used in vitro (opossum kidney cells) and in vivo (renal tubular-specific Ip6k1/2-/- mice) models to analyze the role of IP6K1/2 in phosphate homeostasis in mammals. RESULTS: In both systems, Ip6k1 and Ip6k2 are responsible for synthesis of 5-IP 7 . Depletion of Ip6k1/2 in vitro reduced phosphate transport and mRNA expression of Na + /Pi cotransporters, and it blunts phosphate transport adaptation to changes in ambient phosphate. Renal ablation of both kinases in mice also downregulates the expression of NaPi-IIa and NaPi-IIc and lowered the uptake of phosphate into proximal renal brush border membranes. In addition, the absence of Ip6k1 and Ip6k2 reduced the plasma concentration of fibroblast growth factor 23 and increased bone resorption, despite of which homozygous males develop hypophosphatemia. Ip6k1/2-/- mice also show increased diuresis, albuminuria, and hypercalciuria, although the morphology of glomeruli and proximal brush border membrane seemed unaffected. CONCLUSIONS: Depletion of renal Ip6k1/2 in mice not only altered phosphate homeostasis but also dysregulated other kidney functions.


Assuntos
Túbulos Renais , Fosfotransferases (Aceptor do Grupo Fosfato) , Animais , Masculino , Camundongos , Rim/metabolismo , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Túbulos Renais/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
4.
J Biol Chem ; 300(4): 107116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403246

RESUMO

Inositol phosphates and their metabolites play a significant role in several biochemical pathways, gene expression regulation, and phosphate homeostasis. Among the different inositol phosphates, inositol hexakisphosphate (IP6) is a substrate of inositol hexakisphosphate kinases (IP6Ks), which phosphorylate one or more of the IP6 phosphate groups. Pyrophosphorylation of IP6 leads to the formation of inositol pyrophosphates, high-energy signaling molecules that mediate physiological processes through their ability to modify target protein activities, either by directly binding to their target protein or by pyrophosphorylating protein serine residues. 5-diphosphoinositol pentakisphosphate, the most abundant inositol pyrophosphate in mammals, has been extensively studied and found to be significantly involved in a wide range of physiological processes. Three IP6K (IP6K1, IP6K2, and IP6K3) isoforms regulate IP7 synthesis in mammals. Here, we summarize our current understanding of IP6K1's roles in cytoskeletal remodeling, trafficking, cellular migration, metabolism, gene expression, DNA repair, and immunity. We also briefly discuss current gaps in knowledge, highlighting the need for further investigation.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato) , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Animais , Humanos , Fosfatos de Inositol/metabolismo , Citoesqueleto/metabolismo , Mamíferos/metabolismo
5.
Cardiovasc Res ; 120(8): 954-970, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252884

RESUMO

AIMS: Adiponectin is an adipocyte-derived circulating protein that exerts cardiovascular and metabolic protection. Due to the futile degradation of endogenous adiponectin and the challenges of exogenous administration, regulatory mechanisms of adiponectin biosynthesis are of significant pharmacological interest. METHODS AND RESULTS: Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) generated by inositol hexakisphosphate kinase 1 (IP6K1) governed circulating adiponectin levels via thiol-mediated protein quality control in the secretory pathway. IP6K1 bound to adiponectin and DsbA-L and generated 5-InsP7 to stabilize adiponectin/ERp44 and DsbA-L/Ero1-Lα interactions, driving adiponectin intracellular degradation. Depleting 5-InsP7 by either IP6K1 deletion or pharmacological inhibition blocked intracellular adiponectin degradation. Whole-body and adipocyte-specific deletion of IP6K1 boosted plasma adiponectin levels, especially its high molecular weight forms, and activated AMPK-mediated protection against myocardial ischaemia-reperfusion injury. Pharmacological inhibition of 5-InsP7 biosynthesis in wild-type but not adiponectin knockout mice attenuated myocardial ischaemia-reperfusion injury. CONCLUSION: Our findings revealed that 5-InsP7 is a physiological regulator of adiponectin biosynthesis that is amenable to pharmacological intervention for cardioprotection.


Assuntos
Adiponectina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica , Animais , Adiponectina/metabolismo , Adiponectina/genética , Adiponectina/sangue , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfatos de Inositol/metabolismo , Adipócitos/metabolismo , Adipócitos/enzimologia , Adipócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Masculino , Camundongos , Modelos Animais de Doenças , Transdução de Sinais , Proteólise , Humanos
6.
Appl Environ Microbiol ; 90(2): e0157423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38236018

RESUMO

ATP-dependent energy-consuming enzymatic reactions are widely used in cell-free biocatalysis. However, the direct addition of large amounts of expensive ATP can greatly increase cost, and enzymatic production is often difficult to achieve as a result. Although a polyphosphate kinase (PPK)-polyphosphate-based ATP regeneration system has the potential to solve this challenge, the generally poor thermal stability of PPKs limits the widespread use of this method. In this paper, we evaluated the thermal stability of a PPK from Sulfurovum lithotrophicum (SlPPK2). After directed evolution and computation-supported design, we found that SlPPK2 is very recalcitrant and cannot acquire beneficial mutations. Inspired by the usually outstanding stability of ancestral enzymes, we reconstructed the ancestral sequence of the PPK family and used it as a guide to construct three heat-stable variants of SlPPK2, of which the L35F/T144S variant has a half-life of more than 14 h at 60°C. Molecular dynamics simulations were performed on all enzymes to analyze the reasons for the increased thermal stability. The results showed that mutations at these two positions act synergistically from the interior and surface of the protein, leading to a more compact structure. Finally, the robustness of the L35F/T144S variant was verified in the synthesis of nucleotides at high temperature. In practice, the use of this high-temperature ATP regeneration system can effectively avoid byproduct accumulation. Our work extends the temperature boundary of ATP regeneration and has great potential for industrial applications.IMPORTANCEATP regeneration is an important basic applied study in the field of cell-free biocatalysis. Polyphosphate kinase (PPK) is an enzyme tool widely used for energy regeneration during enzymatic reactions. However, the thermal stability of the PPKs reported to date that can efficiently regenerate ATP is usually poor, which greatly limits their application. In this study, the thermal stability of a difficult-to-engineer PPK from Sulfurovum lithotrophicum was improved, guided by an ancestral sequence reconstruction strategy. The optimal variant has a 4.5-fold longer half-life at 60°C than the wild-type enzyme, thus enabling the extension of the temperature boundary for ATP regeneration. The ability of this variant to regenerate ATP was well demonstrated during high-temperature enzymatic production of nucleotides.


Assuntos
Trifosfato de Adenosina , Epsilonproteobacteria , Fosfotransferases (Aceptor do Grupo Fosfato) , Trifosfato de Adenosina/metabolismo , Temperatura , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Nucleotídeos
7.
Elife ; 122023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843983

RESUMO

Inositol hexakisphosphate kinases (IP6Ks) are emerging as relevant pharmacological targets because a multitude of disease-related phenotypes has been associated with their function. While the development of potent IP6K inhibitors is gaining momentum, a pharmacological tool to distinguish the mammalian isozymes is still lacking. Here, we implemented an analog-sensitive approach for IP6Ks and performed a high-throughput screen to identify suitable lead compounds. The most promising hit, FMP-201300, exhibited high potency and selectivity toward the unique valine gatekeeper mutants of IP6K1 and IP6K2, compared to the respective wild-type (WT) kinases. Biochemical validation experiments revealed an allosteric mechanism of action that was corroborated by hydrogen deuterium exchange mass spectrometry measurements. The latter analysis suggested that displacement of the αC helix, caused by the gatekeeper mutation, facilitates the binding of FMP-201300 to an allosteric pocket adjacent to the ATP-binding site. FMP-201300 therefore serves as a valuable springboard for the further development of compounds that can selectively target the three mammalian IP6Ks; either as analog-sensitive kinase inhibitors or as an allosteric lead compound for the WT kinases.


Assuntos
Fosfotransferases (Aceptor do Grupo Fosfato) , Ácido Fítico , Animais , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfatos de Inositol/metabolismo , Mamíferos/metabolismo
8.
J Biol Chem ; 299(3): 102928, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681123

RESUMO

Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.


Assuntos
Sistema Nervoso Entérico , Fosfatos de Inositol , Transcriptoma , Animais , Camundongos , Difosfatos/análise , Difosfatos/metabolismo , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/metabolismo , Fosfatos de Inositol/análise , Fosfatos de Inositol/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Trato Gastrointestinal/metabolismo
9.
Pediatr Res ; 93(7): 1891-1898, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36402914

RESUMO

BACKGROUND: Postnatal lean mass accretion is commonly reduced in preterm infants. This study investigated mechanisms involved in the blunted feeding-induced activation of Akt in the skeletal muscle of preterm pigs that contributes to lower protein synthesis rates. METHODS: On day 3 following cesarean section, preterm and term piglets were fasted or fed an enteral meal. Activation of Akt signaling pathways in skeletal muscle was determined. RESULTS: Akt1 and Akt2, but not Akt3, phosphorylation were lower in the skeletal muscle of preterm than in term pigs (P < 0.05). Activation of Akt-positive regulators, PDK1 and mTORC2, but not FAK, were lower in preterm than in term (P < 0.05). The formation of Akt complexes with GAPDH and Hsp90 and the abundance of Ubl4A were lower in preterm than in term (P < 0.05). The abundance of Akt inhibitors, PHLPP and SHIP2, but not PTEN and IP6K1, were higher in preterm than in term pigs (P < 0.05). PP2A activation was inhibited by feeding in term but not in preterm pigs (P < 0.05). CONCLUSIONS: Our results suggest that preterm birth impairs regulatory components involved in Akt activation, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced lean accretion following preterm birth. IMPACT: The Akt-mTORC1 pathway plays an important role in the regulation of skeletal muscle protein synthesis in neonates. This is the first evidence to demonstrate that, following preterm birth, the postprandial activation of positive regulators of Akt in the skeletal muscle is reduced, whereas the activation of negative regulators of Akt is enhanced. This anabolic resistance of Akt signaling in response to feeding likely contributes to the reduced accretion of lean mass in premature infants. These results may provide potential novel molecular targets for intervention to enhance lean growth in preterm neonates.


Assuntos
Nascimento Prematuro , Proteínas Proto-Oncogênicas c-akt , Recém-Nascido , Gravidez , Humanos , Animais , Suínos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Nascimento Prematuro/metabolismo , Cesárea , Animais Recém-Nascidos , Recém-Nascido Prematuro , Músculo Esquelético/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ubiquitinas/metabolismo
10.
Insect Biochem Mol Biol ; 150: 103849, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209956

RESUMO

Phosphomevalonate kinase (PMK) is an important enzyme involved in the juvenile hormone (JH) biosynthesis pathway that catalyzes the phosphorylation of mevalonate 5-phosphate into mevalonate 5-diphosphate in the mevalonate pathway. Herein, we report the crystal structure of insect PMK from Bombyx mori (BmPMK) at a resolution of 1.60 Å. The overall structure of BmPMK adopts a compact α/ß conformation with two parts: the core and lid regions. The interface between the core and lid regions forms a continuous and negatively charged groove to accommodate the substrates. Using computational simulation combined with site-directed mutagenesis and biochemical analysis, we define the binding mode of BmPMK with the cofactor and the substrate, which provides a structural basis for understanding the catalytic mechanism and the design of inhibitors of PMK. Moreover, BmPMK showed the optimal enzyme activity at pH 8.0, and the optimal temperature was 30 °C, using mevalonate 5-phosphate as the substrate. The expression profiles and kinetic analyses of BmPMK indicated that it plays critical role in the control of JH biosynthesis in silkworms. Collectively, these findings provide a better understanding of the structural and biochemical features of insect PMK.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Mutagênese Sítio-Dirigida
11.
Int J Biol Sci ; 18(9): 3697-3713, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813475

RESUMO

It is still a big puzzle how ovarian cancer cells and the tumor microenvironment (TME) attract lymphocytes infiltration for facilitating metastasis, a leading cause of death from gynecological malignancies. Using genome-wide LncRNA microarray assay, here we report that a LncRNA associated with ovarian cancer metastasis (LncOVM) is highly correlated with poor prognosis and survival. LncOVM interacts with and stabilizes PPIP5K2 by suppressing ubiquitinated degradation to promote complement C5 secretion from ovarian cancer cells. The TME-enriched complement C5 attracts myeloid-derived suppressor cells (MDSCs) infiltration in TME to facilitate metastasis. Knockdown of LncOVM or PPIP5K2 inhibits tumor progression in xenograft models. Application of C5aR antibody or inhibitor (CCX168) inhibits MDSC recruitment and restores the suppression of tumorigenesis and metastasis in vivo. Our study reveals that suppression of ovarian cancer metastasis can be achieved by targeting MDSC infiltration in TME through disrupting LncOVM-PPIP5K2-complement axis, providing an option for treating ovarian cancer patients.


Assuntos
Células Supressoras Mieloides , Neoplasias Ovarianas , RNA Longo não Codificante , Complemento C5/metabolismo , Feminino , Humanos , Células Supressoras Mieloides/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , RNA Longo não Codificante/metabolismo , Microambiente Tumoral
12.
Proc Natl Acad Sci U S A ; 119(14): e2121946119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35353626

RESUMO

Inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in various cellular functions including neuroprotection. Absence of IP6K2 causes impairment of oxidative phosphorylation regulated by creatine kinase-B. In the present study, we show that IP6K2 is involved in attenuation of PINK1-mediated mitochondrial autophagy (mitophagy) in the brain. Up-regulation of dynamin-related protein (Drp-1), as well as increased expression of mitochondrial biogenesis markers (PGC1-α and NRF-1) in the cerebella of IP6K2-deleted mice (IP6K2-knockout), point to the involvement of IP6K2 in the regulation of mitochondrial fission. Knockdown of IP6K2 also leads to augmented glycolysis, potentially as a compensatory mechanism for decreased mitochondrial respiration. Overexpressing IP6K2 as well as IP6K2-kinase dead mutant in IP6K2-knockdown N2A cells reverses the expression of mitophagy markers, demonstrating that IP6K2-induced mitoprotection is catalytically/kinase independent. IP6K2 supplementation in K2-PINK1 double-knockdown N2A cells fails to reverse the expression of the mitophagic marker, LC3-II, indicating that the mitoprotective effect of IP6K2 is dependent on PINK1. Overall, our study reveals a key neuroprotective role of IP6K2 in the prevention of PINK1-mediated mitophagy in the brain.


Assuntos
Mitofagia , Fosfotransferases (Aceptor do Grupo Fosfato) , Proteínas Quinases , Animais , Camundongos , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Proteínas Quinases/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 23(4)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35216174

RESUMO

(1) Background: We previously demonstrated that disruption of IP6K1 improves metabolism, protecting mice from high-fat diet-induced obesity, insulin resistance, and non-alcoholic fatty liver disease and steatohepatitis. Age-induced metabolic dysfunction is a major risk factor for metabolic diseases. The involvement of IP6K1 in this process is unknown. (2) Methods: Here, we compared body and fat mass, insulin sensitivity, energy expenditure and serum-, adipose tissue- and liver-metabolic parameters of chow-fed, aged, wild type (aWT) and whole body Ip6k1 knockout (aKO) mice. (3) Results: IP6K1 was upregulated in the adipose tissue and liver of aWT mice compared to young WT mice. Moreover, Ip6k1 deletion blocked age-induced increase in body- and fat-weight and insulin resistance in mice. aKO mice oxidized carbohydrates more efficiently. The knockouts displayed reduced levels of serum insulin, triglycerides, and non-esterified fatty acids. Ip6k1 deletion partly protected age-induced decline of the thermogenic uncoupling protein UCP1 in inguinal white adipose tissue. Targets inhibited by IP6K1 activity such as the insulin sensitivity- and energy expenditure-inducing protein kinases, protein kinase B (PKB/Akt) and AMP-activated protein kinase (AMPK), were activated in the adipose tissue and liver of aKO mice. (4) Conclusions: Ip6k1 deletion maintains healthy metabolism in aging and thus, targeting this kinase may delay the development of age-induced metabolic dysfunction.


Assuntos
Envelhecimento/metabolismo , Metabolismo Energético , Resistência à Insulina , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Aumento de Peso , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Desacopladora 1/metabolismo
14.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196785

RESUMO

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Polifosfatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiologia do Solo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Variação Genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Filogenia , Pseudomonas/classificação , Pseudomonas/enzimologia , Rizosfera , Sideróforos/biossíntese , Solo/química
15.
Cell Rep ; 38(7): 110392, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172146

RESUMO

The composition and origin of extrinsic cues required for hematopoietic stem cell (HSC) maintenance are incompletely understood. Here we identify renal Klotho and inorganic phosphate (Pi) as extrinsic factors that antagonistically regulate HSC maintenance in the bone marrow (BM). Disruption of the Klotho-Pi axis by renal Klotho deficiency or Pi excess causes Pi overload in the BM niche and Pi retention in HSCs, leading to alteration of HSC maintenance. Mechanistically, Pi retention is mediated by soluble carrier family 20 member 1 (SLC20A1) and sensed by diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) to enhance Akt activation, which then upregulates SLC20A1 to aggravate Pi retention and augments GATA2 activity to drive the expansion and megakaryocyte/myeloid-biased differentiation of HSCs. However, kidney-secreted soluble Klotho directly maintains HSC pool size and differentiation by restraining SLC20A1-mediated Pi absorption of HSCs. These findings uncover a regulatory role of the Klotho-Pi axis orchestrated by the kidneys in BM HSC maintenance.


Assuntos
Células-Tronco Hematopoéticas/citologia , Rim/metabolismo , Proteínas Klotho/metabolismo , Fosfatos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Fator de Transcrição GATA2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Proteínas Klotho/deficiência , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Solubilidade
16.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163951

RESUMO

Phosphorus in the form of phosphate (Pi) is an essential element for metabolic processes, including lipid metabolism. In yeast, the inositol polyphosphate kinase vip1 mediated synthesis of inositol heptakisphosphate (IP7) regulates the phosphate-responsive (PHO) signaling pathway, which plays an important role in response to Pi stress. The role of vip1 in Pi stress and lipid metabolism of Candida albicans has not yet been studied. We found that when vip1Δ/Δ was grown in glucose medium, if Pi was supplemented in the medium or mitochondrial Pi transporter was overexpressed in the strain, the lipid droplet (LD) content was reduced and membrane damage was alleviated. However, further studies showed that neither the addition of Pi nor the overexpression of the Pi transporter affected the energy balance of vip1Δ/Δ. In addition, the LD content of vip1Δ/Δ grown in Pi limitation medium PNMC was lower than that grown in SC, and the metabolic activity of vip1Δ/Δ grown in PNMC was also lower than that grown in SC medium. This suggests that the increase in Pi demand by a high energy metabolic rate is the cause of LD accumulation in vip1Δ/Δ. In addition, in the vip1Δ/Δ strains, the core transcription factor PHO4 in the PHO pathway was transported to the vacuole and degraded, which reduced the pathway activity. However, this does not mean that knocking out vip1 completely blocks the activation of the PHO pathway, because the LD content of vip1Δ/Δ grown in the medium with ß-glycerol phosphate as the Pi source was significantly reduced. In summary, the increased Pi demand and the decreased PHO pathway activity in vip1Δ/Δ ultimately lead to LD accumulation and cell membrane damage.


Assuntos
Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Candida albicans/metabolismo , Membrana Celular/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Fosfatos de Inositol , Gotículas Lipídicas/metabolismo , Fosfatos/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo
17.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054854

RESUMO

Inorganic polyphosphate (polyP) has been implicated in an astonishing array of biological functions, ranging from phosphorus storage to molecular chaperone activity to bacterial virulence. In bacteria, polyP is synthesized by polyphosphate kinase (PPK) enzymes, which are broadly subdivided into two families: PPK1 and PPK2. While both enzyme families are capable of catalyzing polyP synthesis, PPK1s preferentially synthesize polyP from nucleoside triphosphates, and PPK2s preferentially consume polyP to phosphorylate nucleoside mono- or diphosphates. Importantly, many pathogenic bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii encode at least one of each PPK1 and PPK2, suggesting these enzymes may be attractive targets for antibacterial drugs. Although the majority of bacterial polyP studies to date have focused on PPK1s, PPK2 enzymes have also begun to emerge as important regulators of bacterial physiology and downstream virulence. In this review, we specifically examine the contributions of PPK2s to bacterial polyP homeostasis. Beginning with a survey of the structures and functions of biochemically characterized PPK2s, we summarize the roles of PPK2s in the bacterial cell, with a particular emphasis on virulence phenotypes. Furthermore, we outline recent progress on developing drugs that inhibit PPK2 enzymes and discuss this strategy as a novel means of combatting bacterial infections.


Assuntos
Bactérias/enzimologia , Bactérias/patogenicidade , Fosfotransferases (Aceptor do Grupo Fosfato)/química , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfotransferases (Aceptor do Grupo Fosfato)/antagonistas & inibidores , Polifosfatos/química , Polifosfatos/metabolismo , Virulência , Fatores de Virulência/metabolismo
18.
Chembiochem ; 23(3): e202100596, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859954

RESUMO

AICA (5'-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.


Assuntos
Adenina Fosforribosiltransferase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Ribonucleotídeos/biossíntese , Acinetobacter/enzimologia , Aminoimidazol Carboxamida/química , Bactérias/enzimologia , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio , Polifosfatos/química , Ribonucleotídeos/química , Temperatura
19.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4669-4680, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36593201

RESUMO

Polyphosphate kinase plays an important role in the catalytic synthesis of ATP in vitro. In order to find a polyphosphate kinase that can efficiently synthesize ATP using short-chain polyphosphate (polyP) as substrate, the polyphosphate kinase 2 (PPK2) from Sphingobacterium siyangensis was cloned and expressed in Escherichia coli BL21(DE3). As an enzyme for ATP regeneration, PPK2 was used in combination with l-amino acid ligase (YwfE) to produce l-alanyl-l-glutamine (Ala-Gln). The length of ppk2 of S. siyangensis is 810 bp, encoding 270 amino acids. The SDS-PAGE showed that PPK2 was expressed correctly and its molecular weight was 29.7 kDa as expected. The reaction conditions of PPK2 were optimized. PPK2 could maintain good activity in the range of 22-42 ℃ and pH 7-10. The highest enzyme activity was observed at 37 ℃, pH 7, 30 mmol/L magnesium ion (Mg2+), 5 mmol/L ADP and 10 mmol/L sodium hexametaphosphate, and the yield of ATP reached 60% of the theoretical value in 0.5 hours at this condition. When used in combination with YwfE to produce Ala-Gln, the PPK2 showed a good applicability as an ATP regeneration system, and the effect was similar to that of direct addition of ATP. The PPK2 from S. siyangensis shows good performance in a wide range of temperature and pH, synthesizes ATP with cheap and readily available short chain polyP as substrate. The PPK2 thus provides a new enzyme source for ATP dependent catalytic reaction system.


Assuntos
Sphingobacterium , Sphingobacterium/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Aminoácidos , Trifosfato de Adenosina , Regeneração , Polifosfatos/metabolismo
20.
Adv Biol Regul ; 83: 100835, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34782304

RESUMO

Initial studies on the inositol phosphates metabolism were enabled by the social amoeba Dictyostelium discoideum. The abundant amount of inositol hexakisphosphate (IP6 also known as Phytic acid) present in the amoeba allowed the discovery of the more polar inositol pyrophosphates, IP7 and IP8, possessing one or two high energy phosphoanhydride bonds, respectively. Considering the contemporary growing interest in inositol pyrophosphates, it is surprising that in recent years D. discoideum, has contributed little to our understanding of their metabolism and function. This work fulfils this lacuna, by analysing the ip6k, ppip5k and ip6k-ppip5K amoeba null strains using PAGE, 13C-NMR and CE-MS analysis. Our study reveals an inositol pyrophosphate metabolism more complex than previously thought. The amoeba Ip6k synthesizes the 4/6-IP7 in contrast to the 5-IP7 isomer synthesized by the mammalian homologue. The amoeba Ppip5k synthesizes the same 1/3-IP7 as the mammalian enzyme. In D. discoideum, the ip6k strain possesses residual amounts of IP7. The residual IP7 is also present in the ip6k-ppip5K strain, while the ppip5k single mutant shows a decrease in both IP7 and IP8 levels. This phenotype is in contrast to the increase in IP7 observable in the yeast vip1Δ strain. The presence of IP8 in ppip5k and the presence of IP7 in ip6k-ppip5K indicate the existence of an additional inositol pyrophosphate synthesizing enzyme. Additionally, we investigated the existence of a metabolic relationship between inositol pyrophosphate synthesis and inorganic polyphosphate (polyP) metabolism as observed in yeast. These studies reveal that contrary to the yeast, Ip6k and Ppip5k do not control polyP cellular level in amoeba.


Assuntos
Dictyostelium , Animais , Dictyostelium/genética , Dictyostelium/metabolismo , Difosfatos/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA