RESUMO
KEY MESSAGE: Association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content which was verified in diploid and tetraploid potato mapping populations. Potatoes are grown for various purposes like French fries, table potatoes, crisps and for their starch. One of the most important aspects of potato starch is that it contains a high amount of phosphate ester groups which are considered to be important for providing improved functionalization after derivatization processes. Little is known about the variation in phosphate content as such in different potato varieties and thus we studied the genetic diversity for this trait. From other studies it was clear that the phosphate content is controlled by a quantitative trait locus (QTL) underlying the candidate gene α-Glucan Water Dikinase (StGWD) on chromosome 5. We performed direct amplicon sequencing of this gene by Sanger sequencing. Sequences of two StGWD amplicons from a global collection of 398 commercial cultivars and progenitor lines were used to identify 16 different haplotypes. By assigning tag SNPs to these haplotypes, each of the four alleles present in a cultivar could be deduced and linked to a phosphate content. A high value for intra-individual heterozygosity was observed (Ho = 0.765). The average number of different haplotypes per individual (Ai) was 3.1. Pedigree analysis confirmed that the haplotypes are identical-by-descent (IBD) and offered insight in the breeding history of elite potato germplasm. Haplotypes originating from introgression of wild potato accessions carrying resistance genes could be traced. Furthermore, association analysis resulted in the identification of specific StGWD alleles causing either an increase or decrease in starch phosphate content varying from 12 nmol PO4/mg starch to 38 nmol PO4/mg starch. These allele effects were verified in diploid and tetraploid mapping populations and offer possibilities to breed and select for this trait.
Assuntos
Fosfatos/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Amido/metabolismo , Tetraploidia , Alelos , Variação Genética , Haplótipos , Linhagem , Fosfotransferases (Aceptores Pareados)/metabolismo , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 °C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the α-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars.
Assuntos
Metabolismo dos Carboidratos , Resposta ao Choque Frio/fisiologia , Solanum tuberosum/metabolismo , Amilases/metabolismo , Metabolismo dos Carboidratos/genética , Clorofila/metabolismo , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Complexo I de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Malondialdeído/metabolismo , Fosforilases/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Água/metabolismo , beta-Frutofuranosidase/metabolismoRESUMO
Altering metabolic flux at a key branch point in metabolism has commonly been accomplished through gene knockouts or by modulating gene expression. An alternative approach to direct metabolic flux preferentially toward a product is decreasing the activity of a key enzyme through protein engineering. In Escherichia coli, pyruvate can accumulate from glucose when carbon flux through the pyruvate dehydrogenase complex is suppressed. Based on this principle, 16 chromosomally expressed AceE variants were constructed in E. coli C and compared for growth rate and pyruvate accumulation using glucose as the sole carbon source. To prevent conversion of pyruvate to other products, the strains also contained deletions in two nonessential pathways: lactate dehydrogenase (ldhA) and pyruvate oxidase (poxB). The effect of deleting phosphoenolpyruvate synthase (ppsA) on pyruvate assimilation was also examined. The best pyruvate-accumulating strains were examined in controlled batch and continuous processes. In a nitrogen-limited chemostat process at steady-state growth rates of 0.15 to 0.28 h-1, an engineered strain expressing the AceE[H106V] variant accumulated pyruvate at a yield of 0.59 to 0.66 g pyruvate/g glucose with a specific productivity of 0.78 to 0.92 g pyruvate/g cells·h. These results provide proof of concept that pyruvate dehydrogenase complex variants can effectively shift carbon flux away from central carbon metabolism to allow pyruvate accumulation. This approach can potentially be applied to other key enzymes in metabolism to direct carbon toward a biochemical product. IMPORTANCE Microbial production of biochemicals from renewable resources has become an efficient and cost-effective alternative to traditional chemical synthesis methods. Metabolic engineering tools are important for optimizing a process to perform at an economically feasible level. This study describes an additional tool to modify central metabolism and direct metabolic flux to a product. We have shown that variants of the pyruvate dehydrogenase complex can direct metabolic flux away from cell growth to increase pyruvate production in Escherichia coli. This approach could be paired with existing strategies to optimize metabolism and create industrially relevant and economically feasible processes.
Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/genética , L-Lactato Desidrogenase/genética , Engenharia Metabólica , Mutação , Fosfotransferases (Aceptores Pareados)/genética , Piruvato Oxidase/genéticaRESUMO
The role of starch degradation in non-vascular plants is poorly understood. To expand our knowledge of this area, we have studied this process in Physcomitrella patens. This has been achieved through examination of the step known to initiate starch degradation in angiosperms, glucan phosphorylation, catalysed by glucan, water dikinase (GWD) enzymes. Phylogenetic analysis indicates that GWD isoforms can be divided into two clades, one of which contains GWD1/GWD2 and the other GWD3 isoforms. These clades split at a very early stage within plant evolution, as distinct sequences that cluster within each were identified in all major plant lineages. Of the five genes we identified within the Physcomitrella genome that encode GWD-like enzymes, two group within the GWD1/GWD2 clade and the others within the GWD3 clade. Proteins encoded by both loci in the GWD1/GWD2 clade, named PpGWDa and PpGWDb, are localised in plastids. Mutations of either PpGWDa or PpGWDb reduce starch phosphate abundance, however, a mutation at the PpGWDa locus had a much greater influence than one at PpGWDb. Only mutations affecting PpGWDa inhibited starch degradation. Mutants lacking this enzyme also failed to develop gametophores, a phenotype that could be chemically complemented using glucose supplementation within the growth medium.
Assuntos
Bryopsida/crescimento & desenvolvimento , Bryopsida/metabolismo , Células Germinativas Vegetais/crescimento & desenvolvimento , Glucanos/genética , Mutação/genética , Fosfotransferases (Aceptores Pareados)/genética , Amido/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Bryopsida/genética , Genoma de Planta , Isoenzimas/metabolismo , Fosforilação , Fosfotransferases (Aceptores Pareados)/química , Filogenia , Plastídeos/metabolismo , SolubilidadeRESUMO
Phosphoenolpyruvate (PEP)/pyruvate interconversion is a major metabolic point in glycolysis and gluconeogenesis and is catalyzed by various sets of enzymes in different Archaea groups. In this study, we report the key enzymes that catalyze the anabolic and catabolic directions of the PEP/pyruvate interconversion in Haloferax mediterranei The in silico analysis showed the presence of a potassium-dependent pyruvate kinase (PYKHm [HFX_0773]) and two phosphoenol pyruvate synthetase (PPS) candidates (PPSHm [HFX_0782] and a PPS homolog protein named PPS-like [HFX_2676]) in this strain. Expression of the pykHm gene and ppsHm was induced by glycerol and pyruvate, respectively; whereas the pps-like gene was not induced at all. Similarly, genetic analysis and enzyme activities of purified proteins showed that PYKHm catalyzed the conversion from PEP to pyruvate and that PPSHm catalyzed the reverse reaction, while PPS-like protein displayed no function in PEP/pyruvate interconversion. Interestingly, knockout of the pps-like gene led to a 70.46% increase in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production. The transcriptome sequencing (RNA-Seq) and quantitative reverse transcription-PCR (qRT-PCR) results showed that many genes responsible for PHBV monomer supply and for PHBV synthesis were upregulated in a pps-like gene deletion strain and thereby improved PHBV accumulation. Additionally, our phylogenetic evidence suggested that PPS-like protein diverged from PPS enzyme and evolved as a distinct protein with novel function in haloarchaea. Our findings attempt to fill the gaps in central metabolism of Archaea by providing comprehensive information about key enzymes involved in the haloarchaeal PEP/pyruvate interconversion, and we also report a high-yielding PHBV strain with great future potentials.IMPORTANCEArchaea, the third domain of life, have evolved diversified metabolic pathways to cope with their extreme habitats. Phosphoenol pyruvate (PEP)/pyruvate interconversion during carbohydrate metabolism is one such important metabolic process that is highly differentiated among Archaea However, this process is still uncharacterized in the haloarchaeal group. Haloferax mediterranei is a well-studied haloarchaeon that has the ability to produce polyhydroxyalkanoates (PHAs) under unbalanced nutritional conditions. In this study, we identified the key enzymes involved in this interconversion and discussed their differences with their counterparts from other members of the Archaea and Bacteria domains. Notably, we found a novel protein, phosphoenolpyruvate synthetase-like (PPS-like), which exhibited high homology to PPS enzyme. However, PPS-like protein has evolved some distinct sequence features and functions, and strikingly the corresponding gene deletion helped to enhance poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) synthesis significantly. Overall, we have filled the gap in knowledge about PEP/pyruvate interconversion in haloarchaea and reported an efficient strategy for improving PHBV production in H. mediterranei.
Assuntos
Proteínas Arqueais/metabolismo , Haloferax mediterranei/enzimologia , Fosfotransferases (Aceptores Pareados)/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Proteínas Arqueais/genética , Carbono/metabolismo , Técnicas de Inativação de Genes , Glicerol/metabolismo , Haloferax mediterranei/genética , Redes e Vias Metabólicas , Fosfotransferases (Aceptores Pareados)/genética , Filogenia , Poliésteres/metabolismo , Ácido Pirúvico/metabolismoRESUMO
An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.
Assuntos
Proteínas de Arabidopsis/genética , Cloroplastos/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Tirosina Fosfatases/genética , Amido/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/efeitos da radiação , Grânulos Citoplasmáticos/ultraestrutura , Expressão Gênica , Genótipo , Sistema da Enzima Desramificadora do Glicogênio/deficiência , Hidrólise , Luz , Mutação , Fenótipo , Fosfotransferases (Aceptores Pareados)/deficiência , Fotoperíodo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas Tirosina Fosfatases/deficiência , Amido/biossínteseRESUMO
ABSTARCT: Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced ß-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.
Assuntos
Metabolismo dos Carboidratos , Glucanos/metabolismo , Manihot/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Raízes de Plantas/metabolismo , Amido/metabolismo , DNA Bacteriano , Regulação da Expressão Gênica de Plantas , Manihot/genética , Mutação , Fenótipo , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Fotossíntese , Análise de Sequência de DNARESUMO
Starch phosphorylation occurs naturally during starch metabolism in the plant and is catalysed by glucan water dikinases (GWD1) and phosphoglucan water dikinase/glucan water dikinase 3 (PWD/GWD3). We generated six stable individual transgenic lines by over-expressing the potato GWD1 in rice. Transgenic rice grain starch had 9-fold higher 6-phospho (6-P) monoesters and double amounts of 3-phospho (3-P) monoesters, respectively, compared to control grain. The shape and topography of the transgenic starch granules were moderately altered including surface pores and less well defined edges. The gelatinization temperatures of both rice flour and extracted starch were significantly lower than those of the control and hence negatively correlated with the starch phosphate content. The 6-P content was positively correlated with amylose content and relatively long amylopectin chains with DP25-36, and the 3-P content was positively correlated with short chains of DP6-12. The starch pasting temperature, peak viscosity and the breakdown were lower but the setback was higher for transgenic rice flour. The 6-P content was negatively correlated with texture adhesiveness but positively correlated with the cohesiveness of rice flour gels. Our data demonstrate a way forward to employ a starch bioengineering approach for clean modification of starch, opening up completely new applications for rice starch.
Assuntos
Amilopectina/metabolismo , Amilose/metabolismo , Oryza/genética , Fosfotransferases (Aceptores Pareados)/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Amilopectina/genética , Amilose/genética , Grão Comestível/genética , Fosforilação , Fosfotransferases (Aceptores Pareados)/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genéticaRESUMO
The genome of Arabidopsis thaliana encodes three glucan, water dikinases. Glucan, water dikinase 1 (GWD1; EC 2.7.9.4) and phosphoglucan, water dikinase (PWD; EC 2.7.9.5) are chloroplastic enzymes, while glucan, water dikinase 2 (GWD2) is cytosolic. Both GWDs and PWD catalyze the addition of phosphate groups to amylopectin chains at the surface of starch granules, changing its physicochemical properties. As a result, GWD1 and PWD have a positive effect on transitory starch degradation at night. Because of its cytosolic localization, GWD2 does not have the same effect. Single T-DNA mutants of either GWD1 or PWD or GWD2 have been analyzed during the entire life cycle of A. thaliana. We report that the three dikinases are all important for proper seed development. Seeds from gwd2 mutants are shrunken, with the epidermal cells of the seed coat irregularly shaped. Moreover, gwd2 seeds contain a lower lipid to protein ratio and are impaired in germination. Similar seed phenotypes were observed in pwd and gwd1 mutants, except for the normal morphology of epidermal cells in gwd1 seed coats. The gwd1, pwd and gwd2 mutants were also very similar in growth and flowering time when grown under continuous light and all three behaved differently from wild-type plants. Besides pinpointing a novel role of GWD2 and PWD in seed development, this analysis suggests that the phenotypic features of the dikinase mutants in A. thaliana cannot be explained solely in terms of defects in leaf starch degradation at night.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Amido/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Metabolismo dos Carboidratos , Cloroplastos/metabolismo , Citosol/metabolismo , Luz , Mutação , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Fosfotransferases (Aceptores Pareados)/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Isoformas de ProteínasRESUMO
Phosphoenolpyruvate synthase (PEPs) catalyzes the conversion of pyruvate to phosphoenolpyruvate (PEP) using a two-step mechanism invoking a phosphorylated-His intermediate. Formation of PEP is an initial step in gluconeogenesis, and PEPs is essential for growth of Escherichia coli on 3-carbon sources such as pyruvate. The production of PEPs has also been linked to bacterial virulence and antibiotic resistance. As such, PEPs is of interest as a target for antibiotic development, and initial investigations of PEPs have indicated inhibition by sodium fluoride. Similar inhibition has been observed in a variety of phospho-transfer enzymes through the formation of metal fluoride complexes within the active site. Herein we quantify the inhibitory capacity of sodium fluoride through a coupled spectrophotometric assay. The observed inhibition provides indirect evidence for the formation of a MgF3(-) complex within the enzyme active site and insight into the phospho-transfer mechanism of PEPs. The effect of AlCl3 on PEPs enzyme activity was also assessed and found to decrease substrate binding and turnover.
Assuntos
Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Compostos de Magnésio/farmacologia , Fosfotransferases (Aceptores Pareados)/antagonistas & inibidores , Fosfotransferases (Aceptores Pareados)/metabolismo , Fluoreto de Sódio/farmacologia , Cloreto de Alumínio , Compostos de Alumínio/farmacologia , Cloretos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Fosfotransferases (Aceptores Pareados)/genética , Piruvato Sintase/antagonistas & inibidores , Piruvato Sintase/genética , Piruvato Sintase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMO
OBJECTIVE: In order to redirect carbon flows into aromatic amino acids biosynthesis pathway and further improve the production of L-tryptophan in Corynebacterium pekinense PD-67, two schemes were implemented. First, the supply of phosphoenolpyruvate (PEP), one of precursors of L-tryptophan biosynthesis, was increased. Second, the feedback inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (DS), a key enzyme in the aromatic amino acids biosynthesis, was relieved and the activity of DS was increased. METHODS: The phosphoenolpyruvate synthase gene (pps) was cloned from C. pekinense PD-67 chromosome by PCR and inserted into expression vector to construct a recombinant plasmid pXPPS; the aroG gene encoding DS isozymes was cloned from Escherichia coli chromosome by PCR and the mutation of Leu175Asp was introduced by site-directed mutagenesis using sequence-overlap extension PCR. The mutated gene named as aroGfbr was cloned to expression vector to construct a recombinant plasmid pXA; and the recombinant plasmid pXAPS co-expressing pps and aroGfbr was constructed. The three recombinant plasmids were transformed into PD-67 to generate the engineering strains PD-67/pXPS, PD-67/pXA and PD-67/pXAPS, respectively. The fermentation characteristics of the three engineering strains were investigated. RESULTS: The expression of pps and aroGfbr was confirmed by enzyme activity assays. The deregulation of feedback inhibition of AroGfbr was confirmed by determining DS activity in the presence of three aromatic amino acids. The overexpression of pps and aroGfbr resulted in an increase of L-tryptophan biosynthesis by 12.1% and 26.8%, respectively, while the co-expression of two genes increased the production of L-tryptophan by 35.9% in the engineering strain PD-67/pXAPS. CONCLUSION: Both of the overexpressions of the pps gene and aroGfbr gene can increase L-tryptophan biosynthesis, while the production was further improved by the co-expression of the two genes.
Assuntos
Corynebacterium/genética , Corynebacterium/metabolismo , Engenharia Genética , Fosfotransferases (Aceptores Pareados)/genética , Triptofano/biossíntese , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Corynebacterium/enzimologia , Expressão Gênica , Vetores Genéticos/genética , Fosfotransferases (Aceptores Pareados)/metabolismo , Análise de SequênciaRESUMO
Glucan, water dikinase (GWD) is a key enzyme of starch metabolism but the physico-chemical properties of starches isolated from GWD-deficient plants and their implications for starch metabolism have so far not been described. Transgenic Arabidopsis thaliana plants with reduced or no GWD activity were used to investigate the properties of starch granules. In addition, using various in vitro assays, the action of recombinant GWD, ß-amylase, isoamylase and starch synthase 1 on the surface of native starch granules was analysed. The internal structure of granules isolated from GWD mutant plants is unaffected, as thermal stability, allomorph, chain length distribution and density of starch granules were similar to wild-type. However, short glucan chain residues located at the granule surface dominate in starches of transgenic plants and impede GWD activity. A similarly reduced rate of phosphorylation by GWD was also observed in potato tuber starch fractions that differ in the proportion of accessible glucan chain residues at the granule surface. A model is proposed to explain the characteristic morphology of starch granules observed in GWD transgenic plants. The model postulates that the occupancy rate of single glucan chains at the granule surface limits accessibility to starch-related enzymes.
Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/química , Amido/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Isoamilase/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Plantas Geneticamente Modificadas , Solanum tuberosum , Amido/genética , Amido/ultraestrutura , Propriedades de Superfície , beta-Amilase/metabolismoRESUMO
Organisms across all three domains of life use gene regulatory networks (GRNs) to integrate varied stimuli into coherent transcriptional responses to environmental pressures. However, inferring GRN topology and regulatory causality remains a central challenge in systems biology. Previous work characterized TrmB as a global metabolic transcription factor in archaeal extremophiles. However, it remains unclear how TrmB dynamically regulates its â¼100 metabolic enzyme-coding gene targets. Using a dynamic perturbation approach, we elucidate the topology of the TrmB metabolic GRN in the model archaeon Halobacterium salinarum. Clustering of dynamic gene expression patterns reveals that TrmB functions alone to regulate central metabolic enzyme-coding genes but cooperates with various regulators to control peripheral metabolic pathways. Using a dynamical model, we predict gene expression patterns for some TrmB-dependent promoters and infer secondary regulators for others. Our data suggest feed-forward gene regulatory topology for cobalamin biosynthesis. In contrast, purine biosynthesis appears to require TrmB-independent regulators. We conclude that TrmB is an important component for mediating metabolic modularity, integrating nutrient status and regulating gene expression dynamics alone and in concert with secondary regulators.
Assuntos
Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Redes Reguladoras de Genes , Halobacterium salinarum/genética , Fatores de Transcrição/metabolismo , Glucose/metabolismo , Halobacterium salinarum/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Regiões Promotoras Genéticas , Transcrição GênicaRESUMO
By means of plasposon mutagenesis, mutants of Burkholderia cenocepacia 370 with the change in production of N-acyl-homoserine lactones (AHL), signal molecules of the Quorum Sensing system of regulation, were obtained. To localize plasposon insertions in mutant strains, fragments of chromosomal DNA containing plasposons were cloned, adjacent DNA regions sequenced, and a search for homologous nucleotide sequences in the GeneBank was initiated. It has been shown that the insertion of plasposon into gene lon encoding lon proteinase drastically decreases AHL synthesis. Upon insertion of plasposon into gene pps encoding phosphoenolpyruvate-synthase, enhancement of AHL production is observed. In mutant carrying inactivated gene lon, a strong decline of extracellular protease activity, hemolytic, and chitinolytic activities was observed in comparison with the original strain; lipase activity was not changed in this mutant. Mutation in gene pps did not affect these properties of B. cenocepacia 370. Mutations in genes lon and pps reduced the virulence of bacteria upon infection of mice.
Assuntos
Acil-Butirolactonas/metabolismo , Burkholderia cenocepacia/genética , Regulação Bacteriana da Expressão Gênica , Fosfotransferases (Aceptores Pareados)/genética , Protease La/genética , Percepção de Quorum/genética , Animais , Biofilmes , Burkholderia cenocepacia/crescimento & desenvolvimento , Burkholderia cenocepacia/patogenicidade , Masculino , Camundongos , Mutação , Fosfotransferases (Aceptores Pareados)/metabolismo , Protease La/metabolismo , Virulência/genéticaRESUMO
A novel mechanism for increasing vegetative biomass and grain yield has been identified in wheat (Triticum aestivum). RNAi-mediated down-regulation of Glucan, Water-Dikinase (GWD), the primary enzyme required for starch phosphorylation, under the control of an endosperm-specific promoter, resulted in a decrease in starch phosphate content and an increase in grain size. Unexpectedly, consistent increases in vegetative biomass and grain yield were observed in subsequent generations. In lines where GWD expression was decreased, germination rate was slightly reduced. However, significant increases in vegetative growth from the two leaf stage were observed. In glasshouse pot trials, down-regulation of GWD led to a 29% increase in grain yield while in glasshouse tub trials simulating field row spacing and canopy development, GWD down-regulation resulted in a grain yield increase of 26%. The enhanced yield resulted from a combination of increases in seed weight, tiller number, spikelets per head and seed number per spike. In field trials, all vegetative phenotypes were reproduced with the exception of increased tiller number. The expression of the transgene and suppression of endogenous GWD RNA levels were demonstrated to be grain specific. In addition to the direct effects of GWD down-regulation, an increased level of α-amylase activity was present in the aleurone layer during grain maturation. These findings provide a potentially important novel mechanism to increase biomass and grain yield in crop improvement programmes.
Assuntos
Biomassa , Regulação para Baixo/genética , Endosperma/enzimologia , Fosfotransferases (Aceptores Pareados)/metabolismo , Proteínas de Plantas/metabolismo , Triticum/enzimologia , Triticum/crescimento & desenvolvimento , Metabolismo dos Carboidratos/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/efeitos da radiação , Glucanos/metabolismo , Luz , Fosfatos/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Interferência de RNA , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Amido/metabolismo , Triticum/genética , Triticum/efeitos da radiação , alfa-Amilases/metabolismoRESUMO
The plant genome encodes at least two distinct and evolutionary conserved plastidial starch-related dikinases that phosphorylate a low percentage of glucosyl residues at the starch granule surface. Esterification of starch favours the transition of highly ordered α-glucans to a less ordered state and thereby facilitates the cleavage of interglucose bonds by hydrolases. Metabolically most important is the phosphorylation at position C6, which is catalysed by the glucan, water dikinase (GWD). The reactions mediated by recombinant wild-type GWD from Arabidopsis thaliana (AtGWD) and from Solanum tuberosum (StGWD) were studied. Two mutated proteins lacking the conserved histidine residue that is indispensible for glucan phosphorylation were also included. The wild-type GWDs consume approximately 20% more ATP than is required for glucan phosphorylation. Similarly, although incapable of phosphorylating α-glucans, the two mutated dikinase proteins are capable of degrading ATP. Thus, consumption of ATP and phosphorylation of α-glucans are not strictly coupled processes but, to some extent, occur as independent phosphotransfer reactions. As revealed by incubation of the GWDs with [γ-(33) P]ATP, the consumption of ATP includes the transfer of the γ-phosphate group to the GWD protein but this autophosphorylation does not require the conserved histidine residue. Thus, the GWD proteins possess two vicinal phosphorylation sites, both of which are transiently phosphorylated. Following autophosphorylation at both sites, native dikinases flexibly use various terminal phosphate acceptors, such as water, α-glucans, AMP and ADP. A model is presented describing the complex phosphotransfer reactions of GWDs as affected by the availability of the various acceptors.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucanos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Plastídeos/enzimologia , Solanum tuberosum/enzimologia , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Biocatálise , Histidina/metabolismo , Cinética , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Água/metabolismoRESUMO
A new understanding of leaf starch degradation has emerged in the last 10 years. It has been shown that starch phosphorylation and dephosphorylation are critical components of this process. Glucan, water dikinase (GWD) (and phosphoglucan, water dikinase) adds phosphate to starch, and phosphoglucan phosphatase (SEX4) removes these phosphates. To explore the use of this metabolism to manipulate starch accumulation, Arabidopsis (Arabidopsis thaliana) plants were engineered by introducing RNAi constructs designed to reduce expression of AtGWD and AtSEX4. The timing of starch build-up was altered with ethanol-inducible and senescence-induced gene promoters. Ethanol induction of RNAi lines reduced transcript for AtGWD and AtSEX4 by 50%. The transgenic lines had seven times more starch than wild type at the end of the dark period but similar growth rates and total biomass. Elevated leaf starch content in maize leaves was engineered by making an RNAi construct against a gene in maize that appeared to be homologous to AtGWD. The RNAi construct was expressed using the constitutive ubiquitin promoter. Leaf starch content at the end of a night period in engineered maize plants was 20-fold higher than in untransformed plants with no impact on total plant biomass. We conclude that plants can be engineered to accumulate starch in the leaves with little impact on vegetative biomass.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfatases de Especificidade Dupla/metabolismo , Fosfatos/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Amido/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Biomassa , Biologia Computacional , Fosfatases de Especificidade Dupla/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , Zea mays/genética , Zea mays/metabolismoRESUMO
Bacteria exploit multiple mechanisms for controlling central carbon metabolism (CCM). Thus, a bioinformatic analysis together with some experimental data implicated the HexR transcriptional factor as a global CCM regulator in some lineages of Gammaproteobacteria operating as a functional replacement of the Cra regulator characteristic of Enterobacteriales. In this study, we combined a large scale comparative genomic reconstruction of HexR-controlled regulons in 87 species of Proteobacteria with the detailed experimental analysis of the HexR regulatory network in the Shewanella oneidensis model system. Although nearly all of the HexR-controlled genes are associated with CCM, remarkable variations were revealed in the scale (from 1 to 2 target operons in Enterobacteriales up to 20 operons in Aeromonadales) and gene content of HexR regulons between 11 compared lineages. A predicted 17-bp pseudo-palindrome with a consensus tTGTAATwwwATTACa was confirmed as a HexR-binding motif for 15 target operons (comprising 30 genes) by in vitro binding assays. The negative effect of the key CCM intermediate, 2-keto-3-deoxy-6-phosphogluconate, on the DNA-regulator complex formation was verified. A dual mode of HexR action on various target promoters, repression of genes involved in catabolic pathways and activation of gluconeogenic genes, was for the first time predicted by the bioinformatic analysis and experimentally verified by changed gene expression pattern in S. oneidensis ΔhexR mutant. Phenotypic profiling revealed the inability of this mutant to grow on lactate or pyruvate as a single carbon source. A comparative metabolic flux analysis of wild-type and mutant strains of S. oneidensis using [(13)C]lactate labeling and GC-MS analysis confirmed the hypothesized HexR role as a master regulator of gluconeogenic flux from pyruvate via the transcriptional activation of phosphoenolpyruvate synthase (PpsA).
Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Gluconeogênese/fisiologia , Shewanella/fisiologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Proteínas de Bactérias/genética , Carbono/metabolismo , Mutação , Fosfotransferases (Aceptores Pareados)/biossíntese , Fosfotransferases (Aceptores Pareados)/genética , Ácido Pirúvico/metabolismo , Elementos de Resposta/fisiologia , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: Phosphoenolpyruvate synthetase (PEPS; EC 2.7.9.2) catalyzes the synthesis of phosphoenolpyruvate from pyruvate in Escherichia coli when cells are grown on a three carbon source. It also catalyses the anabolic conversion of pyruvate to phosphoenolpyruvate in gluconeogenesis. A bioinformatics search conducted following the successful cloning and expression of maize leaf pyruvate, orthophosphate dikinase regulatory protein (PDRP) revealed the presence of PDRP homologs in more than 300 bacterial species; the PDRP homolog was identified as DUF299. RESULTS: This paper describes the cloning and expression of both PEPS and DUF299 from E. coli and establishes that E. coli DUF299 catalyzes both the ADP-dependent inactivation and the Pi-dependent activation of PEPS. CONCLUSION: This paper represents the first report of a bifunctional regulatory enzyme catalysing an ADP-dependent phosphorylation and a Pi-dependent pyrophosphorylation reaction in bacteria.
Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptores Pareados)/metabolismo , Proteínas Quinases/metabolismo , Clonagem Molecular , Proteínas de Escherichia coli/classificação , Proteínas de Escherichia coli/genética , Gluconeogênese , Complexos Multienzimáticos/classificação , Complexos Multienzimáticos/genética , Fosfoenolpiruvato/metabolismo , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/genética , Fosfotransferases (Aceptores Pareados)/classificação , Fosfotransferases (Aceptores Pareados)/genética , Filogenia , Proteínas Quinases/classificação , Proteínas Quinases/genética , Piruvato Ortofosfato Diquinase/classificação , Piruvato Ortofosfato Diquinase/genética , Piruvato Ortofosfato Diquinase/metabolismo , Ácido Pirúvico/metabolismo , Zea mays/enzimologiaRESUMO
We report the conversion of glycerol to pyruvate by E. coli ALS929 containing knockouts in the genes encoding for phosphoenolpyruvate synthase, lactate dehydrogenase, pyruvate formate lyase, the pyruvate dehydrogenase complex, and pyruvate oxidase. As a result of these knockouts, ALS929 has a growth requirement of acetate for the generation of acetyl CoA. In steady-state chemostat experiments using excess glycerol and limited by acetate, lower growth rates favored the formation of pyruvate from glycerol (0.60 g/g at 0.10 h(-1) versus 0.44 g/g at 0.25 h(-1)), while higher growth rates resulted in the maximum specific glycerol consumption rate (0.85 g/g h at 0.25 h(-1) versus 0.59 g/g h at 0.10 h(-1)). The presence of glucose significantly improved pyruvate productivity and yield from glycerol (0.72 g/g at 0.10 h(-1)). In fed-batch studies using exponential acetate/glucose-limited feeding at a constant growth rate of 0.10 h(-1), the final pyruvate concentration achieved was about 40 g/L in 36 h. A derivative of ALS929 which additionally knocked out methylglyoxal synthase did not further increase pyruvate productivity or yield, indicating that pyruvate formation was not limited by accumulation of methylglyoxal.