Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
J Agric Food Chem ; 72(20): 11392-11404, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717972

RESUMO

Methylesterases (MESs) hydrolyze carboxylic ester and are important for plant metabolism and defense. However, the understanding of MES' role in strawberries against pathogens remains limited. This study identified 15 FvMESs with a conserved catalytic triad from the Fragaria vesca genome. Spatiotemporal expression data demonstrated the upregulated expression of FvMESs in roots and developing fruits, suggesting growth involvement. The FvMES promoter regions harbored numerous stress-related cis-acting elements and transcription factors associated with plant defense mechanisms. Moreover, FvMES2 exhibited a significant response to Botrytis cinerea stress and showed a remarkable correlation with the salicylic acid (SA) signaling pathway. Molecular docking showed an efficient binding potential between FvMES2 and methyl salicylate (MeSA). The role of FvMES2 in MeSA demethylation to produce SA was further confirmed through in vitro and in vivo assays. After MeSA was applied, the transient overexpression of FvMES2 in strawberries enhanced their resistance to B. cinerea compared to wild-type plants.


Assuntos
Botrytis , Fragaria , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Proteínas de Plantas , Salicilatos , Fragaria/genética , Fragaria/imunologia , Fragaria/microbiologia , Fragaria/enzimologia , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/imunologia , Proteínas de Plantas/química , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Salicilatos/metabolismo , Salicilatos/farmacologia , Resistência à Doença/genética , Família Multigênica , Simulação de Acoplamento Molecular , Frutas/genética , Frutas/imunologia , Frutas/microbiologia , Frutas/química , Frutas/enzimologia , Frutas/metabolismo
2.
BMC Plant Biol ; 24(1): 405, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750420

RESUMO

BACKGROUND: In plants, epigenetic stress memory has so far been found to be largely transient. Here, we wanted to assess the heritability of heat stress-induced epigenetic and transcriptomic changes following woodland strawberry (Fragaria vesca) reproduction. Strawberry is an ideal model to study epigenetic inheritance because it presents two modes of reproduction: sexual (self-pollinated plants) and asexual (clonally propagated plants named daughter plants). Taking advantage of this model, we investigated whether heat stress-induced DNA methylation changes can be transmitted via asexual reproduction. RESULTS: Our genome-wide study provides evidence for stress memory acquisition and maintenance in F. vesca. We found that specific DNA methylation marks or epimutations are stably transmitted over at least three asexual generations. Some of the epimutations were associated with transcriptional changes after heat stress. CONCLUSION: Our findings show that the strawberry methylome and transcriptome respond with a high level of flexibility to heat stress. Notably, independent plants acquired the same epimutations and those were inherited by their asexual progenies. Overall, the asexual progenies can retain some information in the genome of past stresses encountered by their progenitors. This molecular memory, also documented at the transcriptional level, might be involved in functional plasticity and stress adaptation. Finally, these findings may contribute to novel breeding approaches for climate-ready plants.


Assuntos
Metilação de DNA , Epigênese Genética , Fragaria , Resposta ao Choque Térmico , Transcriptoma , Fragaria/genética , Fragaria/fisiologia , Resposta ao Choque Térmico/genética , Epigenômica , Regulação da Expressão Gênica de Plantas , Reprodução Assexuada/genética
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612898

RESUMO

The NAC (NAM, ATAF1/2, CUC2) family of transcription factors (TFs) is a vital transcription factor family of plants. It controls multiple parts of plant development, tissue formation, and abiotic stress response. We cloned the FvNAC29 gene from Fragaria vesca (a diploid strawberry) for this research. There is a conserved NAM structural domain in the FvNAC29 protein. The highest homology between FvNAC29 and PaNAC1 was found by phylogenetic tree analysis. Subcellular localization revealed that FvNAC29 is localized onto the nucleus. Compared to other tissues, the expression level of FvNAC29 was higher in young leaves and roots. In addition, Arabidopsis plants overexpressing FvNAC29 had higher cold and high-salinity tolerance than the wild type (WT) and unloaded line with empty vector (UL). The proline and chlorophyll contents of transgenic Arabidopsis plants, along with the activities of the antioxidant enzymes like catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) under 200 mM NaCl treatment or -8 °C treatment, were higher than those activities of the control. Meanwhile, malondialdehyde (MDA) and the reactive oxygen species (ROS) content were higher in the WT and UL lines. FvNAC29 improves transgenic plant resistance to cold and salt stress by regulating the expression levels of AtRD29a, AtCCA1, AtP5CS1, and AtSnRK2.4. It also improves the potential to tolerate cold stress by positively regulating the expression levels of AtCBF1, AtCBF4, AtCOR15a, and AtCOR47. These findings suggest that FvNAC29 may be related to the processes and the molecular mechanisms of F. vesca response to high-salinity stress and LT stress, providing a comprehensive understanding of the NAC TFs.


Assuntos
Arabidopsis , Fragaria , Arabidopsis/genética , Fragaria/genética , Filogenia , Peroxidases , Antioxidantes
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474012

RESUMO

Strawberry plants require light for growth, but the frequent occurrence of low-light weather in winter can lead to a decrease in the photosynthetic rate (Pn) of strawberry plants. Light-emitting diode (LED) systems could be used to increase Pn. However, the changes in the phytohormones and transcriptomic reprogramming in strawberry leaves under different light qualities are still unclear. In this study, we treated strawberry plants with sunlight, sunlight covered with a 50% sunshade net, no light, blue light (460 nm), red light (660 nm), and a 50% red/50% blue LED light combination for 3 days and 7 days. Our results revealed that the light quality has an effect on the contents of Chl a and Chl b, the minimal fluorescence (F0), and the Pn of strawberry plants. The light quality also affected the contents of abscisic acid (ABA), auxin (IAA), trans-zeatin-riboside (tZ), jasmonic acid (JA), and salicylic acid (SA). RNA sequencing (RNA-seq) revealed that differentially expressed genes (DEGs) are significantly enriched in photosynthesis antenna proteins, photosynthesis, carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolisms, carotenoid biosynthesis, tryptophan metabolism, phenylalanine metabolism, zeatin biosynthesis, and linolenic acid metabolism. We then selected the key DEGs based on the results of a weighted gene co-expression network analysis (WGCNA) and drew nine metabolic heatmaps and protein-protein interaction networks to map light regulation.


Assuntos
Fragaria , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fragaria/genética , Zeatina , Luz , Perfilação da Expressão Gênica
5.
Nat Commun ; 15(1): 2491, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509076

RESUMO

Subgenome dominance has been reported in diverse allopolyploid species, where genes from one subgenome are preferentially retained and are more highly expressed than those from other subgenome(s). However, the molecular mechanisms responsible for subgenome dominance remain poorly understood. Here, we develop genome-wide map of accessible chromatin regions (ACRs) in cultivated strawberry (2n = 8x = 56, with A, B, C, D subgenomes). Each ACR is identified as an MNase hypersensitive site (MHS). We discover that the dominant subgenome A contains a greater number of total MHSs and MHS per gene than the submissive B/C/D subgenomes. Subgenome A suffers fewer losses of MHS-related DNA sequences and fewer MHS fragmentations caused by insertions of transposable elements. We also discover that genes and MHSs related to stress response have been preferentially retained in subgenome A. We conclude that preservation of genes and their cognate ACRs, especially those related to stress responses, play a major role in the establishment of subgenome dominance in octoploid strawberry.


Assuntos
Fragaria , Genoma de Planta , Genoma de Planta/genética , Fragaria/genética , Cromatina/genética , Poliploidia , Mapeamento Cromossômico
6.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542376

RESUMO

MYB (myoblast) protein comes in large quantities and a wide variety of types and plays a role in most eukaryotes in the form of transcription factors (TFs). One of its important functions is to regulate plant responses to various stresses. However, the role of MYB TFs in regulating stress tolerance in strawberries is not yet well understood. Therefore, in order to investigate the response of MYB family members to abiotic stress in strawberries, a new MYB TF gene was cloned from Fragaria vesca (a diploid strawberry) and named FvMYB108 based on its structural characteristics and evolutionary relationships. After a bioinformatics analysis, it was determined that the gene belongs to the R2R3-MYB subfamily, and its conserved domain, phylogenetic relationships, predicted protein structure and physicochemical properties, subcellular localization, etc. were analyzed. After qPCR analysis of the expression level of FvMYB108 in organs, such as the roots, stems, and leaves of strawberries, it was found that this gene is more easily expressed in young leaves and roots. After multiple stress treatments, it was found that the target gene in young leaves and roots is more sensitive to low temperatures and salt stimulation. After these two stress treatments, various physiological and biochemical indicators related to stress in transgenic Arabidopsis showed corresponding changes, indicating that FvMYB108 may be involved in regulating the plant's ability to cope with cold and high-salt stress. Further research has found that the overexpression of this gene can upregulate the expression of AtCBF1, AtCOR47, AtERD10, and AtDREB1A related to low-temperature stress, as well as AtCCA1, AtRD29a, AtP5CS1, and AtSnRK2.4 related to salt stress, enhancing the ability of overexpressed plants to cope with stress.


Assuntos
Arabidopsis , Fragaria , Arabidopsis/metabolismo , Tolerância ao Sal/genética , Fragaria/genética , Fragaria/metabolismo , Filogenia , Genes myb , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
Nat Commun ; 15(1): 2468, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504104

RESUMO

The annual production of strawberry has increased by one million tonnes in the US and 8.4 million tonnes worldwide since 1960. Here we show that the US expansion was driven by genetic gains from Green Revolution breeding and production advances that increased yields by 2,755%. Using a California population with a century-long breeding history and phenotypes of hybrids observed in coastal California environments, we estimate that breeding has increased fruit yields by 2,974-6,636%, counts by 1,454-3,940%, weights by 228-504%, and firmness by 239-769%. Using genomic prediction approaches, we pinpoint the origin of the Green Revolution to the early 1950s and uncover significant increases in additive genetic variation caused by transgressive segregation and phenotypic diversification. Lastly, we show that the most consequential Green Revolution breeding breakthrough was the introduction of photoperiod-insensitive, PERPETUAL FLOWERING hybrids in the 1970s that doubled yields and drove the dramatic expansion of strawberry production in California.


Assuntos
Fragaria , Fragaria/genética , Melhoramento Vegetal , Fenótipo , Meio Ambiente , Genômica
8.
Plant Mol Biol ; 114(2): 32, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512490

RESUMO

Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Trocadores de Sódio-Hidrogênio , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fragaria/genética
9.
Plant Cell Environ ; 47(6): 2258-2273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482979

RESUMO

Sirtuins (SRTs) are a group of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that target both histone and nonhistone proteins. The biological function of SRT in horticultural plants has been rarely studied. In this study, FaSRT1-2 was identified as a key member of the 8 FaSRTs encoded in cultivated strawberry genome. Transient overexpression of FaSRT1-2 in strawberry fruit accelerated ripening, increased the content of anthocyanins and sugars, enhanced ripening-related gene expression. Moreover, stable transformation of FaSRT1-2 in strawberry plants resulted in enhanced vegetative growth, increased sensitivity to heat stress and increased susceptibility to Botrytis cinerea infection. Interestingly, knocking out the homologous gene in woodland strawberry had the opposite effects. Additionally, we found the content of stress-related hormone abscisic acid (ABA) was decreased, while the growth-related gibberellin (GA) concentration was increased in FaSRT1-2 overexpression lines. Gene expression analysis revealed induction of heat shock proteins, transcription factors, stress-related and antioxidant genes in the FaSRT1-2-overexpressed plants while knocked-out of the gene had the opposite impact. In conclusion, our findings demonstrated that FaSRT1-2 could positively promote strawberry plant vegetative growth and fruit ripening by affecting ABA and GA pathways. However, it negatively regulates the resistance to heat stress and B. cinerea infection by influencing the related gene expression.


Assuntos
Botrytis , Fragaria , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Fragaria/fisiologia , Fragaria/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Botrytis/fisiologia , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Giberelinas/metabolismo , Plantas Geneticamente Modificadas , Resistência à Doença/genética
10.
Plant Cell ; 36(6): 2427-2446, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547429

RESUMO

Shoot branching affects plant architecture. In strawberry (Fragaria L.), short branches (crowns) develop from dormant axillary buds to form inflorescences and flowers. While this developmental transition contributes greatly to perenniality and yield in strawberry, its regulatory mechanism remains unclear and understudied. In the woodland strawberry (Fragaria vesca), we identified and characterized 2 independent mutants showing more crowns. Both mutant alleles reside in FveMYB117a, a R2R3-MYB transcription factor gene highly expressed in shoot apical meristems, axillary buds, and young leaves. Transcriptome analysis revealed that the expression of several cytokinin pathway genes was altered in the fvemyb117a mutant. Consistently, active cytokinins were significantly increased in the axillary buds of the fvemyb117a mutant. Exogenous application of cytokinin enhanced crown outgrowth in the wild type, whereas the cytokinin inhibitors suppressed crown outgrowth in the fvemyb117a mutant. FveMYB117a binds directly to the promoters of the cytokinin homeostasis genes FveIPT2 encoding an isopentenyltransferase and FveCKX1 encoding a cytokinin oxidase to regulate their expression. Conversely, the type-B Arabidopsis response regulators FveARR1 and FveARR2b can directly inhibit the expression of FveMYB117a, indicative of a negative feedback regulation. In conclusion, we identified FveMYB117a as a key repressor of crown outgrowth by inhibiting cytokinin accumulation and provide a mechanistic basis for bud fate transition in an herbaceous perennial plant.


Assuntos
Citocininas , Fragaria , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Citocininas/metabolismo , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Homeostase , Mutação , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/metabolismo
11.
Plant Physiol Biochem ; 207: 108417, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354527

RESUMO

Strawberry is one of the most popular fruits in the world, because their high fruit quality, especially with respect to the combination of aroma, flavor, color, and nutritional compounds. Pyruvate decarboxylase (PDC) is the first of two enzymes specifically required for ethanolic fermentation and catalyzes the decarboxylation of pyruvate to yield acetaldehyde and CO2. The ethanol, an important alcohol which acts as a precursor for the ester and other alcohols formation in strawberry, is produced by the PDC. The objective was found all different PDCs genes present in the strawberry genome and investigate PDC gene expression and ligand-protein interactions in strawberry fruit. Volatile organic compounds were evaluated during the development of the fruit. After this, eight FaPDC were identified with four genes that increase the relative expression during fruit ripening process. Molecular dynamics simulations were performed to analyze the behavior of Pyr and TPP ligands within the catalytic and regulatory sites of the PDC proteins. Results indicated that energy-restrained simulations exhibited minor fluctuations in ligand-protein interactions, while unrestrained simulations revealed crucial insights into ligand affinity. TPP consistently displayed strong interactions with the catalytic site, emphasizing its pivotal role in enzymatic activity. However, FaPDC6 and FaPDC9 exhibited decreased pyruvate affinity initially, suggesting unique binding characteristics requiring further investigation. Finally, the present study contributes significantly to understanding PDC gene expression and the intricate molecular dynamics underlying strawberry fruit ripening, shedding light on potential targets for further research in this critical biological pathway.


Assuntos
Fragaria , Piruvato Descarboxilase , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Fragaria/genética , Fragaria/metabolismo , Frutas/metabolismo , Ligantes , Proteínas de Plantas/metabolismo , Etanol/metabolismo , Piruvatos/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 104-121, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38258635

RESUMO

YABBY proteins are important transcription factors that regulate morphogenesis and organ development in plants. In order to study the YABBY of strawberry, bioinformatic technique were used to identify the YABBY gene families in Fragaria vesca (diploid) and Fragaria×ananassa (octoploid), and then analyze the sequence characters, phylogeny and collinearity of the family members. The RNA-seq data and the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) technique were used to assay the expression patterns of the family members. A green fluorescent protein (GFP) was fused with FvYABBYs and transiently expressed in tobacco leaf cells for the subcellular localization. As the results, six FvYABBY genes and 26 FxaYABBY genes were identified from F. vesca and F.×ananassa, respectively. The FvYABBY genes were grouped into five clades, and five family members were orthologous with AtYABBY genes of Arabidopsis. In F. vesca, all of the FvYABBYs were basically not expressed not expressed in root and receptacle, while FvYABBY1, FvYABBY2, FvYABBY5 and FvYABBY6 were highly expressed in leaf, shoot, flower and achene. In F.×ananassa, FxaYABBY1, FxaYABBY2, FxaYABBY5 and FxaYABBY6 were expressed in achene, and all FxaYABBY were poorly or not expressed in receptacle. Additionally, under the abiotic stresses of low temperature, high salt and drought, the expression of FvYABBY1, FvYABBY3, FvYABBY4 and FvYABBY6 were down-regulated, FvYABBY5 was up-regulated, and FvYABBY2 was up-regulated and then down-regulated. In tobacco leaf cells, the subcellular localization of FvYABBY proteins were in the nucleus. These results provides a foundation for the functional researches of YABBY gene in strawberry.


Assuntos
Arabidopsis , Fragaria , Fragaria/genética , Bioensaio , Temperatura Baixa , Biologia Computacional
14.
Curr Biol ; 34(4): 769-780.e5, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38272030

RESUMO

The remarkable diversity of leaf forms allows plants to adapt to their living environment. In general, leaf diversity is shaped by leaf complexity (compound or simple) and leaf margin pattern (entire, serrated, or lobed). Prior studies in multiple species have uncovered a conserved module of CUC2-auxin that regulates both leaf complexity and margin serration. How this module is regulated in different species to contribute to the species-specific leaf form is unclear. Furthermore, the mechanistic connection between leaf complexity and leaf serration regulation is not well studied. Strawberry has trifoliate compound leaves with serrations at the margin. In the wild strawberry Fragaria vesca, a mutant named salad was isolated that showed deeper leaf serrations but normal leaf complexity. SALAD encodes a single-Myb domain protein and is expressed at the leaf margin. Genetic analysis showed that cuc2a is epistatic to salad, indicating that SALAD normally limits leaf serration depth by repressing CUC2a expression. When both Arabidopsis homologs of SALAD were knocked out, deeper serrations were observed in Arabidopsis rosette leaves, supporting a conserved function of SALAD in leaf serration regulation. We incorporated the analysis of a third strawberry mutant simple leaf 1 (sl1) with reduced leaf complexity but normal leaf serration. We showed that SL1 and SALAD independently regulate CUC2a at different stages of leaf development to, respectively, regulate leaf complexity and leaf serration. Our results provide a clear and simple mechanism of how leaf complexity and leaf serration are coordinately as well as independently regulated to achieve diverse leaf forms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fragaria , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fragaria/genética , Fragaria/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta
15.
Plant Biotechnol J ; 22(6): 1552-1565, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38184782

RESUMO

The strawberry genus, Fragaria, exhibits a wide range of sexual systems and natural ploidy variation. Nearly, all polyploid strawberry species exhibit separate sexes (dioecy). Research has identified the sex-determining sequences as roughly conserved but with repeatedly changed genomic locations across octoploid strawberries. However, it remains unclear whether tetraploid wild strawberries evolved dioecy independently or shared a common origin with octoploid strawberries. In this study, we investigated the sex determinants of F. moupinensis, a dioecious plant with heterogametic females (ZW). Utilizing a combination of haplotype-resolved genome sequencing of the female F. moupinensis, k-mer-based and coverage-based genome-wide association studies (GWAS), and transcriptomic analysis, we discovered a non-recombining, approximately 33.6 kb W-specific region on chromosome 2a. Within this region, only one candidate sex-determining gene (FmoAFT) was identified. Furthermore, an extensive resequencing of the entire Fragaria genus indicated that the W-specific region displays conservative female specificity across all tetraploid species. This observation suggests that dioecy evolved independently in tetraploid and octoploid strawberries. Moreover, employing virus-induced gene silencing (VIGS), we knocked down the expression of the FmoAFT homologue transcript in cultivated strawberries, revealing its potential role in promoting female functions during early carpel development. We also applied DNA affinity purification sequencing (DAP-seq) and yeast one-hybrid assays to identify potential direct targets of FmoAFT. These insights shed new light on the genetic basis and evolutionary history of sex determination in strawberries, thereby facilitating the formulation of strategies to manipulate sex determination in breeding programs.


Assuntos
Fragaria , Genoma de Planta , Estudo de Associação Genômica Ampla , Tetraploidia , Fragaria/genética , Fragaria/crescimento & desenvolvimento , Genoma de Planta/genética , Cromossomos de Plantas/genética
16.
New Phytol ; 241(4): 1621-1635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38058250

RESUMO

Due to the accelerating climate change, it is crucial to understand how plants adapt to rapid environmental changes. Such adaptation may be mediated by epigenetic mechanisms like DNA methylation, which could heritably alter phenotypes without changing the DNA sequence, especially across clonal generations. However, we are still missing robust evidence of the adaptive potential of DNA methylation in wild clonal populations. Here, we studied genetic, epigenetic and transcriptomic variation of Fragaria vesca, a predominantly clonally reproducing herb. We examined samples from 21 natural populations across three climatically distinct geographic regions, as well as clones of the same individuals grown in a common garden. We found that epigenetic variation was partly associated with climate of origin, particularly in non-CG contexts. Importantly, a large proportion of this variation was heritable across clonal generations. Additionally, a subset of these epigenetic changes affected the expression of genes mainly involved in plant growth and responses to pathogen and abiotic stress. These findings highlight the potential influence of epigenetic changes on phenotypic traits. Our findings indicate that variation in DNA methylation, which can be environmentally inducible and heritable, may enable clonal plant populations to adjust to their environmental conditions even in the absence of genetic adaptation.


Assuntos
Metilação de DNA , Fragaria , Humanos , Metilação de DNA/genética , Fragaria/genética , Epigênese Genética , Fenótipo , Plantas/genética , Células Clonais
17.
Plant J ; 117(4): 1130-1147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967025

RESUMO

Flowering is an indicator of plant transformation from vegetative to reproductive growth. miR160 has been shown to have a significant effect on the growth and development of fruits, leaves, and roots of plants or their stress response to environment, but the participation of miR160 in regulating flowering time in plants is unclear. In this study, we found that two FvemiR160s (FvemiR160a/FvemiR160b) mature sequences in strawberry (Fragaria vesca) were consistent. It was displayed that the miR160 mature sequence is highly conserved in various species, and the miR160 mature sequence formed by the 5' arm of the MIR160 precursor was more conserved. Three FveARFs in woodland strawberry were negatively regulated by FvemiR160a, among which FveARF18A was the most significant. Phylogenetic analysis indicated that FvemiR160 is closely related to apple (Malus domestica), grape (Vitis vinifera), and Arabidopsis thaliana, while FveARF18A is closely related to RcARF18. Subsequently, we demonstrated that FvemiR160a can target cutting FveARF18A to negatively regulate its expression by RLM-5' RACE, cleavage site mutation, and GFP fluorescence assay. Moreover, we observed that FveMIR160a overexpressed plants have advanced flowering, while mFveARF18A overexpressed plants have delayed flowering. We also verified that FveARF18A negatively regulates the expression of FveAP1 and FveFUL by binding their promoters by yeast one-hybrid, LUC, and GUS assay, and FveAP1 and FveFUL transgenic Arabidopsis showed early flowering phenotype. In addition, the expression level of FvemiR160a was decreased obviously while that of FveARF18A was increased obviously by MeJA, GA and IAA. In conclusion, our study reveals the important role of the FvemiR160-FveARF18A-FveAP1/FveFUL module in the flowering process of woodland strawberry and provides a new pathway for studying flowering.


Assuntos
Fragaria , Fragaria/genética , Fragaria/metabolismo , Filogenia , Folhas de Planta/genética , Fenótipo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica de Plantas/genética
18.
Plant Genome ; 17(1): e20405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37961831

RESUMO

Verticillium wilt (VW), a devastating vascular wilt disease of strawberry (Fragaria × $\times$ ananassa), has caused economic losses for nearly a century. This disease is caused by the soil-borne pathogen Verticillium dahliae, which occurs nearly worldwide and causes disease in numerous agriculturally important plants. The development of VW-resistant cultivars is critically important for the sustainability of strawberry production. We previously showed that a preponderance of the genetic resources (asexually propagated hybrid individuals) preserved in public germplasm collections were moderately to highly susceptible and that genetic gains for increased resistance to VW have been negligible over the last 60 years. To more fully understand the challenges associated with breeding for increased quantitative resistance to this pathogen, we developed and phenotyped a training population of hybrids ( n = 564 $n = 564$ ) among elite parents with a wide range of resistance phenotypes. When these data were combined with training data from a population of elite and exotic hybrids ( n = 386 $n = 386$ ), genomic prediction accuracies of 0.47-0.48 were achieved and were predicted to explain 70%-75% of the additive genetic variance for resistance. We concluded that breeding values for resistance to VW can be predicted with sufficient accuracy for effective genomic selection with routine updating of training populations.


Assuntos
Fragaria , Verticillium , Humanos , Fragaria/genética , Doenças das Plantas/genética , Melhoramento Vegetal , Fenótipo
19.
Plant Sci ; 340: 111960, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103695

RESUMO

The accumulation of anthocyanins can be found in both the fruit and petioles of strawberries, but the fruit appears red while the petioles appear purple-red. Additionally, in the white-fruited diploid strawberries, the petioles can accumulate anthocyanins normally, suggesting a different synthesis pattern between the petioles and fruits. We screened the EMS mutagenized population of a red-fruited diploid strawberry 'Ruegen' and discovered a mutant which showed no anthocyanin accumulation in the petioles but normal accumulation in the fruit. Through BSA sequencing and allelic test, it was found that a mutation in FvDFR2 was responsible for this phenotype. Furthermore, the complex formed by the interaction between the petiole-specific FvMYB10L and FvTT8 only binds the promoter of FvDFR2 but not FvDFR1, resulting in the expression of only FvDFR2 in the petiole. FvDFR2 can catalyze the conversion of DHQ and eventually the formation of cyanidin and peonidin, giving the petiole a purplish-red color. In the fruit, however, both FvDFR1 and FvDFR2 can be expressed, which can mediate the synthesis of cyanidin and pelargonidin. Our study clearly reveals different regulation of FvDFR1 and FvDFR2 in mediating anthocyanin synthesis in petioles and fruits.


Assuntos
Antocianinas , Fragaria , Antocianinas/genética , Antocianinas/metabolismo , Fragaria/genética , Fragaria/metabolismo , Fenótipo , Frutas/genética , Frutas/metabolismo , Diploide
20.
Plant Cell ; 36(5): 1622-1636, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113879

RESUMO

Cultivated strawberry (Fragaria × ananassa) has a brief history of less than 300 yr, beginning with the hybridization of octoploids Fragaria chiloensis and Fragaria virginiana. Here we explored the genomic signatures of early domestication and subsequent diversification for different climates using whole-genome sequences of 289 wild, heirloom, and modern varieties from two major breeding programs in the United States. Four nonadmixed wild octoploid populations were identified, with recurrent introgression among the sympatric populations. The proportion of F. virginiana ancestry increased by 20% in modern varieties over initial hybrids, and the proportion of F. chiloensis subsp. pacifica rose from 0% to 3.4%. Effective population size rapidly declined during early breeding. Meanwhile, divergent selection for distinct environments reshaped wild allelic origins in 21 out of 28 chromosomes. Overlapping divergent selective sweeps in natural and domesticated populations revealed 16 convergent genomic signatures that may be important for climatic adaptation. Despite 20 breeding cycles since initial hybridization, more than half of loci underlying yield and fruit size are still not under artificial selection. These insights add clarity to the domestication and breeding history of what is now the most widely cultivated fruit in the world.


Assuntos
Domesticação , Fragaria , Genoma de Planta , Fragaria/genética , Genoma de Planta/genética , Melhoramento Vegetal/métodos , Hibridização Genética , Variação Genética , Genômica/métodos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA