Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Science ; 384(6700): 1105-1110, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843334

RESUMO

Axis formation in fish and amphibians typically begins with a prepattern of maternal gene products. Annual killifish embryogenesis, however, challenges prepatterning models as blastomeres disperse and then aggregate to form the germ layers and body axes. We show that huluwa, a prepatterning factor thought to break symmetry by stabilizing ß-catenin, is truncated and inactive in Nothobranchius furzeri. Nuclear ß-catenin is not selectively stabilized on one side of the blastula but accumulates in cells forming the aggregate. Blocking ß-catenin activity or Nodal signaling disrupts aggregate formation and germ layer specification. Nodal signaling coordinates cell migration, establishing an early role for this signaling pathway. These results reveal a surprising departure from established mechanisms of axis formation: Huluwa-mediated prepatterning is dispensable, and ß-catenin and Nodal regulate morphogenesis.


Assuntos
Fundulidae , Morfogênese , Proteína Nodal , beta Catenina , Animais , beta Catenina/metabolismo , Blástula/metabolismo , Padronização Corporal , Movimento Celular , Núcleo Celular/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Camadas Germinativas/metabolismo , Proteína Nodal/metabolismo , Transdução de Sinais
2.
Cell ; 187(13): 3338-3356.e30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810644

RESUMO

Suspended animation states allow organisms to survive extreme environments. The African turquoise killifish has evolved diapause as a form of suspended development to survive a complete drought. However, the mechanisms underlying the evolution of extreme survival states are unknown. To understand diapause evolution, we performed integrative multi-omics (gene expression, chromatin accessibility, and lipidomics) in the embryos of multiple killifish species. We find that diapause evolved by a recent remodeling of regulatory elements at very ancient gene duplicates (paralogs) present in all vertebrates. CRISPR-Cas9-based perturbations identify the transcription factors REST/NRSF and FOXOs as critical for the diapause gene expression program, including genes involved in lipid metabolism. Indeed, diapause shows a distinct lipid profile, with an increase in triglycerides with very-long-chain fatty acids. Our work suggests a mechanism for the evolution of complex adaptations and offers strategies to promote long-term survival by activating suspended animation programs in other species.


Assuntos
Diapausa , Animais , Evolução Biológica , Diapausa/genética , Embrião não Mamífero/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Peixes Listrados/genética , Peixes Listrados/metabolismo , Metabolismo dos Lipídeos/genética , Proteínas de Peixes/genética , Masculino , Feminino
3.
J Fish Biol ; 104(5): 1537-1547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403734

RESUMO

The maximum rate at which fish can take up oxygen from their environment to fuel aerobic metabolism is an important feature of their physiology and ecology. Methods to quantify maximum oxygen uptake rate (MO2), therefore, should reliably and reproducibly estimate the highest possible MO2 by an individual or species under a given set of conditions (peak MO2). This study determined peak MO2 and its repeatability in Gulf killifish, Fundulus grandis, subjected to three methods to elevate metabolism: swimming at increasing water speeds, during recovery after an exhaustive chase, and after ingestion of a large meal. Estimates of peak MO2 during swimming and after an exhaustive chase were repeatable across two trials, whereas peak MO2 after feeding was not. Peak MO2 determined by the three methods was significantly different from one another, being highest during swimming, lowest after an exhaustive chase, and intermediate after feeding. In addition, peak MO2 during recovery from an exhaustive chase depended on the length of time of recovery: in nearly 60% of the trials, values within the first hour of the chase were lower than those measured later. A novel and important finding was that an individual's peak MO2 was not repeatable when compared across methods. Therefore, the peak MO2 estimated for a group of fish, as well as the ranking of individual MO2 within that group, depends on the method used to elevate aerobic metabolism.


Assuntos
Fundulidae , Consumo de Oxigênio , Natação , Animais , Fundulidae/fisiologia , Fundulidae/metabolismo , Reprodutibilidade dos Testes , Oxigênio/metabolismo
4.
Genome Res ; 33(1): 141-153, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577520

RESUMO

Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood. To decipher molecular drivers of vertebrate gonadal aging across sexes, we perform longitudinal characterization of the gonadal transcriptome throughout the lifespan in the naturally short-lived African turquoise killifish (Nothobranchius furzeri). By combining mRNA-seq and small RNA-seq from 26 individuals, we characterize the aging gonads of young-adult, middle-aged, and old female and male fish. We analyze changes in transcriptional patterns of genes, transposable elements (TEs), and piRNAs. We find that testes seem to undergo only marginal changes during aging. In contrast, in middle-aged ovaries, the time point associated with peak female fertility in this strain, PIWI pathway components are transiently down-regulated, TE transcription is elevated, and piRNA levels generally decrease, suggesting that egg quality may already be declining at middle-age. Furthermore, we show that piRNA ping-pong biogenesis declines steadily with age in ovaries, whereas it is maintained in aging testes. To our knowledge, this data set represents the most comprehensive transcriptomic data set for vertebrate gonadal aging. This resource also highlights important pathways that are regulated during reproductive aging in either ovaries or testes, which could ultimately be leveraged to help restore aspects of youthful reproductive function.


Assuntos
Fundulidae , Longevidade , Animais , Feminino , Masculino , Fundulidae/genética , Fundulidae/metabolismo , RNA Interferente Pequeno/genética , Gônadas/metabolismo , Envelhecimento/genética , RNA de Interação com Piwi
5.
Aquat Toxicol ; 252: 106314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201872

RESUMO

ABC export proteins including Multidrug resistance-related protein 2 (Mrp2) serve as detoxification mechanism in renal proximal tubules due to active transport of xenobiotics and metabolic waste products into primary urine. The environmental pollutants aluminum and arsenic interfere with a multitude of regulatory mechanisms in the body and here their impact on ABC transporter function was studied. NaAsO2 but not AlCl3 rapidly stimulated Mrp2-mediated Texas Red (TR) transport in isolated renal proximal tubules from killifish, a well-established laboratory model for the determination of efflux transporter activity by utilizing fluorescent substrates for the ABC transporters of interest and confocal microscopy followed by image analysis. This observed stimulation remained unaffected by the translation inhibitor cycloheximide (CHX), but it was abrogated by antagonists and inhibitors of the endothelin receptor type B (ETB)/nitric oxide synthase (NOS)/protein kinase C (PKC) signaling pathway. NaAsO2-triggered effects were abolished as a consequence of PKCα inhibition through Gö6976 and PKCα inhibitor peptide C2-4. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294,002 as well as the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed NaAsO2-triggered stimulation of luminal TR transport. In addition, the stimulatory effect of NaAsO2 was abolished by GSK650394, an inhibitor of serum- and glucocorticoid-inducible kinase 1 (SGK1), which is an important downstream target. Environmentally relevant concentrations of NaAsO2 further stimulated transport function of P-glycoprotein (P-gp), Multidrug resistance-related protein 4 (Mrp4) and Breast cancer resistance protein (Bcrp) while AlCl3 was ineffective. To our knowledge, this is the first report engaging in the impact of NaAsO2 on efflux transporter signaling and it may contribute to the understanding of defense mechanisms versus this worrying pollutant.


Assuntos
Arsênio , Fundulidae , Poluentes Químicos da Água , Animais , Fundulidae/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase C-alfa/metabolismo , Cloretos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cloreto de Alumínio , Cicloeximida , Glucocorticoides , Arsênio/metabolismo , Proteínas de Neoplasias/metabolismo , Poluentes Químicos da Água/toxicidade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Óxido Nítrico Sintase/metabolismo , Resíduos , Sirolimo , Mamíferos/metabolismo
6.
Environ Toxicol Pharmacol ; 95: 103976, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36100139

RESUMO

Herbicides are the most commonly applied pesticides in Brazil, specifically those based on glyphosate, and are used for different crops, near the habitats of annual killifish. Annual killifish presents a short life cycle with generally restricted geographic distribution. In this context, we evaluated the effect of the Roundup Original© (65, 130 and 260 µg. L-1 of glyphosate) herbicide on different development stages (adult-young and senile) of the annual killifish (Cynopoecilus sp.). We quantified the oxidative balance markers (superoxide dismutase, catalase, glutathione S-transferase, lipid peroxidation levels, and total proteins). We observed that the senile individuals presented 2-fold higher lipid peroxidation levels associated with the maintenance of superoxide dismutase and catalase activity levels even after exposure to the herbicide. However, senile subjects were negatively impacted by the exposure to formulations containing glyphosate, and this was related to a loss of glutathione S-transferase activity. Our research demonstrated that the established physiological markers and this species look promising for toxicology studies.


Assuntos
Fundulidae , Herbicidas , Animais , Catalase/metabolismo , Fundulidae/metabolismo , Glutationa Transferase/metabolismo , Herbicidas/toxicidade , Humanos , Estresse Oxidativo , Superóxido Dismutase/metabolismo
7.
Aging Cell ; 21(9): e13689, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986561

RESUMO

Parkinson's disease (PD) is characterized by phosphorylation and aggregation of the protein α-Synuclein and ensuing neuronal death progressing from the noradrenergic locus coeruleus to midbrain dopaminergic neurons. In 2019, Matsui and colleagues reported a spontaneous age-dependent degeneration of dopaminergic neurons and an even greater neurodegeneration of the noradrenergic neurons in the short-lived killifish Nothobranchius furzeri. Given the great possible relevance of a spontaneous model for PD, we assessed neurodegeneration of noradrenergic and dopaminergic neurons in two further laboratory strains of N. furzeri. We implemented, for the first time in N. furzeri, a whole-brain clarification technique and proceeded to entire 3D nuclei reconstruction to quantify total cell numbers in two different stains of N. furzeri. In both strains, we observed that age-dependent neurodegeneration is limited to the locus coeruleus and does not involve the posterior tuberculum. We also applied 3D counting to the optic tectum, an area of active adult neurogenesis, and detected an increase of neurons with age. Our results confirm age-dependent neurodegeneration of noradrenergic neurons, a condition reminiscent of the presymptomatic stage of PD indicating that N. furzeri could be used in the future to identify modifying factors for age-dependent neurodegeneration and open the intriguing possibility that natural genetic variation may influence the susceptibility of dopaminergic neurons.


Assuntos
Fundulidae , Doença de Parkinson , Envelhecimento/genética , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fundulidae/metabolismo , Norepinefrina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
8.
Gen Comp Endocrinol ; 325: 114051, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533740

RESUMO

Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.


Assuntos
Aquaporinas , Fundulidae , Animais , Aquaporinas/genética , Aquaporinas/metabolismo , Claudinas/metabolismo , Fundulidae/genética , Fundulidae/metabolismo , Brânquias/metabolismo , Filogenia , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Salinidade , Água do Mar , Ovinos
9.
STAR Protoc ; 3(1): 101087, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35072116

RESUMO

Ribosomes are composed of a mix of ribosomal RNAs and proteins; this composition varies depending on time, condition, and organism. Here, we present an optimized protocol for preparation of intact ribosomes from the skeletal muscle of the turquoise killifish. We also detail the steps for ribosome quantification and cryo-EM grid preparation. This protocol can enable the identification of heterogeneous ribosome structures that vary by fish age or in response to specific conditions.


Assuntos
Fundulidae , Animais , Microscopia Crioeletrônica/métodos , Fundulidae/metabolismo , Músculo Esquelético/metabolismo , RNA Ribossômico/análise , Ribossomos/química
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638748

RESUMO

Neurotrophins (NTs) and their signal-transducing Trk receptors play a crucial role in the development and maintenance of specific neuronal subpopulations in nervous and sensory systems. NTs are supposed to regulate two sensory systems in fish, the inner ear and the lateral line system (LLS). The latter is one of the major mechanosensory systems in fish. Considering that annual fishes of the genus Nothobranchius, with their short life expectancy, have become a suitable model for aging studies and that the occurrence and distribution of neurotrophin Trk receptors have never been investigated in the inner ear and LLS of killifish (Nothobranchius guentheri), our study aimed to investigate the localization of neurotrophin-specific Trk receptors in mechanosensory systems of N. guentheri. For histological and immunohistochemical analysis, adult specimens of N. guentheri were processed using antibodies against Trk receptors and S100 protein. An intense immunoreaction for TrkA and TrkC was found in the sensory cells of the inner ear as well as in the hair cells of LLS. Moreover, also the neurons localized in the acoustic ganglia displayed a specific immunoreaction for all Trk receptors (TrkA, B, and C) analyzed. Taken together, our results demonstrate, for the first time, that neurotrophins and their specific receptors could play a pivotal role in the biology of the sensory cells of the inner ear and LLS of N. guentheri and might also be involved in the hair cells regeneration process in normal and aged conditions.


Assuntos
Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Sistema da Linha Lateral/metabolismo , Mecanotransdução Celular , Receptor trkA/metabolismo , Receptor trkC/metabolismo , Animais , Proteínas de Peixes/genética , Fundulidae/genética , Receptor trkA/genética , Receptor trkC/genética
11.
Anal Bioanal Chem ; 413(26): 6457-6468, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476522

RESUMO

Cyclic dinucleotides (CDNs) are key secondary messenger molecules produced by cyclic dinucleotide synthases that trigger various cellular signaling cascades from bacteria to vertebrates. In mammals, cyclic GMP-AMP synthase (cGAS) has been shown to bind to intracellular DNA and catalyze the production of the dinucleotide 2'3' cGAMP, which signals downstream effectors to regulate immune function, interferon signaling, and the antiviral response. Despite the importance of CDNs, sensitive and accurate methods to measure their levels in vivo are lacking. Here, we report a novel LC-MS/MS method to quantify CDNs in vivo. We characterized the mass spectrometric behavior of four different biologically relevant CDNs (c-di-AMP, c-di-GMP, 3'3' cGAMP, 2'3' cGAMP) and provided a means of visually representing fragmentation resulting from collision-induced dissociation at different energies using collision energy breakdown graphs. We then validated the method and quantified CDNs in two in vivo systems, the bacteria Escherichia coli OP50 and the killifish Nothobranchius furzeri. We found that optimization of LC-MS/MS parameters is crucial to sensitivity and accuracy. These technical advances should help illuminate physiological and pathological roles of these CDNs in in vivo settings. Graphical abstract.


Assuntos
GMP Cíclico/análogos & derivados , Fosfatos de Dinucleosídeos/análise , Nucleotídeos Cíclicos/análise , Animais , Cromatografia Líquida , GMP Cíclico/análise , Escherichia coli/química , Fundulidae/metabolismo , Espectrometria de Massas em Tandem
12.
Artigo em Inglês | MEDLINE | ID: mdl-34384878

RESUMO

We investigated whether fish can make dynamic haematological adjustments to support aerobic metabolism during repeated cycles of hypoxia-reoxygenation. Killifish were acclimated to normoxia, constant hypoxia (2 kPa O2), or intermittent cycles of nocturnal hypoxia (12 h of normoxia: 12 h of 2 kPa O2 hypoxia) for 28 days. Normoxia-acclimated fish were sampled in the daytime in normoxia and after exposure to a single bout of nocturnal hypoxia. Each hypoxia acclimation group were sampled at the PO2 experienced during acclimation during both the day and night. All acclimation groups had increased blood haemoglobin content and haematocrit and reduced spleen mass during nocturnal hypoxia compared to normoxic controls. Blood haemoglobin content was negatively correlated with spleen mass at both the individual and group level. Fish acclimated to intermittent hypoxia rapidly reversed these changes during diurnal reoxygenation. The concentrations of haemoglobin, ATP, and GTP within erythrocytes did not vary substantially between groups. We also measured resting O2 consumption rate (MO2) and maximum MO2 (induced by an exhaustive chase) in hypoxia in each acclimation group. Fish acclimated to intermittent hypoxia maintained higher resting MO2 than other groups in hypoxia, comparable to the resting MO2 of normoxia-acclimated controls measured in normoxia. Differences in resting MO2 in hypoxia did not result from variation in O2 transport capacity, because maximal MO2 in hypoxia always exceeded resting MO2. Therefore, reversible modulation of blood haemoglobin content along with metabolic adjustments help killifish cope with intermittent cycles of hypoxia in the estuarine environment.


Assuntos
Fundulidae/metabolismo , Hemoglobinas/metabolismo , Hipóxia/sangue , Adaptação Fisiológica/fisiologia , Animais , Respiração Celular/fisiologia , Fundulidae/sangue , Oxigênio/sangue , Consumo de Oxigênio/fisiologia
13.
Biogerontology ; 22(5): 507-530, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302586

RESUMO

Annual killifish are among the most remarkable extremophile species with the shortest vertebrate life span. Few studies have reported on the oxidative balance throughout their life cycle and its association to the natural aging process of these neotropical animals in a natural environment. We standardized and analyzed physiological markers related to the redox balance of the annual killifish (Cynopoecilus fulgens) throughout the post-embryonic life cycle (enzyme activity of Superoxide Dismutase, Catalase, Glutathione Peroxidase, and Glutathione S-transferase, as well as the determination of the levels of Lipoperoxidation, Carbonylated Proteins, and Total Proteins). We tested the influence of environmental variables on these biomarkers. Individuals were collected, including juveniles, adults, and seniles, in three sampling units around the Parque Nacional da Lagoa do Peixe, located in the Coastal Plain of Rio Grande do Sul. We observed that males and females used different physiological strategies of their redox balance during their life cycle, and their oxidative balance was influenced by their reproductive period and environmental variables (water temperature, abundance of predators, abundance of another sympatric annual killifish species, and abundance of C. fulgens). The population of each temporary pond presented different physiological responses to the adaptation of their life cycle, and there was an influence of environmental component as a modulator of this cycle. Our study offers reference values that will be useful for comparison in future research with short-lived organisms.


Assuntos
Ciprinodontiformes , Fundulidae , Adaptação Fisiológica , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Feminino , Fundulidae/metabolismo , Humanos , Masculino , Estresse Oxidativo , Superóxido Dismutase/metabolismo
14.
Environ Toxicol Pharmacol ; 83: 103580, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33429071

RESUMO

Previous reports suggested that non-dioxin-like (NDL) PCB153 effects on cytochrome P450 3A (Cyp3a) expression in Atlantic killifish (Fundulus heteroclitus) gills differed between F0 generation fish from a PCB site (New Bedford Harbor; NBH) and a reference site (Scorton Creek; SC). Here, we examined effects of PCB153, dioxin-like (DL) PCB126, or a mixture of both, on Cyp3a56 mRNA in killifish generations removed from the wild, without environmental PCB exposures. PCB126 effects in liver and gills differed between populations, as expected. Gill Cyp3a56 was not affected by either congener in NBH F2 generation fish, but was induced by PCB153 in SC F1 fish, with females showing a greater response. PCB153 did not affect Cyp3a56 in liver of either population. Results suggest a heritable resistance to NDL-PCBs in killifish from NBH, in addition to that reported for DL PCBs. Induction of Cyp3a56 in gills may be a biomarker of exposure to NDL PCBs in fish populations that are not resistant to PCBs.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Proteínas de Peixes/biossíntese , Fundulidae , Bifenilos Policlorados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP3A/genética , Tolerância a Medicamentos , Indução Enzimática , Feminino , Proteínas de Peixes/genética , Fundulidae/genética , Fundulidae/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Receptor de Pregnano X/genética , RNA Mensageiro/metabolismo
15.
J Anat ; 238(5): 1106-1115, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314133

RESUMO

Inhibitors of DNA (Id) are key transcription factors (TFs) regulating neurogenic processes. They belong to the helix-loop-helix (HLH) TF family and are dominant negative regulators of basic HLH proteins (bHLHs). Specifically, they inhibit cell differentiation and enhance cell proliferation and motility. The Id family includes four members, Id1, Id2, Id3, and Id4, which have been identified in nearly all vertebrates. The transcript catalog of the African turquoise killifish, Nothobranchius furzeri, contains all four TFs and has evolved showing positive selection for Id3. N. furzeri, a teleost, is the short-lived vertebrate and is gaining increasing scientific interest as a new model organism in aging research. It is characterized by embryonic diapause, explosive sexual maturation, and rapid aging. In this study, we investigated both the expression and the role of Id3 in the brain of this model organism. Interestingly, Id3 was upregulated age-dependently along with a distribution pattern resembling that of other vertebrates. Additionally, the gene has undergone positive selection during evolution and shows a high degree of conservation relative to that of other vertebrates. These features make N. furzeri a valid tool for aging studies and a potential model in translational research.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Fundulidae/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Animais
16.
Physiol Genomics ; 52(9): 408-422, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32776802

RESUMO

The annual killifish, Austrofundulus limnaeus, survives in ephemeral ponds in the coastal deserts of Venezuela. Persistence through the dry season is dependent on drought-resistant eggs embedded in the pond sediments during the rainy season. The ability of these embryos to enter drastic metabolic dormancy (diapause) during normal development enables A. limnaeus to survive conditions lethal to most other aquatic vertebrates; critical to the survival of the species is the ability of embryos to survive months and perhaps years without access to liquid water. Little is known about the molecular mechanisms that aid in survival of the dry season. This study aims to gain insight into the mechanisms facilitating survival of dehydration stress due to aerial exposure by examining metabolite profiles of dormant and developing embryos. There is strong evidence for unique metabolic profiles based on developmental stage and length of aerial exposure. Actively developing embryos exhibit more robust changes; however, dormant embryos respond in an active manner and significantly alter their metabolic profile. A number of metabolites accumulate in aerial-exposed embryos that may play an important role in survival, including the identification of known antioxidants and neuroprotectants. In addition, a number of unique metabolites not yet discussed in the dehydration literature are identified, such as lanthionine and 2-hydroxyglutarate. Despite high oxygen availability, embryos accumulate the anaerobic end product lactate. This paper offers an overview of the metabolic changes occurring that may support embryonic survival during dehydration stress due to aerial incubation, which can be functionally tested using genetic and pharmacological approaches.


Assuntos
Desidratação/metabolismo , Fundulidae/embriologia , Fundulidae/metabolismo , Oxigênio/metabolismo , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Hipóxia/metabolismo , Hipóxia/patologia , Metaboloma , Estresse Oxidativo
17.
Arch Environ Contam Toxicol ; 79(2): 258-269, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32666217

RESUMO

Phenothiazine (PTZ) is a heterocyclic thiazine compound used for industrial and medical purposes. Through environmental surveillance studies, PTZ was found being discharged into a local river in Connecticut. Phenothiazine has been shown to act similarly to endocrine disrupting chemicals. This study sought to identify sex specific hormone receptor changes in Fundulus heteroclitus in response to PTZ exposure. Fundulus heteroclitus, also known as mummichog, are small fish native to the Atlantic coast of the United States and Canada. They reside in brackish waters and can survive harsh toxic environments. This model organism is native to the polluted waters found in Connecticut. In this study, fish were exposed to PTZ concentrations of 0.5 ppm, 1.0 ppm, and 2.0 ppm for 1 week. Following exposure, brain, liver, and gonad tissues were harvested; cDNA was synthesized; and mRNA expression was assessed for 6 different hormone receptors. Compared with vehicle control (ethanol) differences in mRNA expression, levels of hormone receptors were observed in various tissues from male and female fish. Many of the tissues assessed showed changes in expression level, while only female liver and testis showed no change. These results implicate PTZ as a potential endocrine disrupting compound to mummichog at environmentally relevant concentrations.


Assuntos
Fundulidae/fisiologia , Fenotiazinas/toxicidade , Receptores de Esteroides/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Canadá , Disruptores Endócrinos/metabolismo , Monitoramento Ambiental , Feminino , Fundulidae/metabolismo , Fígado/química , Masculino , Fenotiazinas/metabolismo , Testículo/efeitos dos fármacos , Poluentes Químicos da Água/análise
18.
Chemosphere ; 253: 126631, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32302917

RESUMO

We have previously demonstrated in a companion work that acclimation to 28 °C potentiated waterborne copper (Cu) toxic effects in Poecilia vivipara through oxidative stress-related processes. In the present study, we hypothesized that these results were related to kinetic metabolic adjustments in enzymes from aerobic and anaerobic pathways. To test this, P. vivipara was acclimated to two temperatures (22 °C or 28 °C) for three weeks and then exposed to Cu (control, 9 or 20 µg/L) for 96 h. The activity of enzymes from glycolysis (pyruvate kinase [PK] and lactate dehydrogenase [LDH]), Krebs cycle (citrate synthase [CS]) and the electron transport chain system (ETS) were assessed in gills, liver and muscle. Interactive effects were only seen for hepatic LDH activity, as both metal exposure and heat stress, combined or not, inhibited this enzyme, showing a suppression in anaerobic pathways. Conversely, a Cu main effect was present in the liver, expressed as an elevation in ETS activity, showing an enhancement in hepatic aerobic metabolism likely related with the very energy-demanding process of metal detoxification. Moreover, this study shows that P. vivipara has a remarkable ability to compensate heat stress in terms of energy metabolism, as we could not observe acclimation temperature effects for most of the cases. Nonetheless, a tissue-dependent effect of elevated temperature was observed, as we could observe an inhibition in muscular CS activity. Finally, it is concluded that kinetic adjustments in terms of the energy metabolism are not related with the temperature-dependent elevation of Cu toxicity in P. vivipara as we previously hypothesized.


Assuntos
Cobre/toxicidade , Metabolismo Energético/fisiologia , Poecilia/fisiologia , Temperatura , Poluentes Químicos da Água/toxicidade , Aclimatação/efeitos dos fármacos , Animais , Ciclo do Ácido Cítrico , Metabolismo Energético/efeitos dos fármacos , Fundulidae/metabolismo , Brânquias/metabolismo , Glicólise , L-Lactato Desidrogenase/metabolismo , Fígado/metabolismo , Metais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poecilia/metabolismo , Piruvato Quinase/metabolismo
19.
Gen Comp Endocrinol ; 289: 113378, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899193

RESUMO

The environmental estrogen 17α-ethinylestradiol (EE2) will depress or completely inhibit egg production in many common model teleosts at low concentrations (≤0.5 ng/L; Runnalls et al., 2015). This inhibition is not seen in the estuarine killifish, or mummichog (Fundulus heteroclitus), even when exposed to 100 ng/L EE2. This relative insensitivity to EE2 exposure indicates species-specific mechanisms for compensating for exogenous estrogenic exposure. This review compares various reproductive responses elicited by EE2 in mummichog to other common model teleosts, such as zebrafish (Danio rerio) and fathead minnow (Pimephales promelas), identifying key endpoints where mummichog differ from other studied fish. For example, EE2 accumulates primarily in the liver/gall bladder of mummichog, which is different than zebrafish and fathead minnow in which accumulation is predominantly in the carcass. Despite causing species-specific differences in fecundity, EE2 has been shown to consistently induce hepatic vitellogenin in males and cause feminization/sex reversal during gonadal differentiation in larval mummichog, similar to other species. In addition, while gonadal steroidogenesis and plasma steroid levels respond to exogenous EE2, it is generally at higher concentrations than observed in other species. In mummichog, production of 17ß-estradiol (E2) by full grown ovarian follicles remains high; unlike other teleost models where E2 synthesis decreases as 17α,20ß-dihydroxy-4-prenen-3-on levels increase to induce oocyte maturation. New evidence in mummichog indicates some dissimilarity in gonadal steroidogenic gene expression responses compared to gene expression responses in zebrafish and fathead minnow exposed to EE2. The role of ovarian physiology continues to warrant investigation regarding the tolerance of mummichog to exogenous EE2 exposure. Here we present a comprehensive review, highlighting key biological differences in response to EE2 exposure between mummichog and other commonly used model teleosts.


Assuntos
Etinilestradiol/metabolismo , Fundulidae/metabolismo , Reprodução/efeitos dos fármacos , Animais , Feminino , Peixes , Masculino , Poluentes Químicos da Água/metabolismo
20.
J Comp Physiol B ; 190(2): 219-230, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31980891

RESUMO

Mummichogs (Fundulus heteroclitus) can tolerate abrupt changes in environmental salinity because of their ability to rapidly adjust the activities of ionocytes in branchial and opercular epithelia. In turn, the concerted expression of sub-cellular effectors of ion transport underlies adaptive responses to fluctuating salinities. Exposure to seawater (SW) stimulates the expression of Na+/K+/2Cl- cotransporter 1 (nkcc1) and cystic fibrosis transmembrane regulator (cftr) mRNAs in support of ion extrusion by SW-type ionocytes. Given the incomplete understanding of how freshwater (FW)-type ionocytes actually operate in mummichogs, the transcriptional responses essential for ion absorption in FW environments remain unresolved. In a subset of species, a 'fish-specific' Na+/Cl- cotransporter denoted Ncc2 (Slc12a10) is responsible for the uptake of Na+ and Cl- across the apical surface of FW-type ionocytes. In the current study, we identified an ncc2 transcript that is highly expressed in gill filaments and opercular epithelium of FW-acclimated mummichogs. Within 1 day of transfer from SW to FW, ncc2 levels in both tissues increased in parallel with reductions in nkcc1 and cftr. Conversely, mummichogs transferred from FW to SW exhibited marked reductions in ncc2 concurrent with increases in nkcc1 and cftr. Immunohistochemical analyses employing a homologous antibody revealed apical Ncc2-immunoreactivity in Na+/K+-ATPase-immunoreactive ionocytes of FW-acclimated animals. Our combined observations suggest that Ncc2/ncc2-expressing ionocytes support the capacity of mummichogs to inhabit FW environments.


Assuntos
Proteínas de Peixes/metabolismo , Fundulidae/metabolismo , Brânquias/metabolismo , Cloreto de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Aclimatação , Animais , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Proteínas de Peixes/genética , Brânquias/efeitos dos fármacos , Salinidade , Simportadores de Cloreto de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA