Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
J Hazard Mater ; 471: 134397, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38677114

RESUMO

Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.


Assuntos
Carvão Vegetal , Compostagem , Glicina , Glifosato , Herbicidas , Neonicotinoides , Nitrocompostos , Microbiologia do Solo , Poluentes do Solo , Estrobilurinas , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/metabolismo , Nitrocompostos/toxicidade , Estrobilurinas/metabolismo , Estrobilurinas/toxicidade , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Carvão Vegetal/química , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/metabolismo , Herbicidas/toxicidade , Carbamatos/metabolismo , Carbamatos/toxicidade , Microbiota/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Inseticidas/metabolismo , Inseticidas/toxicidade , Biodegradação Ambiental , Solo/química , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
2.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668960

RESUMO

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Assuntos
Benzo(a)pireno , Adutos de DNA , Poluentes Ambientais , Saccharomyces cerevisiae , Adutos de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Mutagênicos/toxicidade , Mutagênicos/metabolismo , DNA Fúngico/genética , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo
3.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38660720

RESUMO

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Assuntos
Biocatálise , Epóxido Hidrolases , Proteínas Fúngicas , Fungicidas Industriais , Rhodotorula , Triazóis , Rhodotorula/enzimologia , Rhodotorula/química , Rhodotorula/metabolismo , Triazóis/química , Triazóis/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/síntese química , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulação de Acoplamento Molecular , Escherichia coli/enzimologia , Escherichia coli/metabolismo
4.
Environ Pollut ; 349: 123924, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580058

RESUMO

The study evaluated Ceremonia 25 EC®, a plant protection product (PPP) containing difenoconazole, in tomato crops, to identify potential risks associated with PPPs, and in addition to this compound, known metabolites from difenoconazole degradation and co-formulants present in the PPP were monitored. An ultra high performance liquid chromatography coupled to quadrupole-Orbitrap mass analyser (UHPLC-Q-Orbitrap-MS) method was validated with a working range of 2 µg/kg (limit of quantification, LOQ) to 200 µg/kg. Difenoconazole degradation followed a biphasic double first-order in parallel (DFOP) kinetic model in laboratory and greenhouse trials, with high accuracy (R2 > 0.9965). CGA-205374, difenoconazole-alcohol, and hydroxy-difenoconazole metabolites were tentatively identified and semi-quantified in laboratory trials by UHPLC-Q-Orbitrap-MS from day 2 to day 30. No metabolites were found in greenhouse trials. Additionally, 13 volatile co-formulants were tentatively identified by gas chromatography (GC) coupled to Q-Orbitrap-MS, detectable up to the 7th day after PPP application. This study provides a comprehensive understanding of difenoconazole dissipation in tomatoes, identification of metabolites, and detection of co-formulants associated with the applied PPP.


Assuntos
Dioxolanos , Fungicidas Industriais , Solanum lycopersicum , Triazóis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/química , Dioxolanos/metabolismo , Triazóis/metabolismo , Triazóis/análise , Triazóis/química , Fungicidas Industriais/metabolismo , Fungicidas Industriais/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas/métodos , Contaminação de Alimentos/análise , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/metabolismo
5.
J Agric Food Chem ; 72(17): 9680-9690, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634420

RESUMO

Plant pathogens have frequently shown multidrug resistance (MDR) in the field, often linked to efflux and sometimes metabolism of fungicides. To investigate the potential role of metabolic resistance in B. cinerea strains showing MDR, the azoxystrobin-sensitive strain B05.10 and -resistant strain Bc242 were treated with azoxystrobin. The degradation half-life of azoxystrobin in Bc242 (9.63 days) was shorter than that in B05.10 (28.88 days). Azoxystrobin acid, identified as a metabolite, exhibited significantly lower inhibition rates on colony and conidia (9.34 and 11.98%, respectively) than azoxystrobin. Bc242 exhibited higher expression levels of 34 cytochrome P450s (P450s) and 11 carboxylesterase genes (CarEs) compared to B05.10 according to RNA-seq analysis. The expression of P450 genes Bcin_02g01260 and Bcin_12g06380, along with the CarEs Bcin_12g06360 in Saccharomyces cerevisiae, resulted in reduced sensitivity to various fungicides, including azoxystrobin, kresoxim-methyl, pyraclostrobin, trifloxystrobin, iprodione, and carbendazim. Thus, the mechanism of B. cinerea MDR is linked to metabolism mediated by the CarE and P450 genes.


Assuntos
Botrytis , Carboxilesterase , Sistema Enzimático do Citocromo P-450 , Farmacorresistência Fúngica , Proteínas Fúngicas , Fungicidas Industriais , Pirimidinas , Estrobilurinas , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Estrobilurinas/metabolismo , Estrobilurinas/química , Pirimidinas/farmacologia , Pirimidinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Botrytis/genética , Botrytis/efeitos dos fármacos , Carboxilesterase/metabolismo , Carboxilesterase/genética , Farmacorresistência Fúngica/genética , Doenças das Plantas/microbiologia , Metacrilatos/farmacologia , Metacrilatos/metabolismo
6.
Environ Pollut ; 347: 123685, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460591

RESUMO

Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-µg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 µg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.


Assuntos
Compostos de Bifenilo , Fungicidas Industriais , Niacinamida/análogos & derivados , Poluentes Químicos da Água , Animais , Fungicidas Industriais/metabolismo , Ecossistema , Organismos Aquáticos , Peixe-Zebra/metabolismo , Daphnia , Niacinamida/toxicidade , Poluentes Químicos da Água/metabolismo
7.
J Agric Food Chem ; 72(11): 5636-5644, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457784

RESUMO

The evaluation of toxicity and environmental behavior of bioactive lead molecules is helpful in providing theoretical support for the development of agrochemicals, in line with the sustainable development of the ecological environment. In previous work, some acethydrazide structures have been demonstrated to exhibit excellent and broad-spectrum fungicidal activity; however, its environmental compatibility needs to be further elucidated if it is to be identified as a potential fungicide. In this project, the toxicity of fungicidal acethydrazide lead compounds F51, F58, F72, and F75 to zebrafish was determined at 10 µg mL-1 and 1 µg mL-1. Subsequently, the toxic mechanism of compound F58 was preliminarily explored by histologic section and TEM observations, which revealed that the gallbladder volume of common carp treated with compound F58 increased, accompanied by a deepened bile color, damaged plasma membrane, and atrophied mitochondria in gallbladder cells. Approximately, F58-treated hepatocytes exhibited cytoplasmic heterogeneity, with partial cellular vacuolation and mitochondrial membrane rupture. Metabolomics analysis further indicated that differential metabolites were enriched in the bile formation-associated steroid biosynthesis, primary bile acid biosynthesis, and taurine and hypotaurine metabolism pathways, as well as in the membrane function-related glycerophospholipid metabolism, linolenic acid metabolism, α-linolenic acid metabolism, and arachidonic acid metabolism pathways, suggesting that the acethydrazide F58 may have acute liver toxicity to common carp. Finally, the hydrolysis dynamics of F58 was investigated, with the obtained half-life of 5.82 days. The above results provide important guiding significance for the development of new green fungicides.


Assuntos
Fungicidas Industriais , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Hidrólise , Bile , Metabolômica
8.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
9.
J Environ Sci Health B ; 59(5): 233-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38534106

RESUMO

Accelerating safety assessments for novel agrochemicals is imperative, advocating for in vitro setups to present pesticide biodegradation by soil microbiota before field studies. This approach enables metabolic profile generation in a controlled laboratory environment eliminating extrinsic factors. In the current study, ten different soil samples were utilized to check their capability to degrade Ametoctradin by their microbiota. Furthermore, five different fungal strains (Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Lasiodiplodia theobromae, and Penicillium chrysogenum) were utilized to degrade Ametoctradin in aqueous media. A degradation pathway was established using the metabolic patterns created during the biodegradation of Ametoctradin. In contrast to 47% degradation (T1/2 of 34 days) when Ametoctradin was left in the soil samples, the fungal strain Aspergillus fumigatus demonstrated 71% degradation of parent Ametoctradin with a half-life (T1/2) of 16 days. In conclusion, soil rich in microorganisms effectively cleans Ametoctradin-contaminated areas while Fungi have also been shown to be an effective, affordable, and promising way to remove Ametoctradin from the environment.


Assuntos
Fungicidas Industriais , Pirimidinas , Poluentes do Solo , Fungicidas Industriais/metabolismo , Solo/química , Fungos , Agricultura , Triazóis/metabolismo , Biodegradação Ambiental , Microbiologia do Solo , Poluentes do Solo/análise
10.
Sci Total Environ ; 926: 171546, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479527

RESUMO

Triazole fungicides are widely used to treat cereal seeds before sowing. Granivorous birds like the Red-legged Partridge (Alectoris rufa) have high exposure risk because they ingest treated seeds that remain on the field surface. As triazole fungicides can act as endocrine disruptors, affecting sterol synthesis and reproduction in birds several months after exposure, we hypothesized that these effects could also impact subsequent generations of exposed birds. To test this hypothesis, we exposed adult partridges (F0) to seeds treated at commercial doses with four different formulations containing triazoles as active ingredients (flutriafol, prothioconazole, tebuconazole, and a mixture of the latter two), simulating field exposure during late autumn sowing. During the subsequent reproductive season, two to four months after exposure, we examined compound allocation of steroid hormones, cholesterol, vitamins, and carotenoids in eggs laid by exposed birds (F1), as well as the expression of genes encoding enzymes involved in sterol biosynthesis in one-day-old chicks of this F1. One year later, F1 animals were paired again to investigate the expression of the same genes in the F2 chicks. We found changes in the expression of some genes for all treatments and both generations. Additionally, we observed an increase in estrone levels in eggs from partridges treated with flutriafol compared to controls, a decrease in tocopherol levels in partridges exposed to the mixture of tebuconazole and prothioconazole, and an increase in retinol levels in partridges exposed to prothioconazole. Despite sample size limitations, this study provides novel insights into the mechanisms of action of the previously observed effects of triazole fungicide-treated seeds on avian reproduction with evidence that the effects can persist beyond the exposure windows, affecting unexposed offspring of partridges fed with treated seeds. The results highlight the importance of considering long-term chronic effects when assessing pesticide risks to wild birds.


Assuntos
Fungicidas Industriais , Galliformes , Animais , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Codorniz , Galinhas , Triazóis/toxicidade , Triazóis/metabolismo , Expressão Gênica , Esteróis
11.
Sci Total Environ ; 924: 171524, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453072

RESUMO

Meptyldinocap is a dinitrophenol fungicide used to control powdery mildew. Although other dinitrophenol pesticides have been found to exhibit reproductive toxicity, studies of meptyldinocaps are scarce. This study investigated the adverse effects of meptyldinocap on porcine trophectoderm (pTr) and porcine endometrial luminal epithelial (pLE) cells, which play crucial roles in implantation. We confirmed that meptyldinocap decreased cell viability, induced apoptosis, and inhibited proliferation by decreasing proliferation-related gene expression and inducing changes in the cell cycle. Furthermore, meptyldinocap treatment caused mitochondrial dysfunction, endoplasmic reticulum stress, and disruption of calcium homeostasis. Moreover, it induces alterations in mitogen-activated protein kinase signaling cascades and reduces the migration ability, leading to implantation failure. Our findings suggest that meptyldinocap reduces the cellular functions of pTr and pLE cells, which are important for the implantation process, and interferes with interactions between the two cell lines, potentially leading to implantation failure. We also propose a mechanism by which the understudied fungicide meptyldinocap exerts its cytotoxicity.


Assuntos
Dinitrobenzenos , Fungicidas Industriais , Doenças Mitocondriais , Suínos , Animais , Fungicidas Industriais/metabolismo , Proliferação de Células , Apoptose , Pontos de Checagem do Ciclo Celular , Estresse do Retículo Endoplasmático , Células Epiteliais , Dinitrofenóis/metabolismo , Dinitrofenóis/farmacologia , Doenças Mitocondriais/metabolismo
12.
Pestic Biochem Physiol ; 199: 105757, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458660

RESUMO

Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.


Assuntos
Amidas , Receptor alfa de Estrogênio , Fungicidas Industriais , Camundongos , Animais , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Adipócitos/metabolismo , Adipogenia , Metabolismo dos Lipídeos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Lipídeos , Células 3T3-L1 , PPAR gama/metabolismo
13.
Microbiol Spectr ; 12(4): e0400823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38451229

RESUMO

Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.


Assuntos
Bacillus , Fungicidas Industriais , Fusarium , Antifúngicos/química , Fusarium/genética , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Lipopolissacarídeos/metabolismo , Lipopeptídeos/farmacologia , DNA/metabolismo , Ergosterol , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
14.
Sci Total Environ ; 922: 171219, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38408665

RESUMO

Strobilurin fungicides (SFs) are commonly used in agriculture worldwide and frequently detected in aquatic environments. High toxicity of SFs to aquatic organisms has caused great concerns. To explore whether vitamin E (VE) can relieve the toxicity caused by pyraclostrobin (PY), zebrafish were exposed to PY with or without VE supplementation. When co-exposure with VE (20 µM), the 96 h-LC50 values of PY to zebrafish embryos, adult, and the 24 h-LC50 value of PY to larvae increased from 43.94, 58.36 and 38.16 µg/L to 64.72, 108.62 and 72.78 µg/L, respectively, indicating that VE significantly decreased the toxicity of PY to zebrafish at different life stages. In addition, VE alleviated the deformity symptoms (pericardial edema and brain damage), reduced speed and movement distance, and decreased heart rate caused by 40 µg/L PY in zebrafish larvae. Co-exposure of PY with VE significantly reduced PY-caused larval oxidative stress and immunotoxicity via increasing the activities of superoxide dismutase, catalase and level of glutathione, as well as reducing the malondialdehyde production and the expression levels of Nrf2, Ucp2, IL-8, IFN and CXCL-C1C. Meanwhile, the expression levels of gria4a and cacng4b genes, which were inhibited by PY, were significantly up-regulated after co-exposure of PY with VE. Moreover, co-exposure with VE significantly reversed the increased mitochondrial DNA copies and reduced ATP content caused by PY in larvae, but had no effect on the expression of cox4i1l and activity of complex III that reduced by PY, suggesting VE can partially improve PY-induced mitochondrial dysfunction. In conclusion, the potential mechanisms of VE alleviating PY-induced toxicity may be ascribed to decreasing the oxidative stress level, restoring the functions of heart and nervous system, and improving the immunity and mitochondrial function in zebrafish.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Estrobilurinas/toxicidade , Peixe-Zebra/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia , Poluentes Químicos da Água/metabolismo , Estresse Oxidativo , Fungicidas Industriais/metabolismo , Larva , Embrião não Mamífero
15.
Chemosphere ; 352: 141423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340991

RESUMO

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Nitrilas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Disruptores Endócrinos/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Vitelogeninas/metabolismo , Sêmen , Gônadas , Espermatozoides/metabolismo , Reprodução , Poluentes Químicos da Água/metabolismo
16.
J Agric Food Chem ; 72(8): 3913-3925, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38355300

RESUMO

Nucleoside diphosphate kinase (NDK) plays an important role in many cellular processes in all organisms. In this study, we functionally characterized a nucleoside diphosphate kinase (FgNdk1) in Fusarium graminearum, a causal agent of Fusarium head blight (FHB). FgNdk1 was involved in the generation of energy in the electron-transfer chain by interacting with succinate dehydrogenase (FgSdhA, FgSdhC1, and FgSdhC2). Deletion of FgNdk1 not only resulted in abnormal mitochondrial morphology, decreased ATP content, defective fungal development, and impairment in the formation of the toxisome but also led to the suppressed expression level of DON biosynthesis enzymes, decreased DON biosynthesis, and declined pathogenicity as well. Furthermore, deletion of FgNdk1 caused increasing transcriptional levels of FgSdhC1 and FgdhC2, in the presence of pydiflumetofen, related to the decreased sensitivity to SDHI fungicides. Overall, this study identified a new regulatory mechanism of FgNdk1 in the pathogenicity and SDHI fungicide sensitivity of Fusarium graminearum.


Assuntos
Fungicidas Industriais , Fusarium , Núcleosídeo-Difosfato Quinase , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Virulência , Doenças das Plantas/microbiologia , Mitocôndrias/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo
17.
Sci Total Environ ; 921: 171160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395170

RESUMO

The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.


Assuntos
Fungicidas Industriais , Pirazóis , Tiofenos , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos/toxicidade , Peixe-Zebra/metabolismo , Polietileno/toxicidade , Polietileno/metabolismo , Fungicidas Industriais/toxicidade , Fungicidas Industriais/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
J Biol Chem ; 300(4): 107123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417796

RESUMO

Thiram is a toxic fungicide extensively used for the management of pathogens in fruits. Although it is known that thiram degrades in plant tissues, the key enzymes involved in this process remain unexplored. In this study, we report that a tau class glutathione S-transferase (GST) from Carica papaya can degrade thiram. This enzyme was easily obtained by heterologous expression in Escherichia coli, showed low promiscuity toward other thiuram disulfides, and catalyzed thiram degradation under physiological reaction conditions. Site-directed mutagenesis indicated that G-site residue S67 shows a key influence for the enzymatic activity toward thiram, while mutation of residue S13, which reduced the GSH oxidase activity, did not significantly affect the thiram-degrading activity. The formation of dimethyl dithiocarbamate, which was subsequently converted into carbon disulfide, and dimethyl dithiocarbamoylsulfenic acid as the thiram degradation products suggested that thiram undergoes an alkaline hydrolysis that involves the rupture of the disulfide bond. Application of the GST selective inhibitor 4-chloro-7-nitro-2,1,3-benzoxadiazole reduced papaya peel thiram-degrading activity by 95%, indicating that this is the main degradation route of thiram in papaya. GST from Carica papaya also catalyzed the degradation of the fungicides chlorothalonil and thiabendazole, with residue S67 showing again a key influence for the enzymatic activity. These results fill an important knowledge gap in understanding the catalytic promiscuity of plant GSTs and reveal new insights into the fate and degradation products of thiram in fruits.


Assuntos
Carica , Glutationa Transferase , Tiram , Carica/enzimologia , Carica/genética , Fungicidas Industriais/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/química , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiram/metabolismo , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Appl Microbiol Biotechnol ; 108(1): 133, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229332

RESUMO

Transcription factor Cmr1 (Colletotrichum melanin regulation 1) and its homologs in several plant fungal pathogens are the regulators of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis pathway and have evolved functional diversification in morphology and pathogenicity. The fungal genus Alternaria comprises the group of "black fungi" that are rich in DHN-melanin in the primary cell wall and septa of the conidia. Some Alternaria species cause many economically important plant diseases worldwide. However, the evolution and function of Cmr1 homologs in Alternaria remain poorly understood. Here, we identified a total of forty-two Cmr1 homologs from forty-two Alternaria spp. and all contained one additional diverse fungal specific transcription factor motif. Phylogenetic analysis indicated the division of these homologs into five major clades and three branches. Dated phylogeny showed the A and D clades diverged latest and earliest, respectively. Molecular evolutionary analyses revealed that three amino acid sites of Cmr1 homologs in Alternaria were the targets of positive selection. Asmr1, the homolog of Cmr1 in the potato early blight pathogen, Alternaria solani was amplified and displayed the sequence conservation at the amino acid level in different A. solani isolates. Asmr1 was further confirmed to have the transcriptional activation activity and was upregulated during the early stage of potato infection. Deletion of asmr1 led to the decreased melanin content and pathogenicity, deformed conidial morphology, and responses to cell wall and fungicide stresses in A. solani. These results suggest positive selection and functional divergence have played a role in the evolution of Cmr1 homologs in Alternaria. KEY POINTS: • Cmr1 homologs were under positive selection in Alternaria species • Asmr1 is a functional transcription factor, involved in spore development, melanin biosynthesis, pathogenicity, and responses to cell wall and fungicide stresses in A. solani • Cmr1 might be used as a potential taxonomic marker of the genus Alternaria.


Assuntos
Fungicidas Industriais , Naftóis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Alternaria/genética , Alternaria/metabolismo , Melaninas/metabolismo , Fungicidas Industriais/metabolismo , Filogenia
20.
Microbiol Spectr ; 12(2): e0162023, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38179943

RESUMO

Pythiosis is a life-threatening infectious disease caused by the oomycete Pythium insidiosum. Clinical manifestations of pythiosis include an eye, blood vessel, skin, or gastrointestinal tract infection. Pythiosis has been increasingly reported worldwide, with an overall mortality rate of 28%. Radical surgery is required to save patients' lives due to the limited efficacy of antimicrobial drugs. Effective medical treatments are urgently needed for pythiosis. This study aims to find anti-P. insidiosum agents by screening 17 agricultural fungicides that inhibit plant-pathogenic oomycetes and validating their efficacy and safety. Cyazofamid outperformed other fungicides as it can potently inhibit genetically diverse P. insidiosum isolates while exhibiting minimal cellular toxicities. The calculated therapeutic scores determined that the concentration of cyazofamid causing significant cellular toxicities was eight times greater than the concentration of the drug effectively inhibiting P. insidiosum. Furthermore, other studies showed that cyazofamid exhibits low-to-moderate toxicities in animals. The mechanism of cyazofamid action is likely the inhibition of cytochrome b, an essential component in ATP synthesis. Molecular docking and dynamic analyses depicted a stable binding of cyazofamid to the Qi site of the P. insidiosum's cytochrome b orthologous protein. In conclusion, our search for an effective anti-P. insidiosum drug indicated that cyazofamid is a promising candidate for treating pythiosis. With its high efficacy and low toxicity, cyazofamid is a potential chemical for treating pythiosis, reducing the need for radical surgeries, and improving recovery rates. Our findings could pave the way for the development of new and effective treatments for pythiosis.IMPORTANCEPythiosis is a severe infection caused by Pythium insidiosum. The disease is prevalent in tropical/subtropical regions. This infectious condition is challenging to treat with antifungal drugs and often requires surgical removal of the infected tissue. Pythiosis can be fatal if not treated promptly. There is a need for a new treatment that effectively inhibits P. insidiosum. This study screened 17 agricultural fungicides that target plant-pathogenic oomycetes and found that cyazofamid was the most potent in inhibiting P. insidiosum. Cyazofamid showed low toxicity to mammalian cells and high affinity to the P. insidiosum's cytochrome b, which is involved in energy production. Cyazofamid could be a promising candidate for the treatment of pythiosis, as it could reduce the need for surgery and improve the survival rate of patients. This study provides valuable insights into the biology and drug susceptibility of P. insidiosum and opens new avenues for developing effective therapies for pythiosis.


Assuntos
Fungicidas Industriais , Imidazóis , Pitiose , Pythium , Sulfonamidas , Animais , Humanos , Pythium/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/uso terapêutico , Pitiose/tratamento farmacológico , Pitiose/microbiologia , Simulação de Acoplamento Molecular , Citocromos b/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA