Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Infect Public Health ; 17(2): 263-270, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128410

RESUMO

BACKGROUND: The COVID-19 pandemic has affected more than 650 million people and resulted in over 6.8 million deaths. Notably, the disease could co-manifest with microbial infections, like cryptococcosis, which also presents as a primary lung infection. OBJECTIVE: In this contribution, we sought to determine if cryptococcal supernatant (which contains secreted furin-like proteases) could activate the SARS-CoV-2 spike protein. METHODS: Molecular docking of the crystal structures of the SARS-CoV-2 spike protein (target) and selected cryptococcal proteases (ligands) was executed using the high ambiguity driven protein-protein docking (HADDOCK) server, with the furin protease serving as a reference ligand. The furin protease is found in human cells and typically activates the SARS-CoV-2 spike protein. Importantly, in order to provide experimental evidence for enzymatic activity, we also assessed the biochemical efficiency of cryptococcal proteases to initiate viral entry into HEK-293 T cells by SARS-CoV-2 spike pseudotyped Lentivirus. RESULTS: We show that the selected cryptococcal proteases could interact with the spike protein, and some had a better or comparable binding affinity for the spike protein than furin protease following an in silico comparative analysis of the molecular docking parameters. Furthermore, it was noted that the biochemical efficiency of the cryptococcal supernatant to transduce HEK-293 T cells with SARS-CoV-2 pseudovirions was comparable (p > 0.05) to that of recombinant furin. CONCLUSIONS: Taken together, these data show that cryptococcal proteases could activate the SARS-CoV-2 spike protein. In practice, it may be critical to determine if patients have an underlying cryptococcal infection, as this microbe could secrete proteases that may further activate the SARS-CoV-2 viral particles, thus undermining COVID-19 intervention measures.


Assuntos
COVID-19 , Furina , Humanos , Furina/química , Furina/metabolismo , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2 , Peptídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Pandemias , Células HEK293
2.
BMC Genom Data ; 24(1): 71, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990144

RESUMO

BACKGROUND: The key evolutionary step leading to the pandemic virus was the acquisition of the PRRA furin cleavage motif at the spike glycoprotein S1/S2 junction by a progenitor of SARS-CoV-2. Two of its features draw attention: (i) it is absent in other known lineage B beta-coronaviruses, including the newly discovered coronaviruses in bats from Laos and Vietnam, which are the closest known relatives of the covid virus; and, (ii) it introduced the pair of arginine codons (CGG-CGG), whose usage is extremely rare in coronaviruses. With an occurrence rate of only 3%, the arginine CGG codon is considered a minority in SARS CoV-2. On the other hand, Laos and Vietnam bat coronaviruses contain receptor-binding domains that are almost identical to that of SARS-CoV-2 and can therefore infect human cells despite the absence of the furin cleavage motif. RESULTS: Based on these data, the aim of this work is to provide a detailed sequence analysis between the SARS-CoV-2 S gene insert encoding PRRA and the human mRNA transcripts. The result showed a 100% match to several mRNA transcripts. The set of human genes whose mRNAs match this S gene insert are ubiquitous and highly expressed, e.g., the ATPase F1 (ATP5F1) and the ubiquitin specific peptidase 21 (USP21) genes; or specific genes of target organs or tissues of the SARS-CoV-2 infection (e.g., MEMO1, SALL3, TRIM17, CWC15, CCDC187, FAM71E2, GAB4, PRDM13). Results suggest that a recombination between the genome of a SARS-CoV-2 progenitor and human mRNA transcripts could be the origin of the S gene 12-nucleotide insert encoding the S protein PRRA motif. CONCLUSIONS: The hypothesis of probable human origin of the SARS-CoV-2 polybasic furin cleavage motif is supported by: (i) the nature of human genes whose mRNA sequence 100% match the S gene insert; (ii) the synonymous base substitution in the arginine codons (CGG-CGG); and (iii) further spike glycoprotein PRRA-like insertions suggesting that the acquisition of PRRA may not have been a single recombination event.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Furina/genética , Furina/química , Furina/metabolismo , Códon , RNA Mensageiro/genética , Glicoproteínas , Arginina , Ubiquitina Tiolesterase , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Peptídeos e Proteínas de Sinalização Intracelular
3.
EBioMedicine ; 87: 104401, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36508877

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic, contains a unique, four amino acid (aa) "PRRA" insertion in the spike (S) protein that creates a transmembrane protease serine 2 (TMPRSS2)/furin cleavage site and enhances viral infectivity. More research into immunogenic epitopes and protective antibodies against this SARS-CoV-2 furin cleavage site is needed. METHODS: Combining computational and experimental methods, we identified and characterized an immunogenic epitope overlapping the furin cleavage site that detects antibodies in COVID-19 patients and elicits strong antibody responses in immunized mice. We also identified a high-affinity monoclonal antibody from COVID-19 patient peripheral blood mononuclear cells; the antibody directly binds the furin cleavage site and protects against SARS-CoV-2 infection in a mouse model. FINDINGS: The presence of "PRRA" amino acids in the S protein of SARS-CoV-2 not only creates a furin cleavage site but also generates an immunogenic epitope that elicits an antibody response in COVID-19 patients. An antibody against this epitope protected against SARS-CoV-2 infection in mice. INTERPRETATION: The immunogenic epitope and protective antibody we have identified may augment our strategy in handling COVID-19 epidemic. FUNDING: The National Natural Science Foundation of China (82102371, 91542201, 81925025, 82073181, and 81802870), the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (2021-I2M-1-047 and 2022-I2M-2-004), the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences (2020-PT310-006, 2019XK310002, and 2018TX31001), the National Key Research and Development Project of China (2020YFC0841700), US National Institute of Health (NIH) funds grant AI158154, University of California Los Angeles (UCLA) AI and Charity Treks, and UCLA DGSOM BSCRC COVID-19 Award Program. H.Y. is supported by Natural Science Foundation of Jiangsu Province (BK20211554 andBE2022728).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/metabolismo , Furina/química , Furina/metabolismo , Formação de Anticorpos , Epitopos , Leucócitos Mononucleares/metabolismo , Anticorpos
4.
Proc Natl Acad Sci U S A ; 119(32): e2205690119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35881779

RESUMO

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates. To determine whether the QTQTN motif is critical to SARS-CoV-2 replication and pathogenesis, we generated a mutant deleting the QTQTN motif (ΔQTQTN). Here, we report that the QTQTN deletion attenuates viral replication in respiratory cells in vitro and attenuates disease in vivo. The deletion results in a shortened, more rigid peptide loop that contains the FCS and is less accessible to host proteases, such as TMPRSS2. Thus, the deletion reduced the efficiency of spike processing and attenuates SARS-CoV-2 infection. Importantly, the QTQTN motif also contains residues that are glycosylated, and disruption of its glycosylation also attenuates virus replication in a TMPRSS2-dependent manner. Together, our results reveal that three aspects of the S1/S2 cleavage site-the FCS, loop length, and glycosylation-are required for efficient SARS-CoV-2 replication and pathogenesis.


Assuntos
COVID-19 , Furina , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Motivos de Aminoácidos/genética , Animais , COVID-19/virologia , Chlorocebus aethiops , Furina/química , Humanos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Replicação Viral/genética
5.
J Mol Model ; 28(8): 224, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854129

RESUMO

Viral-cell entry and cell-cell viral spreading processes of SARS-CoV-2 are subjected to fast evolutionary optimization because of its worldwide spreading, requiring the need for new drug developments. However, this task is still challenging, because a detailed understanding of the underlying molecular processes, mediated by the key cellular proteases TMPRSS2 and furin, is still lacking. Here, we show by large-scale atomistic calculations that binding of the ACE2 cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to a release of its furin cleavage site (S1/S2), enabling an enhanced furin binding, and that this latter process promotes the binding of TMPRSS2 through the release of the TMPRSS2 cleavage site (S2') out of the ACE2-binding heteromer. Moreover, we find that, after proteolytic cleavage, improved furin binding causes that parts of the S2 subunit dissociate from the complex, suggesting that furin promotes the fusion of the S2 subunit with the cell membrane before transfer of the viral RNA. Here we show by computational means that binding of the ACE2-cell receptor at one of the heteromers of the SARS-CoV-2 spike leads to an enhanced binding of the protease furin, promoting the binding of the protease TMPRSS2. Moreover, we show that, after proteolytic cleavage, improved furin binding causes that parts of the heteromer dissociate from the spike.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Furina/química , Furina/genética , Furina/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Virus Res ; 318: 198845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680004

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presents an immense global health problem. Spike (S) protein of coronavirus is the primary determinant of its entry into the host as it consists of both receptor binding and fusion domain. Besides tissue tropism, and host range, coronavirus pathogenesis are primarily controlled by the interaction of S protein with the cell receptor. Moreover, the proteolytic activation of S protein by host cell proteases plays a decisive role. The host-cell proteases have shown to be involved in the proteolysis of S protein and cleaving it into two functional subunits, S1 and S2, during the maturation process. In the present study, the interaction of the S protein of SARS-CoV-2 with different host proteases like furin, cathepsin B, and plasmin has been analyzed using molecular docking and molecular dynamics (MD) simulation. Incorporation of the furin cleavage site (R-R-A-R) in the S protein of SARS-CoV-2 has been studied by mutating the individual amino acid. MD simulation results suggest the polytropic nature of the S protein. Our analysis indicated that a single amino acid substitution in the polybasic cleavage site of S protein perturb the binding of cellular proteases. This mutation study might help to generate an attenuated SARS-CoV-2. Besides, targeting host proteases by inhibitors may result in a practical approach to stop the cellular spread of SARS-CoV-2 and develop its antiviral.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Furina/química , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
7.
Cell Chem Biol ; 29(6): 927-929, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714591

RESUMO

In this issue of Cell Chemical Biology, Douglas et al. describe a potent, specific, and cell-permeable furin inhibitor that interacts with a cryptic binding site to rescue hallmarks of cystic fibrosis in human ex vivo models. BOS-318 holds promise for development of therapeutics targeting an array of furin-dependent pathologies.


Assuntos
Fibrose Cística , Furina , Sítios de Ligação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Furina/química , Furina/metabolismo , Humanos , Domínios Proteicos
8.
ACS Chem Biol ; 17(4): 816-821, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35377598

RESUMO

Inhibitors of the proprotein convertase furin might serve as broad-spectrum antiviral therapeutics. High cellular potency and antiviral activity against acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported for (3,5-dichlorophenyl)pyridine-derived furin inhibitors. Here we characterized the binding mechanism of this inhibitor class using structural, biophysical, and biochemical methods. We established a MALDI-TOF-MS-based furin activity assay, determined IC50 values, and solved X-ray structures of (3,5-dichlorophenyl)pyridine-derived compounds in complex with furin. The inhibitors induced a substantial conformational rearrangement of the active-site cleft by exposing a central buried tryptophan residue. These changes formed an extended hydrophobic surface patch where the 3,5-dichlorophenyl moiety of the inhibitors was inserted into a newly formed binding pocket. Consistent with these structural rearrangements, we observed slow off-rate binding kinetics and strong structural stabilization in surface plasmon resonance and differential scanning fluorimetry experiments, respectively. The discovered furin conformation offers new opportunities for structure-based drug discovery.


Assuntos
Antivirais , Furina , SARS-CoV-2 , Antivirais/química , Furina/química , Pró-Proteína Convertases , SARS-CoV-2/efeitos dos fármacos
9.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269938

RESUMO

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Assuntos
Clorometilcetonas de Aminoácidos/farmacologia , Enoxaparina/farmacologia , Furina/antagonistas & inibidores , Espermina/análogos & derivados , Zeaxantinas/farmacologia , Clorometilcetonas de Aminoácidos/química , Clorometilcetonas de Aminoácidos/metabolismo , COVID-19/transmissão , COVID-19/virologia , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Enoxaparina/química , Enoxaparina/metabolismo , Furina/química , Furina/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Proteólise , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Espermina/química , Espermina/metabolismo , Espermina/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Replicação Viral , Zeaxantinas/química , Zeaxantinas/metabolismo
10.
Comput Math Methods Med ; 2022: 9735626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154362

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was characterized as a pandemic by the World Health Organization (WHO) in Dec. 2019. SARS-CoV-2 binds to the cell membrane through spike proteins on its surface and infects the cell. Furin, a host-cell enzyme, possesses a binding site for the spike protein. Thus, molecules that block furin could potentially be a therapeutic solution. Defensins are antimicrobial peptides that can hypothetically inhibit furin because of their arginine-rich structure. Theta-defensins, a subclass of defensins, have attracted attention as drug candidates due to their small size, unique structure, and involvement in several defense mechanisms. Theta-defensins could be a potential treatment for COVID-19 through furin inhibition and an anti-inflammatory mechanism. Note that inflammatory events are a significant and deadly condition that could happen at the later stages of COVID-19 infection. Here, the potential of theta-defensins against SARS-CoV-2 infection was investigated through in silico approaches. Based on docking analysis results, theta-defensins can function as furin inhibitors. Additionally, a novel candidate peptide against COVID-19 with optimal properties regarding antigenicity, stability, electrostatic potential, and binding strength was proposed. Further in vitro/in vivo investigations could verify the efficiency of the designed novel peptide.


Assuntos
Antivirais/farmacologia , COVID-19/metabolismo , Defensinas/farmacologia , Desenho de Fármacos , Furina/antagonistas & inibidores , Animais , Peptídeos Antimicrobianos/química , Domínio Catalítico , Membrana Celular/virologia , Simulação por Computador , Mineração de Dados , Furina/química , Humanos , Inflamação , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos/química , Software , Glicoproteína da Espícula de Coronavírus , Eletricidade Estática , Tratamento Farmacológico da COVID-19
11.
J Food Biochem ; 46(6): e14039, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34981557

RESUMO

This study aims to investigate the effects of whey proteins on SARS CoV-2 in methotrexate-induced lung tissue damage in rats. To determine the possible effects, rats were divided into four groups as control, control + whey, methotrexate (20 mg/kg, i.p.) and methotrexate + whey. Whey protein concentrate (2 g/kg, oral gavage) was administered for 10 days. Cytokine levels were measured and protein electrophoresis was carried out in serum samples. Lipid peroxidation, nitric oxide and glutathione level, and superoxide dismutase and glutathione S transferase activities were determined in lung samples. Inhibition of SARS CoV-2-targeted lung furin activity and SARS CoV-2 spike protein-angiotensin converting enzyme binding with whey protein concentrate were also measured in each group. In conclusion, whey protein concentrate improved methotrexate-induced lung damage and inhibited lung furin activity targeting SARS-CoV-2 S1/S2 site cleavage and SARS CoV-2 spike protein-angiotensin converting enzyme binding. Whey proteins are potential protective candidates that inhibit SARS CoV-2-related interactions, even in methotrexate-induced lung injury. PRACTICAL APPLICATIONS: Whey proteins have anticarcinogenic, antihypertensive, antioxidant, antibacterial, antiviral, and immunomodulating properties due to the protein, bioactive peptide, and essential amino acid content. Methotrexate is a folate antagonist and inhibits cell proliferation and purine synthesis. The combined use of whey protein concentrate and methotrexate may be an alternative in the development of new strategies to the treatment approaches against COVID-19. In addition, according to the results of this study, it is thought that the protective effect of whey proteins in healthy conditions before encountering the SARS CoV-2 may be higher than those who have never used it.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Animais , Furina/química , Furina/metabolismo , Pulmão , Metotrexato/efeitos adversos , Peptidil Dipeptidase A/química , Ratos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Soro do Leite
12.
Cells ; 10(9)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34572076

RESUMO

Coronavirus disease 19 (COVID-19) is caused by an enveloped, positive-sense, single-stranded RNA virus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which belongs to the realm Riboviria, order Nidovirales, family Coronaviridae, genus Betacoronavirus and the species Severe acute respiratory syndrome-related coronavirus. This viral disease is characterized by a myriad of varying symptoms, such as pyrexia, cough, hemoptysis, dyspnoea, diarrhea, muscle soreness, dysosmia, lymphopenia and dysgeusia amongst others. The virus mainly infects humans, various other mammals, avian species and some other companion livestock. SARS-CoV-2 cellular entry is primarily accomplished by molecular interaction between the virus's spike (S) protein and the host cell surface receptor, angiotensin-converting enzyme 2 (ACE2), although other host cell-associated receptors/factors, such as neuropilin 1 (NRP-1) and neuropilin 2 (NRP-2), C-type lectin receptors (CLRs), as well as proteases such as TMPRSS2 (transmembrane serine protease 2) and furin, might also play a crucial role in infection, tropism, pathogenesis and clinical outcome. Furthermore, several structural and non-structural proteins of the virus themselves are very critical in determining the clinical outcome following infection. Considering such critical role(s) of the abovementioned host cell receptors, associated proteases/factors and virus structural/non-structural proteins (NSPs), it may be quite prudent to therapeutically target them through a multipronged clinical regimen to combat the disease.


Assuntos
COVID-19 , Interações entre Hospedeiro e Microrganismos , SARS-CoV-2/patogenicidade , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/patologia , COVID-19/virologia , Sistemas de Liberação de Medicamentos , Furina/química , Furina/metabolismo , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Estrutura Molecular , Neuropilinas/química , Neuropilinas/metabolismo , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/química , Receptores Virais/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Internalização do Vírus
13.
ACS Chem Biol ; 16(9): 1692-1700, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34415722

RESUMO

The pro-protein convertase furin is a highly specific serine protease involved in the proteolytic maturation of many proteins in the secretory pathway. It also activates surface proteins of many viruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furin inhibitors effectively suppress viral replication and thus are promising antiviral therapeutics with broad application potential. Polybasic substrate-like ligands typically trigger conformational changes shifting furin's active site cleft from the OFF-state to the ON-state. Here, we solved the X-ray structures of furin in complex with four different arginine mimetic compounds with reduced basicity. These guanylhydrazone-based inhibitor complexes showed for the first time an active site-directed binding mode to furin's OFF-state conformation. The compounds undergo unique interactions within the S1 pocket, largely different compared to substrate-like ligands. A second binding site was identified at the S4/S5 pocket of furin. Crystallography-based titration experiments confirmed the S1 site as the primary binding pocket. We also tested the proprotein convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found an up to 7-fold lower potency for PC7. Interestingly, the observed differences in the Ki values correlated with the sequence conservation of the PCs at the allosteric sodium binding site. Therefore, OFF-state-specific targeting of furin can serve as a valuable strategy for structure-based development of PC-selective small-molecule inhibitors.


Assuntos
Antivirais/metabolismo , Furina/antagonistas & inibidores , Guanidinas/metabolismo , Hidrazonas/metabolismo , Inibidores de Serina Proteinase/metabolismo , Antivirais/química , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Furina/química , Furina/metabolismo , Guanidinas/química , Células HEK293 , Humanos , Hidrazonas/química , Cinética , Pró-Proteína Convertase 5/antagonistas & inibidores , Pró-Proteína Convertase 5/química , Ligação Proteica , Conformação Proteica , Inibidores de Serina Proteinase/química , Subtilisinas/antagonistas & inibidores , Subtilisinas/química
14.
Arch Virol ; 166(9): 2541-2549, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34258664

RESUMO

The SARS-CoV-2 spike protein Q677P/H mutation and furin cleavage site (FCS) have been shown to affect cell tropism and virus transmissibility. Here, we analyzed the frequency of Q677P/H and FCS point mutations in 1,144,793 human and 1042 animal spike protein sequences and from those of the emergent variants B.1.1.7, B.1.351, P.1, B.1.429 + B.1.427, and B.1.525, which were deposited in the database of the GISAID Initiative. Different genetic polymorphisms, particularly P681H and A688V, were detected in the FCS, mainly in human isolates, and otherwise, only pangolin and bat sequences had these mutations. Multiple FCS amino acid deletions such as Δ680SPRRA684 and Δ685RSVA688 were only detected in eight and four human isolates, respectively. Surprisingly, deletion of the entire FCS motif as Δ680SPRRARSVA688 and Δ680SPRRARSVAS689 was detected only in three human isolates. On the other hand, analysis of FCS from emergent variants showed no deletions in the FCS except for spike P681del, which was detected in seven B.1.1.7 isolates from the USA. Spike Q677P was detected only once in variant, B.1.1.7, whereas Q677H was detected in all variants, i.e., B.1.1.7 (n = 1938), B.1.351 (n = 28), P.1 (n = 9), B.1.429 + B.1.427 (n = 132), and B.1.525 (n = 1584). Structural modeling predicted that mutations or deletions at or near the FCS significantly alter the cleavage loop structure and would presumably affect furin binding. Taken together, our results show that Q677H and FCS point mutations are prevalent and may have various biological effects on the circulating variants. Therefore, we recommend urgent monitoring and surveillance of the investigated mutations, as well as laboratory assessment of their pathogenicity and transmissibility.


Assuntos
COVID-19/epidemiologia , Furina/metabolismo , Polimorfismo Genético , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , COVID-19/transmissão , COVID-19/virologia , Quirópteros/virologia , Monitoramento Epidemiológico , Eutérios/virologia , Evolução Molecular , Furina/química , Expressão Gênica , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , SARS-CoV-2/química , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
15.
Virus Res ; 303: 198522, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314772

RESUMO

The B.1.1.7 SARS-CoV-2 strain that has emerged in the UK in early December presents seven mutations and three deletions on S-protein structure that could lead to a more infective strain. The P681H mutation in the "PRRAR" furin cleavage site might affect the binding affinity to furin enzyme and hence its infectivity. Therefore, in this study, various structural bioinformatics approaches were used to model the S-protein structure with the B.1.1.7 variant amino acid substitutions and deletions. In addition to modelling the binding of furin to the cleavage site of the wild-type and the B.1.1.7 variant. Conclusively the B.1.1.7 variant resulted in dynamic stability, conformational changes and variations in binding energies in the S-protein structure, resulting in a more favourable binding of furin enzyme to the SARS-CoV-2 S-protein.


Assuntos
Furina/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Furina/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
16.
ACS Chem Biol ; 16(3): 457-462, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33656326

RESUMO

Lipoprotein lipase (LPL) is the key enzyme that hydrolyzes triglycerides from triglyceride-rich lipoproteins. Angiopoietin-like proteins (ANGPTL) 3, 4, and 8 are well-characterized protein inhibitors of LPL. ANGPTL8 forms a complex with ANGPTL3, and the complex is a potent endogenous inhibitor of LPL. However, the nature of the structural interaction between ANGPTL3/8 and LPL is unknown. To probe the conformational changes in LPL induced by ANGPTL3/8, we found that HDX-MS detected significantly altered deuteration in the lid region, ApoC2 binding site, and furin cleavage region of LPL in the presence of ANGPTL3/8. Supporting this HDX structural evidence, we found that ANGPTL3/8 inhibits LPL enzymatic activities and increases LPL cleavage. ANGPTL3/8-induced effects on LPL activity and LPL cleavage are much stronger than those of ANGPTL3 or ANGPTL8 alone. ANGPTL3/8-mediated LPL cleavage is blocked by both an ANGPTL3 antibody and a furin inhibitor. Knock-down of furin expression by siRNA significantly reduced ANGPT3/8-induced cleavage of LPL. Our data suggest ANGPTL3/8 promotes furin-mediated LPL cleavage.


Assuntos
Proteínas Semelhantes a Angiopoietina/química , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/química , Proteólise/efeitos dos fármacos , Sítios de Ligação , Deutério/química , Furina/química , Furina/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hidrólise , Marcação por Isótopo , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Interferente Pequeno/metabolismo
17.
J Phys Chem Lett ; 11(16): 6655-6663, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32787225

RESUMO

The COVID-19 pandemic is an urgent global health emergency, and the presence of Furin site in the SARS-CoV-2 spike glycoprotein alters virulence and warrants further molecular, structural, and biophysical studies. Here we report the structure of Furin in complex with SARS-CoV-2 spike glycoprotein, demonstrating how Furin binds to the S1/S2 region of spike glycoprotein and eventually cleaves the viral protein using experimental functional studies, molecular dynamics, and docking. The structural studies underline the mechanism and mode of action of Furin, which is a key process in host cell entry and a hallmark of enhanced virulence. Our whole-exome sequencing analysis shows the genetic variants/alleles in Furin were found to alter the binding affinity for viral spike glycoprotein and could vary in infectivity in humans. Unravelling the mechanisms of Furin action, binding dynamics, and the genetic variants opens the growing arena of bona fide antibodies and development of potential therapeutics targeting the blockage of Furin cleavage.


Assuntos
Betacoronavirus/química , Furina/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/fisiologia , Sequência de Aminoácidos , Animais , Betacoronavirus/patogenicidade , Células CHO , Domínio Catalítico , Cricetulus , Furina/química , Furina/genética , Expressão Gênica/fisiologia , Hexosaminas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteólise , SARS-CoV-2 , Inibidores de Serina Proteinase/metabolismo , Glicoproteína da Espícula de Coronavírus/química
18.
Nat Struct Mol Biol ; 27(8): 763-767, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32647346

RESUMO

SARS-CoV-2 is thought to have emerged from bats, possibly via a secondary host. Here, we investigate the relationship of spike (S) glycoprotein from SARS-CoV-2 with the S protein of a closely related bat virus, RaTG13. We determined cryo-EM structures for RaTG13 S and for both furin-cleaved and uncleaved SARS-CoV-2 S; we compared these with recently reported structures for uncleaved SARS-CoV-2 S. We also biochemically characterized their relative stabilities and affinities for the SARS-CoV-2 receptor ACE2. Although the overall structures of human and bat virus S proteins are similar, there are key differences in their properties, including a more stable precleavage form of human S and about 1,000-fold tighter binding of SARS-CoV-2 to human receptor. These observations suggest that cleavage at the furin-cleavage site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of the open conformation that is required for S to bind to the ACE2 receptor.


Assuntos
Betacoronavirus/genética , Interações Hospedeiro-Patógeno/genética , Peptidil Dipeptidase A/química , Receptores Virais/química , Glicoproteína da Espícula de Coronavírus/química , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/metabolismo , Betacoronavirus/ultraestrutura , Sítios de Ligação , COVID-19 , Quirópteros/virologia , Infecções por Coronavirus/virologia , Microscopia Crioeletrônica , Evolução Molecular , Furina/química , Expressão Gênica , Células HEK293 , Humanos , Modelos Moleculares , Pandemias , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Proteólise , Receptores Virais/genética , Receptores Virais/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Homologia Estrutural de Proteína
19.
Biophys Chem ; 264: 106420, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32622243

RESUMO

One notable feature of the SARS-CoV-2 genome, the spike (S) protein of SARS-CoV-2 has a polybasic furin cleavage site (FCS) at its S1-S2 boundary through the insertion of 12 nucleotides encoding four amino acid residues PRRA. Quite intriguingly, this polybasic FCS is absent in coronaviruses of the same clade as SARS-CoV-2. Thus, with currently available experimental structural data for S protein, this short article presents a set of comprehensive structural characterization of the insertion of FCS into S protein, and argues against a hypothesis of the origin of SARS-CoV-2 from purposeful manipulation: (1), the inserted FCS is spatially located at a random coil loop region, mostly distantly solvent-exposed (instead of deeply buried), with no structural proximity to the other part of the S protein; (2), the insertion of FCS itself does not alter, neither stabilize nor de-stabilize, the three-dimensional structure of S; (3), the net result here is the insertion of a furin cleavage site into S protein, whose S1 and S2 subunits will still be strongly electrostatically bonded together from a structural and biophysical point of view, even if the polybasic FCS is actually cleaved by furin protease before or after viral cell entry.


Assuntos
Betacoronavirus/química , Furina/química , Glicoproteína da Espícula de Coronavírus/química , Sequência de Aminoácidos , Betacoronavirus/genética , Expressão Gênica , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteólise , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Homologia Estrutural de Proteína
20.
Mol Cell ; 78(4): 779-784.e5, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32362314

RESUMO

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.


Assuntos
Betacoronavirus/química , Infecções por Coronavirus/virologia , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/química , Animais , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Furina/química , Furina/genética , Furina/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/virologia , Pandemias , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA