Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.470
Filtrar
1.
Naturwissenschaften ; 111(5): 43, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115554

RESUMO

The female locust lays its eggs deep within soft substrate to protect them from predators and provide optimal conditions for successful development and hatching. During oviposition digging, the female's abdomen is pooled and extends into the ground, guided by a dedicated excavation mechanism at its tip, comprising two pairs of specialized digging valves. Little is known about how these active valves negotiate the various obstacles encountered on their path. In this study, female locusts oviposited their eggs in specialized sand-filled tubes with pre-inserted 3D-printed plastic obstacles. The subterranean route taken by the abdomen and digging valves upon encountering the obstacles was investigated, characterized, and compared to that in control tubes without obstacles. Data were obtained by way of visual inspection, by utilizing cone beam computed tomography scans in high-definition mode, and by making paraffin casts of the oviposition burrows (after egg hatching). We demonstrate, for the first time, the subterranean navigation ability of the female locust's excavation mechanism and its ability to circumvent obstacles during oviposition. Finally, we discuss the role of active sensory-motor mechanisms versus the passive embodied function of the valves, central control, and decision-making.


Assuntos
Gafanhotos , Oviposição , Animais , Oviposição/fisiologia , Feminino , Gafanhotos/fisiologia
2.
BMC Biol ; 22(1): 150, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973001

RESUMO

BACKGROUND: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive. Therefore, we investigated the relevance of SNMP1 for pheromone detection in a hemimetabolous insect pest of considerable economic importance, the desert locust Schistocerca gregaria, which moreover employs the aromatic pheromone phenylacetonitrile (PAN) to govern reproductive behaviors. RESULTS: Employing CRISPR/Cas-mediated gene editing, a mutant locust line lacking functional SNMP1 was established. In electroantennography experiments and single sensillum recordings, we found significantly decreased electrical responses to PAN in SNMP1-deficient (SNMP1-/-) locusts. Moreover, calcium imaging in the antennal lobe of the brain revealed a substantially reduced activation of projection neurons in SNMP1-/- individuals upon exposure to PAN, indicating that the diminished antennal responsiveness to PAN in mutants affects pheromone-evoked neuronal activity in the brain. Furthermore, in behavioral experiments, PAN-induced effects on pairing and mate choice were altered in SNMP1-/- locusts. CONCLUSIONS: Our findings emphasize the importance of SNMP1 for chemical communication in a hemimetabolous insect pest. Moreover, they show that SNMP1 plays a crucial role in pheromone detection that goes beyond long-chain aliphatic substances and includes aromatic compounds controlling reproductive behaviors.


Assuntos
Gafanhotos , Proteínas de Membrana , Animais , Gafanhotos/fisiologia , Gafanhotos/efeitos dos fármacos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feromônios/farmacologia , Comportamento Sexual Animal/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Feminino , Corte , Acetonitrilas/farmacologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
Bioinspir Biomim ; 19(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39038488

RESUMO

Membrane technology advancements within the past twenty years have provided a new perspective on environmentalism as engineers design membranes to separate greenhouse gases from the environment. Several scientific journals have published articles of experimental evidence quantifying carbon dioxide (CO2), a common greenhouse gas, separation using membrane technology and ranking them against one another. On the other hand, natural systems such as the respiratory system of mammals also accomplish transmembrane transport of CO2. However, to our knowledge, a comparison of these natural organic systems with engineered membranes has not yet been accomplished. The tracheal respiratory systems of insects transport CO2at the highest rates in the animal kingdom. Therefore, this work compares engineered membranes to the tracheal systems of insects by quantitatively comparing greenhouse gas conductance rates. We demonstrate that on a per unit volume basis, locusts can transport CO2approximately ∼100 times more effectively than the best current engineered systems. Given the same temperature conditions, insect tracheal systems transport CO2three orders of magnitude faster on average. Miniaturization of CO2capture systems based on insect tracheal system design has great potential for reducing cost and improving the capacities of industrial CO2capture.


Assuntos
Dióxido de Carbono , Traqueia , Dióxido de Carbono/metabolismo , Animais , Traqueia/fisiologia , Gafanhotos/fisiologia , Membranas Artificiais
4.
Elife ; 122024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078877

RESUMO

Behavioral responses to many odorants are not fixed but are flexible, varying based on organismal needs. How such variations arise and the role of various neuromodulators in achieving flexible neural-to-behavioral mapping is not fully understood. In this study, we examined how serotonin modulates the neural and behavioral responses to odorants in locusts (Schistocerca americana). Our results indicated that serotonin can increase or decrease appetitive behavior in an odor-specific manner. On the other hand, in the antennal lobe, serotonergic modulation enhanced odor-evoked response strength but left the temporal features or the combinatorial response profiles unperturbed. This result suggests that serotonin allows for sensitive and robust recognition of odorants. Nevertheless, the uniform neural response amplification appeared to be at odds with the observed stimulus-specific behavioral modulation. We show that a simple linear model with neural ensembles segregated based on behavioral relevance is sufficient to explain the serotonin-mediated flexible mapping between neural and behavioral responses.


Assuntos
Gafanhotos , Odorantes , Serotonina , Animais , Serotonina/metabolismo , Odorantes/análise , Gafanhotos/fisiologia , Comportamento Animal/fisiologia , Olfato/fisiologia
5.
Cell ; 187(15): 3973-3991.e24, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38897195

RESUMO

The representation of odors in the locust antennal lobe with its >2,000 glomeruli has long remained a perplexing puzzle. We employed the CRISPR-Cas9 system to generate transgenic locusts expressing the genetically encoded calcium indicator GCaMP in olfactory sensory neurons. Using two-photon functional imaging, we mapped the spatial activation patterns representing a wide range of ecologically relevant odors across all six developmental stages. Our findings reveal a functionally ring-shaped organization of the antennal lobe composed of specific glomerular clusters. This configuration establishes an odor-specific chemotopic representation by encoding different chemical classes and ecologically distinct odors in the form of glomerular rings. The ring-shaped glomerular arrangement, which we confirm by selective targeting of OR70a-expressing sensory neurons, occurs throughout development, and the odor-coding pattern within the glomerular population is consistent across developmental stages. Mechanistically, this unconventional spatial olfactory code reflects the locust-specific and multiplexed glomerular innervation pattern of the antennal lobe.


Assuntos
Antenas de Artrópodes , Odorantes , Neurônios Receptores Olfatórios , Animais , Neurônios Receptores Olfatórios/metabolismo , Antenas de Artrópodes/fisiologia , Olfato/fisiologia , Gafanhotos/fisiologia , Animais Geneticamente Modificados , Sistemas CRISPR-Cas/genética , Condutos Olfatórios/fisiologia , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Locusta migratoria/fisiologia , Cálcio/metabolismo
6.
Nat Commun ; 15(1): 5476, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942759

RESUMO

Desert locust plagues threaten the food security of millions. Central to their formation is crowding-induced plasticity, with social phenotypes changing from cryptic (solitarious) to swarming (gregarious). Here, we elucidate the implications of this transition on foraging decisions and corresponding neural circuits. We use behavioral experiments and Bayesian modeling to decompose the multi-modal facets of foraging, revealing olfactory social cues as critical. To this end, we investigate how corresponding odors are encoded in the locust olfactory system using in-vivo calcium imaging. We discover crowding-dependent synergistic interactions between food-related and social odors distributed across stable combinatorial response maps. The observed synergy was specific to the gregarious phase and manifested in distinct odor response motifs. Our results suggest a crowding-induced modulation of the locust olfactory system that enhances food detection in swarms. Overall, we demonstrate how linking sensory adaptations to behaviorally relevant tasks can improve our understanding of social modulation in non-model organisms.


Assuntos
Teorema de Bayes , Gafanhotos , Odorantes , Olfato , Comportamento Social , Animais , Gafanhotos/fisiologia , Olfato/fisiologia , Comportamento Animal/fisiologia , Aglomeração , Comportamento Alimentar/fisiologia , Percepção Olfatória/fisiologia , Masculino , Feminino , Sinais (Psicologia)
7.
BMC Biol ; 22(1): 129, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822347

RESUMO

BACKGROUND: The female locust is equipped with unique digging tools, namely two pairs of valves-a dorsal and a ventral-utilized for excavating an underground hole in which she lays her eggs. This apparatus ensures that the eggs are protected from potential predators and provides optimal conditions for successful hatching. The dorsal and the ventral valves are assigned distinct roles in the digging process. Specifically, the ventral valves primarily function as anchors during propagation, while the dorsal valves displace soil and shape the underground tunnel. RESULTS: In this study, we investigated the noticeable asymmetry and distinct shapes of the valves, using a geometrical model and a finite element method. Our analysis revealed that although the two pairs of valves share morphological similarities, they exhibit different 3D characteristics in terms of absolute size and structure. We introduced a structural characteristic, the skew of the valve cross-section, to quantify the differences between the two pairs of valves. Our findings indicate that these structural variations do not significantly contribute to the valves' load-bearing capabilities under external forces. CONCLUSIONS: The evolutionary development of the form of the female locust digging valves is more aligned with fitting their respective functions rather than solely responding to biomechanical support needs. By understanding the intricate features of these locust valves, and using our geometrical model, valuable insights can be obtained for creating more efficient and specialized tools for various digging applications.


Assuntos
Gafanhotos , Animais , Feminino , Gafanhotos/fisiologia , Gafanhotos/anatomia & histologia , Fenômenos Biomecânicos , Análise de Elementos Finitos
8.
Proc Biol Sci ; 291(2023): 20240424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807520

RESUMO

Many theoretical treatments of foraging use energy as currency, with carbohydrates and lipids considered interchangeable as energy sources. However, herbivores must often synthesize lipids from carbohydrates since they are in short supply in plants, theoretically increasing the cost of growth. We tested whether a generalist insect herbivore (Locusta migratoria) can improve its growth efficiency by consuming lipids, and whether these locusts have a preferred caloric intake ratio of carbohydrate to lipid (C : L). Locusts fed pairs of isocaloric, isoprotein diets differing in C and L consistently selected a 2C : 1L target. Locusts reared on isocaloric, isoprotein 3C : 0L diets attained similar final body masses and lipid contents to locusts fed the 2C : 1L diet, but they ate more and had a ~12% higher metabolic rate, indicating an energetic cost for lipogenesis. These results demonstrate that some animals can selectively regulate carbohydrate-to-lipid intake and that consumption of dietary lipids can improve growth efficiency.


Assuntos
Carboidratos da Dieta , Gafanhotos , Animais , Gafanhotos/fisiologia , Gafanhotos/crescimento & desenvolvimento , Gorduras na Dieta , Dieta/veterinária , Metabolismo Energético , Metabolismo dos Lipídeos , Ingestão de Energia , Herbivoria
9.
Primates ; 65(4): 235-241, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795206

RESUMO

Platyrrhines consume many species of arthropods in the order Orthoptera. Some species of orthopterans can produce chemical defenses that render them toxic or unpalatable and thus act as predator deterrents. These species include the stick grasshoppers (family Proscopiidae), which are widely distributed in the Caatinga biome in northeastern Brazil, which comprises part of the distribution of capuchin monkeys. Capuchin monkeys are omnivores and consume a wide variety of foods, including unpleasant-tasting, potentially toxic items, which they need to learn how to process. We describe the processing of stick grasshoppers (Stiphra sp.) by wild capuchin monkeys (Sapajus libidinosus) that live in Serra da Capivara National Park, Brazil, and compare how individuals of different age classes handle these potentially toxic food items. S. libidinosus predominantly avoided consuming the digestive tract, which contains toxic compounds, when feeding on stick grasshoppers. Immatures took longer than adults to process the stick grasshoppers, indicating that capuchins need to learn how to process the toxic digestive tract of these prey to avoid consuming it.


Assuntos
Gafanhotos , Animais , Gafanhotos/fisiologia , Brasil , Feminino , Masculino , Comportamento Alimentar , Cebinae/fisiologia
10.
Elife ; 132024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814703

RESUMO

To navigate their environment, insects need to keep track of their orientation. Previous work has shown that insects encode their head direction as a sinusoidal activity pattern around a ring of neurons arranged in an eight-column structure. However, it is unclear whether this sinusoidal encoding of head direction is just an evolutionary coincidence or if it offers a particular functional advantage. To address this question, we establish the basic mathematical requirements for direction encoding and show that it can be performed by many circuits, all with different activity patterns. Among these activity patterns, we prove that the sinusoidal one is the most noise-resilient, but only when coupled with a sinusoidal connectivity pattern between the encoding neurons. We compare this predicted optimal connectivity pattern with anatomical data from the head direction circuits of the locust and the fruit fly, finding that our theory agrees with experimental evidence. Furthermore, we demonstrate that our predicted circuit can emerge using Hebbian plasticity, implying that the neural connectivity does not need to be explicitly encoded in the genetic program of the insect but rather can emerge during development. Finally, we illustrate that in our theory, the consistent presence of the eight-column organisation of head direction circuits across multiple insect species is not a chance artefact but instead can be explained by basic evolutionary principles.


Insects, including fruit flies and locusts, move throughout their environment to find food, interact with each other or escape danger. To navigate their surroundings, insects need to be able to keep track of their orientation. This tracking is achieved through visual cues and integrating information about their movements whilst flying so they know which direction their head is facing. The set of neurons responsible for relaying information about the direction of the head (also known as heading) are connected together in a ring made up of eight columns of cells. Previous studies showed that the level of activity across this ring of neurons resembles a sinusoid shape: a smooth curve with one peak which encodes the animal's heading. Neurons downstream from this eight-column ring, which relay velocity information, also display this sinusoidal pattern of activation. Aceituno, Dall'Osto and Pisokas wanted to understand whether this sinusoidal pattern was an evolutionary coincidence, or whether it offers a particular advantage to insects. To answer this question, they established the mathematical criteria required for neurons in the eight-column ring to encode information about the heading of the animal. This revealed that these conditions can be satisfied by many different patterns of activation, not just the sinusoidal shape. However, Aceituno, Dall'Osto and Pisokas show that the sinusoidal shape is the most resilient to variations in neuronal activity which may impact the encoded information. Further experiments revealed that this resilience only occurred if neurons in the circuit were connected together in a certain pattern. Aceituno, Dall'Osto and Pisokas then compared this circuit with experimental data from locusts and fruit flies and found that both insects exhibit the predicted connection pattern. They also discovered that animals do not have to be born with this neuronal connection pattern, but can develop it during their lifetime. These findings provide fresh insights into how insects relay information about the direction of their head as they fly. They suggest that the structure of the neuronal circuit responsible for encoding head direction was not formed by chance but instead arose due to the evolutionary benefits it provided.


Assuntos
Cabeça , Animais , Cabeça/fisiologia , Gafanhotos/fisiologia , Neurônios/fisiologia , Insetos/fisiologia , Modelos Neurológicos , Drosophila melanogaster/fisiologia
11.
Naturwissenschaften ; 111(3): 28, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695961

RESUMO

Sedentary animals choose appropriate refuges against predators, while migratory ones may not necessarily do so. In ectotherms, refuge selection is critical during low temperatures, because they cannot actively evade predators. To understand how migratory ectotherms alter their defensive behaviors depending on refuge quality in cold temperatures, we evaluated migratory gregarious desert locust nymphs (Schistocerca gregaria) in the Sahara Desert, where daily thermal constraints occur. We recorded how roosting plant type (bush/shrub) and its height influenced two alternative defense behaviors (dropping/stationary) during cold mornings, in response to an approaching simulated ground predator. Most locusts in bushes dropped within the bush and hid irrespective of their height, whereas those roosting > 2 m height in shrubs remained stationary. These defenses are effective and match with refuge plant types because dynamic locomotion is not required. When nymphs roosted on shrubs < 1.5-m height, which was an unsafe position, nearly half showed both defensive behaviors, indicating that escaping decisions become ambiguous when the refuges are inappropriate. These results suggest that locusts display flexible defensive behaviors when finding appropriate refuges and selecting refuge before daily thermal limitations occur could be critical for migratory ectotherms, which is a risk associated with migration.


Assuntos
Migração Animal , Gafanhotos , Ninfa , Animais , Ninfa/fisiologia , Ninfa/crescimento & desenvolvimento , Gafanhotos/fisiologia , Gafanhotos/crescimento & desenvolvimento , Migração Animal/fisiologia , Temperatura Baixa , Clima Desértico
12.
J Econ Entomol ; 117(3): 843-857, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38493360

RESUMO

Grasshoppers represent a significant biological challenge in Inner Mongolia's grasslands, severely affecting the region's animal husbandry. Thus, dynamic monitoring of grasshopper infestation risk is crucial for sustainable livestock farming. This study employed the Maxent model, along with remote sensing data, to forecast Oedaleus decorus asiaticus occurrence during the growing season, using grasshopper suitability habitats as a base. The Maxent model's predictive accuracy was high, with an AUC of 0.966. The most influential environmental variables for grasshopper distribution were suitable habitat data (34.27%), the temperature-vegetation dryness index during the spawning period (18.81%), and various other meteorological and vegetation factors. The risk index model was applied to calculate the grasshopper distribution across different risk levels for the years 2019-2022. The data indicated that the level 1 risk area primarily spans central, eastern, and southwestern Inner Mongolia. By examining the variable weights, the primary drivers of risk level fluctuation from 2019 to 2022 were identified as accumulated precipitation and land surface temperature anomalies during the overwintering period. This study offers valuable insights for future O. decorus asiaticus monitoring in Inner Mongolia.


Assuntos
Gafanhotos , Modelos Estatísticos , Gafanhotos/crescimento & desenvolvimento , Gafanhotos/fisiologia , Animais , Entropia , Criação de Animais Domésticos , Herbivoria , Dinâmica Populacional , Migração Animal , Ecossistema , Agricultura , Avaliação Momentânea Ecológica , Sistemas de Informação Geográfica , Inquéritos e Questionários , Tecnologia de Sensoriamento Remoto
13.
Evolution ; 78(6): 1078-1091, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38469758

RESUMO

Bilateral symmetry is widespread across animals, yet, among bilaterians, many cases of conspicuous asymmetries evolved. This means that bilaterally homologous structures on the left and right sides display divergent phenotypes. The evolution of such divergent phenotypes between otherwise similarly shaped structures can be thought to be favored by modularity, but this has rarely been studied in the context of left-right differences. Here, we provide an empirical example, using geometric morphometrics to assess patterns of asymmetry and covariation between landmark partitions in a grasshopper with conspicuously asymmetric mandibles. Our morphometric data confirm the presence of strictly directional conspicuous asymmetry in the mandibles and surrounding structures. Covariance patterns and tests hint at a strong integration between mandibles despite their divergent morphologies, and variational modularity with the head capsule. While mandibles have been selected to achieve a key-and-lock morphology by having interlocking shapes, the developmental modularity required to achieve this seems to be overwritten by developmental and/or functional integration, allowing the precise matching required for feeding. The consequent conflicting covariation patterns are reminiscent of the palimpsest model. Finally, the degree of directional asymmetry appears to be under selection, although we find no relationship between bite force and mandible shape or asymmetry.


Assuntos
Gafanhotos , Cabeça , Mandíbula , Animais , Mandíbula/anatomia & histologia , Cabeça/anatomia & histologia , Gafanhotos/anatomia & histologia , Gafanhotos/fisiologia , Evolução Biológica , Masculino , Feminino , Fenótipo , Força de Mordida
14.
Sci China Life Sci ; 67(6): 1242-1254, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478296

RESUMO

RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.


Assuntos
Adenosina , Locusta migratoria , Metiltransferases , Animais , Adenosina/metabolismo , Adenosina/análogos & derivados , Locusta migratoria/genética , Locusta migratoria/fisiologia , Locusta migratoria/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Transcriptoma , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Regulação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Gafanhotos/genética , Gafanhotos/fisiologia , Gafanhotos/metabolismo
15.
Curr Opin Insect Sci ; 63: 101180, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38432555

RESUMO

Detecting looming motion directly towards the insect is vital to its survival. Looming detection in two insects, flies and locusts, is described and contrasted. Pathways using looming detectors to trigger action and their topographical layout in the brain is explored in relation to facilitating behavioural selection. Similar visual stimuli, such as looming motion, are processed by nearby glomeruli in the brain. Insect-inspired looming motion detectors are combined to detect and avoid collision in different scenarios by robots, vehicles and unmanned aerial vehicle (UAV)s.


Assuntos
Reação de Fuga , Animais , Percepção de Movimento , Dípteros/fisiologia , Gafanhotos/fisiologia , Insetos/fisiologia , Visão Ocular
16.
Small ; 20(28): e2310193, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38366281

RESUMO

Thermochromic materials have been widely investigated due to their relevance in technological applications, including anti-counterfeiting materials, fashion accessories, displays, and temperature sensors. While many organisms exhibit color changes, few studies have explored the potential of the responsive natural materials for temperature sensing, especially given the often limited and irreversible nature of these changes in live specimens. Here, it is shown that the hindwings of the blue-winged grasshopper Coloracris azureus can act as a reversible, power-free bio-thermometer, transitioning from blue to purple/red in a 30-100°C temperature range. Using microspectrophotometry, light microscopy and Raman microscopy, it is found that the blue color of the wings originates from pigmentary coloration, based on a complex of astaxanthin and proteins. The thermochromic shift from blue to red, induced by a temperature increase, is attributed to a denaturation of this carotenoprotein complex, upon which astaxanthin is released. This process is reversible upon a subsequent temperature decrease. The color changes are both swift and consistent upon temperature change, making the grasshopper's wings suitable as direct visual sensors on thermally dynamic, curved surfaces. The potential possibilities of sustainable, power-free temperature sensors or microthermometers based on biomaterials are demonstrated.


Assuntos
Gafanhotos , Temperatura , Asas de Animais , Animais , Gafanhotos/fisiologia , Asas de Animais/química , Cor , Xantofilas/química , Análise Espectral Raman
17.
Biol Lett ; 20(2): 20230468, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38378141

RESUMO

Intermittent motion is prevalent in animal locomotion. Of special interest is the case of collective motion, in which social and environmental information must be processed in order to establish coordinated movement. We explored this nexus in locust, focusing on how intermittent motion interacts with swarming-related visual-based decision-making. Using a novel approach, we compared individual locust behaviour in response to continuously moving stimuli, with their response in semi-closed-loop conditions, in which the stimuli moved either in phase with the locust walking, or out of phase, i.e. only during the locust's pauses. Our findings clearly indicate the greater tendency of a locust to respond and 'join the swarming motion' when the visual stimuli were presented during its pauses. Hence, the current study strongly confirms previous indications of the dominant role of pauses in the collective motion-related decision-making of locusts. The presented insights contribute to a deeper general understanding of how intermittent motion contributes to group cohesion and coordination in animal swarms.


Assuntos
Gafanhotos , Animais , Gafanhotos/fisiologia , Locomoção/fisiologia , Comportamento Animal/fisiologia , Percepção Visual , Movimento (Física)
18.
J Insect Physiol ; 152: 104595, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052320

RESUMO

Insect cuticle is an evolutionary-malleable exoskeleton that has specialised for various functions. Insects that detect the pressure component of sound bear specialised sound-capturing tympani evolved from cuticular thinning. Whilst the outer layer of insect cuticle is composed of non-living chitin, its mechanical properties change during development and aging. Here, we measured the displacements of the tympanum of the desert Locust, Schistocerca gregaria, to understand biomechanical changes as a function of age and noise-exposure. We found that the stiffness of the tympanum decreases within 12 h of noise-exposure and increases as a function of age, independent of noise-exposure. Noise-induced changes were dynamic with an increased tympanum displacement to sound within 12 h post noise-exposure. Within 24 h, however, the tone-evoked displacement of the tympanum decreased below that of control Locusts. After 48 h, the tone-evoked displacement of the tympanum was not significantly different to Locusts not exposed to noise. Tympanal displacements reduced predictably with age and repeatably noise-exposed Locusts (every three days) did not differ from their non-noise-exposed counterparts. Changes in the biomechanics of the tympanum may explain an age-dependent decrease in auditory detection in tympanal insects.


Assuntos
Orelha Média , Gafanhotos , Animais , Orelha Média/fisiologia , Membrana Timpânica/fisiologia , Gafanhotos/fisiologia , Som , Fenômenos Biomecânicos
19.
Curr Opin Insect Sci ; 61: 101154, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38104960

RESUMO

The response of insects to climate changes in various aspects has been well-documented. However, there is a dearth of comprehensive review specifically focusing on the response and adaptation of grasshoppers, which are important primary consumers and pests in grassland and agricultural ecosystems. The coexistence of grasshopper species forms diverse communities and coherent groups in spatial-temporal scales. It makes them excellent models for studying the interplay of phenology, dispersal, trophic relationship, and population dynamics, all influenced by climate changes. Certain grasshopper species have adapted to climate change through mechanisms such as diapause. Here, we delve into grasshopper community changes, their adaptive strategies, and population outbreaks in response to climate change and land use. By serving as ecological indicators, grasshoppers offer valuable insights for monitoring climatic and environmental shifts. Last, this review puts forth several future directions for comprehending the population dynamics of insects in the context of climate change.


Assuntos
Ecossistema , Gafanhotos , Animais , Gafanhotos/fisiologia , Mudança Climática , Agricultura , Dinâmica Populacional
20.
J Comp Physiol B ; 193(6): 597-605, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857900

RESUMO

The Orthoptera are a diverse insect order well known for their locomotive capabilities. To jump, the bush-cricket uses a muscle actuated (MA) system in which leg extension is actuated by contraction of the femoral muscles of the hind legs. In comparison, the locust uses a latch mediated spring actuated (LaMSA) system, in which leg extension is actuated by the recoil of spring-like structure in the femur. The aim of this study was to describe the jumping kinematics of Mecopoda elongata (Tettigoniidae) and compare this to existing data in Schistocerca gregaria (Acrididae), to determine differences in control of rotation during take-off between similarly sized MA and LaMSA jumpers. 269 jumps from 67 individuals of M. elongata with masses from 0.014 g to 3.01 g were recorded with a high-speed camera setup. In M. elongata, linear velocity increased with mass0.18 and the angular velocity (pitch) decreased with mass-0.13. In S. gregaria, linear velocity is constant and angular velocity decreases with mass-0.24. Despite these differences in velocity scaling, the ratio of translational kinetic energy to rotational kinetic energy was similar for both species. On average, the energy distribution of M. elongata was distributed 98.8% to translational kinetic energy and 1.2% to rotational kinetic energy, whilst in S. gregaria it is 98.7% and 1.3%, respectively. This energy distribution was independent of size for both species. Despite having two different jump actuation mechanisms, the ratio of translational and rotational kinetic energy formed during take-off is fixed across these distantly related orthopterans.


Assuntos
Gafanhotos , Gryllidae , Humanos , Animais , Gafanhotos/fisiologia , Gryllidae/fisiologia , Músculos , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA