Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Am Chem Soc ; 144(6): 2474-2478, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129341

RESUMO

The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.


Assuntos
Antígenos de Bactérias/química , Borrelia burgdorferi/química , Galactolipídeos/química , Animais , Antígenos de Bactérias/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Galactolipídeos/síntese química , Galactolipídeos/farmacologia , Inflamação/induzido quimicamente , Doença de Lyme/imunologia , Camundongos , Receptor 2 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Biochemistry ; 59(8): 999-1009, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067450

RESUMO

Galactolipids are characteristic lipids of the photosynthetic membranes. They are highly enriched in the chloroplast and are present in photosystem structures. There are two major types of galactolipids, i.e., monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) in chloroplastic membranes, which amount to ∼50 and ∼20 mol % of the total chloroplast lipids, respectively. Under phosphate-limiting conditions, the amount of DGDG increases dramatically for rescuing phosphate from phospholipids. In Arabidopsis thaliana, the gene digalactosyldiacylglycerol synthase 2 (DGD2) encodes a membrane-associated glycosyltransferase. The gene expression is highly responsive to phosphate starvation and is significantly upregulated in this case. To understand the molecular mechanism of DGD2, we established a protocol for DGD2 expression and purification in an Escherichia coli-based system. The work involved optimization of the expression condition and the purification protocol and a careful selection of buffer additives. It was found that a removal of around 70 C-terminal residues was necessary to produce a homogeneous monomeric protein sample with high purity, which was highly active. The purified sample was characterized by an activity assay for enzyme kinetics in which a range of membrane mimetics with different lipid compositions were used. The results demonstrate that DGD2 activity is stimulated by the presence of negatively charged lipids, which highlight the importance of the membrane environment in modulating the enzyme's activity. The study also paves way for future biophysical and structural studies of the enzyme.


Assuntos
Proteínas de Cloroplastos/química , Galactolipídeos/síntese química , Proteínas de Membrana/química , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/isolamento & purificação , Galactosiltransferases/química , Galactosiltransferases/genética , Galactosiltransferases/isolamento & purificação , Cinética , Bicamadas Lipídicas/química , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Alinhamento de Sequência , Deleção de Sequência , Lipossomas Unilamelares/química
3.
Biochim Biophys Acta ; 1851(3): 282-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25529980

RESUMO

The purified (phospho)lipase of Fusarium solani (FSL), was known to be active on both triglycerides and phospholipids. This study aimed at assessing the potential of this enzyme in hydrolyzing galactolipids. FSL was found to hydrolyze at high rates of synthetic medium chains monogalactosyldiacylglycerol (4658±146U/mg on DiC8-MGDG) and digalactosyldiacylglycerol (3785±83U/mg on DiC8-DGDG) and natural long chain monogalactosyldiacylglycerol extracted from leek leaves (991±85U/mg). It is the microbial enzyme with the highest activity on galactolipids identified so far with a level of activity comparable to that of pancreatic lipase-related protein 2. FSL maximum activity on galactolipids was measured at pH8. The analysis of the hydrolysis product of natural MGDG from leek showed that FSL hydrolyzes preferentially the ester bond at the sn-1 position of galactolipids. To investigate the structure-activity relationships of FSL, a 3D model of this enzyme was built. In silico docking of medium chains MGDG and DGDG and phospholipid in the active site of FSL reveals structural solutions which are in concordance with in vitro tests.


Assuntos
Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/química , Fusarium/química , Fosfolipases/química , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Domínio Catalítico , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Galactolipídeos/síntese química , Galactolipídeos/química , Galactolipídeos/isolamento & purificação , Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Lipase/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Cebolas/química , Fosfolipases/genética , Fosfolipases/metabolismo , Folhas de Planta/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
4.
Carbohydr Res ; 376: 15-23, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23727703

RESUMO

Aminoglycoglycerolipid 1a isolated from an algal extract showed activity against the enzyme Myt1 kinase with an IC50 value of 0.12 µg/mL. Its analogues, 6'-acylamido-6'-deoxy-α-D-galactoglycerolipids (2a-g) were synthesized in an efficient way with high stereoselectivity. The key step was to employ a 4-OAc protecting group of the galactosyl donor 14 as a remote neighboring participation group to give the glycoside with high α-anomeric selectivity (α:ß=32:1) in the glycosylation. The preliminary bioactivity screening showed that compound 2g exhibited good inhibition against Myt1 kinase.


Assuntos
Galactolipídeos/síntese química , Inibidores de Proteínas Quinases/síntese química , Configuração de Carboidratos , Galactolipídeos/química , Galactolipídeos/farmacologia , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade
5.
J Agric Food Chem ; 56(15): 6691-700, 2008 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-18636688

RESUMO

To gain insight into structure-activity relationships of glycolipids in breadmaking monogalactosyl dilinoleylglycerol ( 8) and monogalactosyl monolinoleylglycerol ( 6) were synthesized. Then their functional properties in dough and breadmaking were compared to those of commercial surfactants such as lecithins (from soybean, rapeseed, and sunflower), diacetyltartaric acid esters of monoglycerides (DATEM), monoglycerides, and sodium stearoyl-2-lactylate. Chemical synthesis of the galactolipids consisted of a four-step reaction pathway, yielding amounts of 1-1.5 g suitable for the determination of the functional properties. Variation of the acylation time in the third step provided either the monoacyl ( 6) or the diacyl compound ( 8). The functional properties were determined by means of rheological and baking tests on a microscale (10 g of flour). The synthetic galactolipids both displayed an excellent baking performance, with 6 having by far the best baking activity of all examined surfactants. The baking activities of 8, DATEM, and the monoglycerides were in the same range, whereas sodium stearoyl-2-lactylate was less active. Although the lecithins gained similar maxima in bread volume increases as the synthetic surfactants did, considerably higher concentrations were required to do so. An antistaling effect was found for only 6 and not for 8. However, this effect was weaker than for sodium stearoyl-2-lactylate and the monoglycerides.


Assuntos
Pão/análise , Galactolipídeos/síntese química , Temperatura Alta , Tensoativos/química , Acilação , Manipulação de Alimentos/métodos , Galactolipídeos/química , Monoglicerídeos/química
6.
Chem Phys Lipids ; 148(1): 26-50, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17524381

RESUMO

The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.


Assuntos
Galactolipídeos/química , Termodinâmica , Varredura Diferencial de Calorimetria , Galactolipídeos/síntese química , Modelos Moleculares , Estrutura Molecular , Transição de Fase , Estereoisomerismo , Difração de Raios X
7.
Bioorg Med Chem Lett ; 15(1): 159-62, 2005 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-15582431

RESUMO

Digalactosyl and monogalactocyl diacylglycerols (DGDG and MGDG), which were identified as anti-hyperlipemia active components in Colocasia esculenta (Taro), were synthesized. The inhibitory activity of DGDG, MGDG and related compounds on human lanosterol synthase was evaluated as anti-hyperlipemic activity. DGDG with two myristoyl groups at both sn-1 and sn-2 positions and with an oleoyl group at the sn-1 position showed the most potent activity.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Galactolipídeos/síntese química , Galactolipídeos/farmacologia , Transferases Intramoleculares/antagonistas & inibidores , Sequência de Carboidratos , Inibidores Enzimáticos/química , Galactolipídeos/química , Humanos , Dados de Sequência Molecular , Relação Estrutura-Atividade
8.
Chem Biol ; 9(6): 713-20, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12079783

RESUMO

New insight into the importance of carbohydrates in biological systems underscores the need for rapid synthetic and screening procedures for them. Development of an organic synthesis-compatible linker that would attach saccharides to microtiter plates was therefore undertaken to facilitate research in glycobiology. Galactosyllipids containing small, hydrophobic groups at the anomeric position were screened for noncovalent binding to microtiter plates. When the lipid component was a saturated hydrocarbon between 13 and 15 carbons in length, the monosaccharide showed complete retention after aqueous washing and could be utilized in biological assays. This alkyl chain was also successfully employed with more complex oligosaccharides in biological assays. In light of these findings, this method of attachment of oligosaccharides to microtiter plates should be highly efficacious to high-throughput synthesis and analyses of carbohydrates in biological assays.


Assuntos
Técnicas de Química Combinatória , Galactolipídeos/química , Oligossacarídeos/química , Configuração de Carboidratos , Galactolipídeos/síntese química , Oligossacarídeos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA