Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.486
Filtrar
1.
BMC Genomics ; 25(1): 438, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698322

RESUMO

BACKGROUND: Nutrient availability during early stages of development (embryogenesis and the first week post-hatch) can have long-term effects on physiological functions and bird metabolism. The embryo develops in a closed structure and depends entirely on the nutrients and energy available in the egg. The aim of this study was to describe the ontogeny of pathways governing hepatic metabolism that mediates many physiological functions in the pHu + and pHu- chicken lines, which are divergently selected for the ultimate pH of meat, a proxy for muscle glycogen stores, and which differ in the nutrient content and composition of eggs. RESULTS: We identified eight clusters of genes showing a common pattern of expression between embryonic day 12 (E12) and day 8 (D8) post-hatch. These clusters were not representative of a specific metabolic pathway or function. On E12 and E14, the majority of genes differentially expressed between the pHu + and pHu- lines were overexpressed in the pHu + line. Conversely, the majority of genes differentially expressed from E18 were overexpressed in the pHu- line. During the metabolic shift at E18, there was a decrease in the expression of genes linked to several metabolic functions (e.g. protein synthesis, autophagy and mitochondrial activity). At hatching (D0), there were two distinct groups of pHu + chicks based on hierarchical clustering; these groups also differed in liver weight and serum parameters (e.g. triglyceride content and creatine kinase activity). At D0 and D8, there was a sex effect for several metabolic pathways. Metabolism appeared to be more active and oriented towards protein synthesis (RPS6) and fatty acid ß-oxidation (ACAA2, ACOX1) in males than in females. In comparison, the genes overexpressed in females were related to carbohydrate metabolism (SLC2A1, SLC2A12, FoxO1, PHKA2, PHKB, PRKAB2 and GYS2). CONCLUSIONS: Our study provides the first detailed description of the evolution of different hepatic metabolic pathways during the early development of embryos and post-hatching chicks. We found a metabolic orientation for the pHu + line towards proteolysis, glycogen degradation, ATP synthesis and autophagy, likely in response to a higher energy requirement compared with pHu- embryos. The metabolic orientations specific to the pHu + and pHu- lines are established very early, probably in relation with their different genetic background and available nutrients.


Assuntos
Galinhas , Fígado , Animais , Galinhas/genética , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Feminino , Músculos Peitorais/metabolismo , Músculos Peitorais/crescimento & desenvolvimento , Masculino , Perfilação da Expressão Gênica , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento
2.
Sci Rep ; 14(1): 8210, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589474

RESUMO

The gut microbiota is known to play an important role in energy harvest and is likely to affect feed efficiency. In this study, we used 16S metabarcoding sequencing to analyse the caecal microbiota of laying hens from feed-efficient and non-efficient lines obtained by divergent selection for residual feed intake. The two lines were fed either a commercial wheat-soybean based diet (CTR) or a low-energy, high-fibre corn-sunflower diet (LE). The analysis revealed a significant line x diet interaction, highlighting distinct differences in microbial community composition between the two lines when hens were fed the CTR diet, and more muted differences when hens were fed the LE diet. Our results are consistent with the hypothesis that a richer and more diverse microbiota may play a role in enhancing feed efficiency, albeit in a diet-dependent manner. The taxonomic differences observed in the microbial composition seem to correlate with alterations in starch and fibre digestion as well as in the production of short-chain fatty acids. As a result, we hypothesise that efficient hens are able to optimise nutrient absorption through the activity of fibrolytic bacteria such as Alistipes or Anaerosporobacter, which, via their production of propionate, influence various aspects of host metabolism.


Assuntos
Galinhas , Microbioma Gastrointestinal , Animais , Feminino , Galinhas/metabolismo , Ração Animal/análise , Dieta/veterinária , Ingestão de Alimentos , Fenômenos Fisiológicos da Nutrição Animal
3.
Gene ; 918: 148479, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636815

RESUMO

The GHRL, LEAP2, and GHSR system have recently been identified as important regulators of feed intake in mammals and chickens. However, the complete cloning of the quail GHRL (qGHRL) and quail LEAP2 (qLEAP2) genes, as well as their association with feed intake, remains unclear. This study cloned the entire qGHRL and qLEAP2 cDNA sequence in Chinese yellow quail (Coturnix japonica), including the 5' and 3' untranslated regions. Sanger sequencing analysis revealed no missense mutations in the coding region of qGHRL and qLEAP2. Subsequently, phylogenetic analysis and protein homology alignment were conducted on the qGHRL and qLEAP2 in major poultry species. The findings of this research indicated that the qGHRL and qLEAP2 sequences exhibit a high degree of similarity with those of chicken and turkey. Specifically, the N-terminal 6 amino acids of GHRL mature peptides and all the mature peptide sequence of LEAP2 exhibited consistent patterns across all species examined. The analysis of tissue gene expression profiles indicated that qGHRL was primarily expressed in the proventriculus and brain tissue, whereas qLEAP2 exhibited higher expression levels in the intestinal tissue, kidney, and liver tissue, differing slightly from previous studies conducted on chicken. It is necessary to investigate the significance of elevated expression of qGHRL in brain and qLEAP2 in kidney in the future. Further research has shown that the expression of qLEAP2 can quickly respond to changes in different energy states, whereas qGHRL does not exhibit the same capability. Overall, this study successfully cloned the complete cDNA sequences of qGHRL and qLEAP2, and conducted a comprehensive examination of their tissue expression profiles and gene expression levels in the main expressing organs across different energy states. Our current findings suggested that qLEAP2 is highly expressed in the liver, intestine, and kidney, and its expression level is regulated by feed intake.


Assuntos
Clonagem Molecular , Filogenia , Animais , Grelina/genética , Grelina/metabolismo , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Ingestão de Alimentos/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica/métodos , Coturnix/genética , Coturnix/metabolismo , Galinhas/genética , Galinhas/metabolismo , Codorniz/genética , Polimorfismo Genético
4.
BMC Genomics ; 25(1): 357, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600449

RESUMO

BACKGROUND: Broodiness significantly impacts poultry egg production, particularly notable in specific breeds such as the black-boned Silky, characterized by pronounced broodiness. An understanding of the alterations in ovarian signaling is essential for elucidating the mechanisms that influence broodiness. However, comparative research on the characteristics of long non-coding RNAs (lncRNAs) in the ovaries of broody chickens (BC) and high egg-laying chickens (GC) remains scant. In this investigation, we employed RNA sequencing to assess the ovarian transcriptomes, which include both lncRNAs and mRNAs, in eight Taihe Black-Bone Silky Fowls (TBsf), categorized into broody and high egg-laying groups. This study aims to provide a clearer understanding of the genetic underpinnings associated with broodiness and egg production. RESULTS: We have identified a total of 16,444 mRNAs and 18,756 lncRNAs, of which 349 mRNAs and 651 lncRNAs exhibited significantly different expression (DE) between the BC and GC groups. Furthermore, we have identified the cis-regulated and trans-regulated target genes of differentially abundant lncRNA transcripts and have constructed an lncRNA-mRNA trans-regulated interaction network linked to ovarian follicle development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analyses have revealed that DE mRNAs and the target genes of DE lncRNAs are associated with pathways including neuroactive ligand-receptor interaction, CCR6 chemokine receptor binding, G-protein coupled receptor binding, cytokine-cytokine receptor interaction, and ECM-receptor interaction. CONCLUSION: Our research presents a comprehensive compilation of lncRNAs and mRNAs linked to ovarian development. Additionally, it establishes a predictive interaction network involving differentially abundant lncRNAs and differentially expressed genes (DEGs) within TBsf. This significantly contributes to our understanding of the intricate interactions between lncRNAs and genes governing brooding behavior.


Assuntos
Galinhas , RNA Longo não Codificante , Feminino , Animais , Galinhas/genética , Galinhas/metabolismo , Ovário/metabolismo , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes
5.
Microbiome ; 12(1): 73, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605412

RESUMO

BACKGROUND: The utilization of mulberry branch fiber (MF), the largest by-product of the sericulture industry, is an important issue. Supplementation with MF as a dietary fiber for poultry may serve as a useful application. However, little is known about the effects of MF on liver lipid metabolism and egg yolk fatty acid composition of laying hens and their underlying mechanisms. In this study, we performed a multi-omics investigation to explore the variations in liver lipid metabolism, egg yolk fatty acid composition, gut microbiota, and the associations among them induced by dietary MF in laying hens. RESULTS: Dietary MF had no harmful effects on the laying performance or egg quality in laying hens. The enzyme activities associated with lipid metabolism in the liver were altered by the addition of 5% MF, resulting in reduced liver fat accumulation. Furthermore, dietary 5% MF induced the variation in the fatty acid profiles of egg yolk, and increased the polyunsaturated fatty acid (PUFA) content. We observed a significant reduction in the diversity of both gut bacteria and changes in their compositions after the addition of MF. Dietary MF significantly increased the abundance of genes involved in fatty acid biodegradation, and short-chain fatty acids biosynthesis in the gut microbiota of laying hens. The significant correlations were observed between the liver lipid metabolism enzyme activities of hepatic lipase, lipoprotein lipase, and total esterase with gut microbiota, including negative correlations with gut microbiota diversity, and multiple correlations with gut bacteria and viruses. Moreover, various correlations between the contents of PUFAs and monounsaturated fatty acids in egg yolk with the gut microbiota were obtained. Based on partial-least-squares path modeling integrated with the multi-omics datasets, we deduced the direct effects of liver enzyme activities and gut bacterial compositions on liver fat content and the roles of liver enzyme activities and gut bacterial diversity on egg yolk fatty acid composition. CONCLUSIONS: The results indicate that dietary MF is beneficial to laying hens as it reduces the liver fat and improves egg yolk fatty acid composition through the enterohepatic axis. Video Abstract.


Assuntos
Ácidos Graxos , Morus , Animais , Feminino , Ácidos Graxos/metabolismo , Gema de Ovo/metabolismo , Morus/metabolismo , Metabolismo dos Lipídeos , Galinhas/metabolismo , Dieta , Ácidos Graxos Insaturados/metabolismo , Ração Animal/análise , Suplementos Nutricionais
6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563227

RESUMO

The liver plays a critical role in metabolic activity and is the body's first immune barrier, and maintaining liver health is particularly important for poultry production. MicroRNAs (miRNAs) are involved in a wide range of biological activities due to their capacity as posttranscriptional regulatory elements. A growing body of research indicates that miR-21-5p plays a vital role as a modulator of liver metabolism in various species. However, the effect of miR-21-5p on the chicken liver is unclear. In the current study, we discovered that the fatty liver had high levels of miR-21-5p. Then the qPCR, Western blot, flow cytometry, enzyme-linked immunosorbent assay, dual-luciferase, and immunofluorescence assays were, respectively, used to determine the impact of miR-21-5p in the chicken liver, and it turned out that miR-21-5p enhanced lipogenesis, oxidative stress, and inflammatory responses, which ultimately induced hepatocyte apoptosis. Mechanically, we verified that miR-21-5p can directly target nuclear factor I B (NFIB) and kruppel-like factor 3 (KLF3). Furthermore, our experiments revealed that the suppression of NFIB promoted apoptosis and inflammation, and the KLF3 inhibitor accelerated lipogenesis and enhanced oxidative stress. Furthermore, the cotransfection results suggest that the PI3K/AKT pathway is also involved in the process of miRNA-21-5p-mediate liver metabolism regulation. In summary, our study demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting NFIB and KLF3 to suppress the PI3K/AKT signal pathway in chicken.


miR-21-5p is a typical noncoding RNA that could inhibit messenger RNA expression by targeting the 3ʹ-untranslated region to participate in fatty liver-related disease formation and progression. We demonstrated that miRNA-21-5p plays a role in hepatocyte lipogenesis, oxidative stress, inflammation, and apoptosis, via targeting nuclear factor I B and kruppel-like factor 3 to suppress the PI3K/AKT signal pathway in chicken. This research established the regulatory network mechanisms of miR-21-5p in chicken hepatic lipogenesis and fatty liver syndrome.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição NFI/metabolismo , Galinhas/genética , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipogênese/genética , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Apoptose , Inflamação/metabolismo , Inflamação/veterinária , Proliferação de Células
7.
Sci Rep ; 14(1): 8795, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627516

RESUMO

In mammals, a subset of follicle-associated epithelial (FAE) cells, known as M cells, conduct the transcytosis of antigens across the epithelium into the underlying lymphoid tissues. We previously revealed that M cells in the FAE of the chicken lung, bursa of Fabricius (bursa), and caecum based on the expression of CSF1R. Here, we applied RNA-seq analysis on highly enriched CSF1R-expressing bursal M cells to investigate their transcriptome and identify novel chicken M cell-associated genes. Our data show that, like mammalian M cells, those in the FAE of the chicken bursa also express SOX8, MARCKSL1, TNFAIP2 and PRNP. Immunohistochemical analysis also confirmed the expression of SOX8 in CSF1R-expressing cells in the lung, bursa, and caecum. However, we found that many other mammalian M cell-associated genes such as SPIB and GP2 were not expressed by chicken M cells or represented in the chicken genome. Instead, we show bursal M cells express high levels of related genes such as SPI1. Whereas our data show that bursal M cells expressed CSF1R-highly, the M cells in the small intestine lacked CSF1R and both expressed SOX8. This study offers insights into the transcriptome of chicken M cells, revealing the expression of CSF1R in M cells is tissue-specific.


Assuntos
Galinhas , Células M , Animais , Bolsa de Fabricius/metabolismo , Galinhas/genética , Galinhas/metabolismo , Epitélio , Tecido Linfoide , Receptores de Fator Estimulador de Colônias/metabolismo
8.
BMC Genomics ; 25(1): 374, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627644

RESUMO

BACKGROUND: Fatty liver hemorrhagic syndrome (FLHS) in the modern poultry industry is primarily caused by nutrition. Despite encouraging progress on FLHS, the mechanism through which nutrition influences susceptibility to FLHS is still lacking in terms of epigenetics. RESULTS: In this study, we analyzed the genome-wide patterns of trimethylated lysine residue 27 of histone H3 (H3K27me3) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes in healthy and FLHS hens. The study results indicated that H3K27me3 levels were increased in the FLHS hens on a genome-wide scale. Additionally, H3K27me3 was found to occupy the entire gene and the distant intergenic region, which may function as silencer-like regulatory elements. The analysis of transcription factor (TF) motifs in hypermethylated peaks has demonstrated that 23 TFs are involved in the regulation of liver metabolism and development. Transcriptomic analysis indicated that differentially expressed genes (DEGs) were enriched in fatty acid metabolism, amino acid, and carbohydrate metabolism. The hub gene identified from PPI network is fatty acid synthase (FASN). Combined ChIP-seq and transcriptome analysis revealed that the increased H3K27me3 and down-regulated genes have significant enrichment in the ECM-receptor interaction, tight junction, cell adhesion molecules, adherens junction, and TGF-beta signaling pathways. CONCLUSIONS: Overall, the trimethylation modification of H3K27 has been shown to have significant regulatory function in FLHS, mediating the expression of crucial genes associated with the ECM-receptor interaction pathway. This highlights the epigenetic mechanisms of H3K27me3 and provides insights into exploring core regulatory targets and nutritional regulation strategies in FLHS.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Dieta com Restrição de Proteínas , Fígado Gorduroso , Transtornos do Crescimento , Comunicação Interventricular , Animais , Feminino , Histonas/metabolismo , Galinhas/genética , Galinhas/metabolismo , Epigênese Genética , Fígado Gorduroso/genética , Fígado Gorduroso/veterinária , Hemorragia/genética , Transcriptoma
9.
Sci Rep ; 14(1): 9019, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641606

RESUMO

Bayesian networks represent a useful tool to explore interactions within biological systems. The aims of this study were to identify a reduced number of genes associated with a stress condition in chickens (Gallus gallus) and to unravel their interactions by implementing a Bayesian network approach. Initially, one publicly available dataset (3 control vs. 3 heat-stressed chickens) was used to identify the stress signal, represented by 25 differentially expressed genes (DEGs). The dataset was augmented by looking for the 25 DEGs in other four publicly available databases. Bayesian network algorithms were used to discover the informative relationships between the DEGs. Only ten out of the 25 DEGs displayed interactions. Four of them were Heat Shock Proteins that could be playing a key role, especially under stress conditions, where maintaining the correct functioning of the cell machinery might be crucial. One of the DEGs is an open reading frame whose function is yet unknown, highlighting the power of Bayesian networks in knowledge discovery. Identifying an initial stress signal, augmenting it by combining other databases, and finally learning the structure of Bayesian networks allowed us to find genes closely related to stress, with the possibility of further exploring the system in future studies.


Assuntos
Galinhas , Perfilação da Expressão Gênica , Animais , Galinhas/genética , Galinhas/metabolismo , Perfilação da Expressão Gênica/veterinária , Teorema de Bayes , Resposta ao Choque Térmico/genética , Encéfalo , Redes Reguladoras de Genes
10.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673954

RESUMO

The objective was to assess whether low-protein (LP) diets regulate food intake (FI) and thermogenesis differently during thermoneutral (TN) and heat stress (HS) conditions. Two-hundred-day-old male broiler chicks were weight-matched and assigned to 36 pens with 5-6 chicks/pen. After 2 weeks of acclimation, birds were subjected into four groups (9 pens/group) including (1) a normal-protein diet under TN (ambient temperature), (2) an LP diet under TN, (3) a normal-protein diet under HS (35 °C for 7 h/day), and (4) an LP diet under HS, for 4 weeks. During HS, but not TN, LP tended to decrease FI, which might be associated with a lower mRNA abundance of duodenal ghrelin and higher GIP during HS. The LP group had a higher thermal radiation than NP under TN, but during HS, the LP group had a lower thermal radiation than NP. This was linked with higher a transcript of muscle ß1AR and AMPKα1 during TN, but not HS. Further, LP increased the gene expression of COX IV during TN but reduced COX IV and the sirtuin 1 abundance during HS. The dietary protein content differentially impacted plasma metabolome during TN and HS with divergent changes in amino acids such as tyrosine and tryptophan. Compared to NP, LP had increased abundances of p_Tenericutes, c_Mollicutes, c_Mollicutes_RF9, and f_tachnospiraceae under HS. Overall, LP diets may mitigate the negative outcome of heat stress on the survivability of birds by reducing FI and heat production. The differential effect of an LP diet on energy balance during TN and HS is likely regulated by gut and skeletal muscle and alterations in plasma metabolites and cecal microbiota.


Assuntos
Galinhas , Dieta com Restrição de Proteínas , Metabolismo Energético , Resposta ao Choque Térmico , Animais , Galinhas/metabolismo , Masculino , Termogênese , Ração Animal , Ingestão de Alimentos
11.
Food Chem ; 449: 139201, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599104

RESUMO

This study aimed to determine the effect of the administration dose, combinations with co-antioxidants (vitamin C, caffeic acid, chlorogenic acid, catechin, rutin), and different food matrices (cooked and lyophilized hen eggs, chicken breast, soybean seeds, potatoes) on the potential bioaccessibility of rosmarinic acid (RA) in simulated digestion conditions, depending on the digestion stage (gastric and intestinal) and the contribution of physicochemical and biochemical digestion factors. The in vitro bioaccessibility of RA depended on the digestion stage and conditions. The physicochemical factors were mainly responsible for the bioaccessibility of RA applied alone. The higher RA doses improved its bioaccessibility, especially at the intestinal stage of digestion. Furthermore, the addition of vitamin C and protein-rich food matrices resulted in enhanced intestinal bioaccessibility of RA. In the future, the knowledge of factors influencing the bioaccessibility of RA can help enhance its favorable biological effects and therapeutic potential.


Assuntos
Antioxidantes , Disponibilidade Biológica , Cinamatos , Depsídeos , Digestão , Modelos Biológicos , Ácido Rosmarínico , Depsídeos/metabolismo , Depsídeos/química , Cinamatos/metabolismo , Cinamatos/química , Cinamatos/análise , Animais , Antioxidantes/metabolismo , Antioxidantes/química , Galinhas/metabolismo , Humanos , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Ovos/análise , Glycine max/química , Glycine max/metabolismo
12.
PLoS One ; 19(4): e0302230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630688

RESUMO

This bioassay evaluated the bioavailability (RBV) of a novel nanoparticle of methionine (nano-Met) relative to DL-methionine (DL-Met), and estimated methionine requirements for both sources in starting broilers. Five supplemental levels (0.05, 0.10, 0.15, 0.20, and 0.25% of diet) of DL-Met or nano-Met were added to a basal diet containing 0.35% standardized ileal digestible (SID) methionine to create 11 experimental diets, including a basal diet and 10 experimental diets containing 0.40, 0.45, 0.50, 0.55, and 0.60% SID-Met, respectively. A total of 825 one-day-old male Ross 308 birds were randomly assigned to 11 treatments with 5 pen replicates and 15 birds each. Body weight gain (BWG), breast meat yield (BMY), and thigh meat yield (TMY) increased (P < 0.001) while feed conversion ratio (FCR) and malondialdehyde (MDA) concentration in meat samples decreased (P < 0.001) with increasing dietary methionine. Based on the slope-ratio method, the RBV of nano-Met relative to DL-Met for BWG, FCR, and TMY were 102 (48-155%; R2 = 0.71), 134 (68-201%; R2 = 0.77), and 110% (27-193%; R2 = 0.55), respectively. Considering the statistical accuracy of the spline models, the estimated values of DL-Met for maximum BWG and nano-Met for maximum TMY were 0.578% and 0.561%, respectively, which were statistically higher than those recommended for commercial settings. The highest effect size of supplemental methionine was on MDA (ƞ2p = 0.924), followed by FCR (ƞ2p = 0.578), BMY (ƞ2p = 0.575), BWG (ƞ2p = 0.430), and TMY (ƞ2p = 0.332), suggesting the potent antioxidant properties of methionine. Our findings suggest that reducing the particle size of DL-Met to nanoparticles could be a promising strategy to enhance the efficiency of methionine supplementation in broilers, an idea that requires further investigation in future research.


Assuntos
Suplementos Nutricionais , Metionina , Animais , Masculino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Disponibilidade Biológica , Galinhas/metabolismo , Dieta/veterinária , Metionina/metabolismo , Racemetionina , Aumento de Peso
13.
Res Vet Sci ; 173: 105275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678847

RESUMO

Inosine monophosphate (IMP) is widely regarded as an important indicator for evaluating the flavour of poultry meat. However, little is known about the molecular mechanisms affecting the specific deposition of IMP. In this study, we functionally verified PKM2 (Pyruvate kinase M2), a candidate gene related to IMP synthesis, in order to reveal the important role of PKM2 in meat flavour and muscle development of Jingyuan chickens. The results showed that the IMP content in breast muscle of Jingyuan chickens was negatively correlated with PKM2 mRNA expression (r = -0.1710), while the IMP content in leg muscle was significantly positively correlated with PKM2 mRNA expression (r = 0.7350) (P < 0.05). During myogenesis, PKM2 promoted the proliferation rate of myoblasts and the expression of proliferation marker genes, inhibited the apoptosis rate and the expression of apoptosis marker genes, and decreased the expression of differentiation marker genes. Up-regulation of PKM2 enhanced the expression of key genes in the purine metabolic pathway and the de novo synthesis pathway of IMP, and suppressed the expression of key genes in the salvage pathway. ELISA assays showed that PKM2 decreased IMP and hypoxanthine (HX) contents, while adenosine triphosphate (ATP) and uric acid (UA) contents were clearly elevated. In summary, these studies revealed that PKM2 regulates myogenesis and specific deposition of IMP, which can be used to improve the quality of Jingyuan chicken meat.


Assuntos
Galinhas , Inosina Monofosfato , Mioblastos , Animais , Galinhas/metabolismo , Galinhas/crescimento & desenvolvimento , Inosina Monofosfato/metabolismo , Mioblastos/metabolismo , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Carne/análise , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Proliferação de Células
14.
Chem Biol Interact ; 395: 111005, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38615975

RESUMO

Poultry feed is often contaminated with fumonisins, deoxynivalenol, and zearalenone, which can result in oxidative damage, inflammation and change in lipid metabolism. Although sphingolipids play key roles in cells, only the effects of fumonisins on the sphingolipidome are well-documented. In chickens, fumonisins have been shown to increase the sphinganine to sphingosine ratio and the C22-24:C16 sphingolipid ratio, which has been proposed as a new biomarker of toxicity. In this study, we used UHPLC-MSMS targeted analysis to measure the effect of fusariotoxins on sphingolipids in the livers of chickens fed with diets containing fusariotoxins administered individually and in combination, at the maximum levels recommended by the European Commission. Chickens were exposed from hatching until they reached 35 days of age. This study revealed for the first time that fumonisins, deoxynivalenol, and zearalenone alone and in combination have numerous effects on the sphingolipidome in chicken livers. A 30-50 % decrease in ceramide, dihydroceramide, sphingomyelin, dihydrosphingomyelin, monohexosylceramide and lactosylceramide measured at the class level was observed when fusariotoxins were administered alone, whereas a 30-100 % increase in dihydroceramide, sphingomyelin, dihydrosphingomyelin, and monohexosylceramide was observed when the fusariotoxins were administered in combination. For these different variables, strong significant interactions were observed between fumonisins and zearalenone and between fumonisins and deoxynivalenol, whereas interactions between deoxynivalenol and zearalenone were less frequent and less significant. Interestingly, an increase in the C22-24:C16 ratio of ceramides, sphingomyelins, and monohexosylceramides was observed in chickens fed the diets containing fumonisins only, and this increase was close when the toxin was administered alone or in combination with deoxynivalenol and zearalenone. This effect mainly corresponded to a decrease in sphingolipids with a fatty acid chain length of 16 carbons, whereas C22-24 sphingolipids were unaffected or increased. In conclusion the C22-24:C16 ratio emerged as a specific biomarker, with variations dependent only on the presence of fumonisins.


Assuntos
Galinhas , Fumonisinas , Fígado , Esfingolipídeos , Tricotecenos , Zearalenona , Animais , Galinhas/metabolismo , Tricotecenos/toxicidade , Fumonisinas/toxicidade , Fígado/metabolismo , Fígado/efeitos dos fármacos , Zearalenona/toxicidade , Esfingolipídeos/metabolismo , Esfingolipídeos/análise , Cromatografia Líquida de Alta Pressão , Ração Animal/análise , Espectrometria de Massas em Tandem
15.
Animal ; 18(5): 101135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636148

RESUMO

There is a gap in the understanding of the relationship between dietary phytate levels and the relative efficacy of phytase to improve amino acid (AA) digestibility in pigs and chickens. Two experiments were conducted to investigate the effect of exogenous phytase on standardized ileal digestibility (SID) of AA and the apparent ileal digestibility (AID) of P in both standard- (SP) and high-phytate (HP) diets for broilers and swine. There were either 40 cages of Cobb 500 male broilers or 10 crossbred barrows (35 kg) fitted with ileal T-cannulas. Both studies were allotted to five dietary treatments (8 replicates). Treatments consisted of four corn-soybean meal-based diets arranged in a 2 × 2 factorial of standard or high phytate and exogenous phytase at 0 or 1 000 phytase units (FYT)/kg; and one N-free diet. Birds were fed a common starter diet from d 0 to 20 and fed experimental diets from d 20 to 25. Birds were euthanized on d 25 via CO2 asphyxiation, and digesta were collected from the terminal ileum. Pigs were fed for a total of four 7-d periods, where digesta were collected on d 6 and 7 of each period. Diet and digesta samples were analyzed for DM, N, Ti, AA, and P to determine AA and P digestibility. The SID of AA was determined by correcting the AID of AA for the basal endogenous losses estimated using the N-free diet. Main effects of the diet type (standard or HP) and phytase (0 or 1 000 FYT/kg), and the interaction of diet type and phytase were evaluated. For both experiments, the HP diets produced lower SID of AA compared to the SP (P < 0.001). For broilers, there was a phytase effect (P < 0.001) for the SID of all AAs evaluated regardless of the diet type. For pigs, phytase improved (P < 0.05) the SID of Met, Lys, Cys, Glu and Ser and tended to improve (P < 0.10) Arg, Leu, Thr, and Tyr. There were no significant interactions for either experiment. For both experiments, AID of P was lower for the HP diets (P < 0.01), and phytase produced greater AID of P for both diet types (P < 0.01). These data indicate that phytase greatly improves the digestibility of P for broilers and pigs and has the ability to significantly increase the digestibility of amino acids for these animals, regardless of the dietary phytate P.


Assuntos
6-Fitase , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Digestão , Íleo , Ácido Fítico , Animais , 6-Fitase/administração & dosagem , 6-Fitase/farmacologia , Galinhas/fisiologia , Galinhas/metabolismo , Ração Animal/análise , Ácido Fítico/metabolismo , Ácido Fítico/administração & dosagem , Ácido Fítico/farmacologia , Masculino , Digestão/efeitos dos fármacos , Dieta/veterinária , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Íleo/metabolismo , Suínos/fisiologia , Aminoácidos/metabolismo , Suplementos Nutricionais/análise
16.
Microb Cell Fact ; 23(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575972

RESUMO

BACKGROUND: Poultry feather waste has a potential for bioenergy production because of its high protein content. This research explored the use of chicken feather hydrolysate for methane and hydrogen production via anaerobic digestion and bioelectrochemical systems, respectively. Solid state fermentation of chicken waste was conducted using a recombinant strain of Bacillus subtilis DB100 (p5.2). RESULTS: In the anaerobic digestion, feather hydrolysate produced maximally 0.67 Nm3 CH4/kg feathers and 0.85 mmol H2/day.L concomitant to COD removal of 86% and 93%, respectively. The bioelectrochemical systems used were microbial fuel and electrolysis cells. In the first using a microbial fuel cell, feather hydrolysate produced electricity with a maximum cell potential of 375 mV and a current of 0.52 mA. In the microbial electrolysis cell, the hydrolysate enhanced the hydrogen production rate to 7.5 mmol/day.L, with a current density of 11.5 A/m2 and a power density of 9.26 W/m2. CONCLUSIONS: The data indicated that the sustainable utilization of keratin hydrolysate to produce electricity and biohydrogen via bioelectrical chemical systems is feasible. Keratin hydrolysate can produce electricity and biofuels through an integrated aerobic-anaerobic fermentation system.


Assuntos
Galinhas , Plumas , Animais , Anaerobiose , Galinhas/metabolismo , Hidrogênio/metabolismo , Queratinas/metabolismo , Metano/metabolismo , Biocombustíveis , Reatores Biológicos
17.
Pestic Biochem Physiol ; 199: 105761, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458672

RESUMO

Excessive acetochlor residues present ecological and food safety challenges. Here, broiler chicks were exposed to varied acetochlor doses to first assess its effects on the gut. Subsequent dietary supplementation with omega-3 was used to assess its anti-contamination effects. Pathologically, acetochlor induced notable ileal lesions including inflammation, barrier disruption, tight junction loss, and cellular anomalies. Mechanistically, acetochlor stimulated the TNFα/TNFR1 and TLR4/NF-κB/NLRP3 pathways, promoting RIPK1/RIPK3 complex formation, MLKL phosphorylation, NLRP3 inflammasome activation, Caspase-1 activation, and GSDMD shearing with inflammatory factor release. These mechanisms elucidate ileal cell death patterns essential for understanding chicken enteritis. Omega-3 supplementation showed promise in mitigating inflammation, though its precise counteractive role remains unclear. Our findings suggest early omega-3 intervention offered protective benefits against acetochlor's adverse intestinal effects, emphasizing its potential poultry health management role. Harnessing dietary interventions' therapeutic potential will be pivotal in ensuring sustainable poultry production and food safety despite persistent environmental contaminants.


Assuntos
Galinhas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Toluidinas , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Galinhas/metabolismo , NF-kappa B/metabolismo , Inflamação , Suplementos Nutricionais , Íleo/metabolismo , Ácidos Graxos Insaturados/uso terapêutico
18.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473897

RESUMO

The H9N2 avian influenza virus causes reduced production performance and immunosuppression in chickens. The chicken yolk sac immunoglobulins (IgY) receptor (FcRY) transports from the yolk into the embryo, providing offspring with passive immunity to infection against common poultry pathogens. FcRY is expressed in many tissues/organs of the chicken; however, there are no reports investigating FcRY expression in chicken macrophage cells, and how H9N2-infected HD11 cells (a chicken macrophage-like cell line) regulate FcRY expression remains uninvestigated. This study used the H9N2 virus as a model pathogen to explore the regulation of FcRY expression in avian macrophages. FcRY was highly expressed in HD11 cells, as shown by reverse transcription polymerase chain reactions, and indirect immunofluorescence indicated that FcRY was widely expressed in HD11 cells. HD11 cells infected with live H9N2 virus exhibited downregulated FcRY expression. Transfection of eukaryotic expression plasmids encoding each viral protein of H9N2 into HD11 cells revealed that nonstructural protein (NS1) and matrix protein (M1) downregulated FcRY expression. In addition, the use of a c-jun N-terminal kinase (JNK) activator inhibited the expression of FcRY, while a JNK inhibitor antagonized the downregulation of FcRY expression by live H9N2 virus, NS1 and M1 proteins. Finally, a dual luciferase reporter system showed that both the M1 protein and the transcription factor c-jun inhibited FcRY expression at the transcriptional level. Taken together, the transcription factor c-jun was a negative regulator of FcRY, while the live H9N2 virus, NS1, and M1 proteins downregulated the FcRY expression through activating the JNK signaling pathway. This provides an experimental basis for a novel mechanism of immunosuppression in the H9N2 avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Galinhas/metabolismo , Vírus da Influenza A Subtipo H9N2/fisiologia , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo
19.
Cells ; 13(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474379

RESUMO

With the increase in the age of laying chickens, the aging of follicles is accelerated, and the reproductive ability is decreased. Increased oxidative stress and mitochondrial malfunction are indispensable causes of ovarian aging. In this study, the physiological condition of prehierarchical small white follicles (SWFs) was compared between D280 high-producing chickens and D580 aging chickens, and the effect of a plant-derived flavonoid nobiletin (Nob), a natural antioxidant, on senescence of SWFs granulosa cells (SWF-GCs) was investigated. The results showed that Nob treatment activated cell autophagy by activating the AMP-activated protein kinase (AMPK) and Sirtuin-1 (SIRT1) pathways in D-galactose (D-gal)-generated senescent SWF-GCs, restoring the expression of proliferation-related mRNAs and proteins. In addition, the expression of inflammation-related protein NF-κB was significantly enhanced in aging GCs that were induced by D-gal. Nob supplementation significantly increased the antioxidant capacity and decreased the expression of several genes associated with cell apoptosis. Furthermore, Nob promoted activation of PINK1 and Parkin pathways for mitophagy and alleviated mitochondrial edema. Either the AMPK inhibitor dorsomorphin (Compound C) or SIRT1 inhibitor selisistat (EX-527) attenuated the effect of Nob on mitophagy. The protective effect of Nob on natural aging, GC proliferation, and elimination of the beneficial impact on energy regulation of naturally aging ovaries was diminished by inhibition of Nob-mediated autophagy. These data suggest that Nob treatment increases the expression of mitophagy-related proteins (PINK1 and Parkin) via the AMPK/SIRT1 pathways to prevent ovarian aging in the laying chickens.


Assuntos
Antioxidantes , Galinhas , Flavonas , Feminino , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sirtuína 1/metabolismo , Estresse Oxidativo , Envelhecimento , Autofagia , Ubiquitina-Proteína Ligases/metabolismo
20.
Int J Biol Macromol ; 264(Pt 2): 130677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458298

RESUMO

The gut microbiota, a complex and dynamic microbial ecosystem, plays a crucial role in regulating the intestinal barrier. Polysaccharide foraging is specifically dedicated to establishing and maintaining microbial communities, contributing to the shaping of the intestinal ecosystem and ultimately enhancing the integrity of the intestinal barrier. The utilization and regulation of individual polysaccharides often rely on distinct gut-colonizing bacteria. The products of their metabolism not only benefit the formation of the ecosystem but also facilitate cross-feeding partnerships. In this review, we elucidate the mechanisms by which specific bacteria degrade polysaccharides, and how polysaccharide metabolism shapes the microbial ecosystem through cross-feeding. Furthermore, we explore how selectively promoting microbial ecosystems and their metabolites contributes to improvements in the integrity of the intestinal barrier.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Galinhas/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA